blob: eb198cb6151342905bd148b43fa637d1e3bd4a05 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/GrSurfaceContext.h"
#include "include/private/GrRecordingContext.h"
#include "src/core/SkAutoPixmapStorage.h"
#include "src/gpu/GrAuditTrail.h"
#include "src/gpu/GrClip.h"
#include "src/gpu/GrContextPriv.h"
#include "src/gpu/GrDataUtils.h"
#include "src/gpu/GrDrawingManager.h"
#include "src/gpu/GrGpu.h"
#include "src/gpu/GrImageInfo.h"
#include "src/gpu/GrRecordingContextPriv.h"
#include "src/gpu/GrRenderTargetContext.h"
#include "src/gpu/GrSurfaceContextPriv.h"
#include "src/gpu/GrSurfacePriv.h"
#include "src/gpu/GrTextureContext.h"
#include "src/gpu/SkGr.h"
#include "src/gpu/effects/GrBicubicEffect.h"
#define ASSERT_SINGLE_OWNER \
SkDEBUGCODE(GrSingleOwner::AutoEnforce debug_SingleOwner(this->singleOwner());)
#define RETURN_FALSE_IF_ABANDONED if (this->fContext->priv().abandoned()) { return false; }
// In MDB mode the reffing of the 'getLastOpsTask' call's result allows in-progress
// GrOpsTasks to be picked up and added to by renderTargetContexts lower in the call
// stack. When this occurs with a closed GrOpsTask, a new one will be allocated
// when the renderTargetContext attempts to use it (via getOpsTask).
GrSurfaceContext::GrSurfaceContext(GrRecordingContext* context,
GrColorType colorType,
SkAlphaType alphaType,
sk_sp<SkColorSpace> colorSpace)
: fContext(context), fColorInfo(colorType, alphaType, std::move(colorSpace)) {}
const GrCaps* GrSurfaceContext::caps() const { return fContext->priv().caps(); }
GrAuditTrail* GrSurfaceContext::auditTrail() {
return fContext->priv().auditTrail();
}
GrDrawingManager* GrSurfaceContext::drawingManager() {
return fContext->priv().drawingManager();
}
const GrDrawingManager* GrSurfaceContext::drawingManager() const {
return fContext->priv().drawingManager();
}
#ifdef SK_DEBUG
GrSingleOwner* GrSurfaceContext::singleOwner() {
return fContext->priv().singleOwner();
}
#endif
bool GrSurfaceContext::readPixels(const GrImageInfo& origDstInfo, void* dst, size_t rowBytes,
SkIPoint pt, GrContext* direct) {
ASSERT_SINGLE_OWNER
RETURN_FALSE_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_AUDIT_TRAIL_AUTO_FRAME(this->auditTrail(), "GrSurfaceContext::readPixels");
if (!direct && !(direct = fContext->priv().asDirectContext())) {
return false;
}
if (!dst) {
return false;
}
size_t tightRowBytes = origDstInfo.minRowBytes();
if (!rowBytes) {
rowBytes = tightRowBytes;
} else if (rowBytes < tightRowBytes) {
return false;
}
if (!origDstInfo.isValid()) {
return false;
}
GrSurfaceProxy* srcProxy = this->asSurfaceProxy();
// MDB TODO: delay this instantiation until later in the method
if (!srcProxy->instantiate(direct->priv().resourceProvider())) {
return false;
}
GrSurface* srcSurface = srcProxy->peekSurface();
auto dstInfo = origDstInfo;
if (!dstInfo.clip(this->width(), this->height(), &pt, &dst, rowBytes)) {
return false;
}
// Our tight row bytes may have been changed by clipping.
tightRowBytes = dstInfo.minRowBytes();
bool premul = this->colorInfo().alphaType() == kUnpremul_SkAlphaType &&
dstInfo.alphaType() == kPremul_SkAlphaType;
bool unpremul = this->colorInfo().alphaType() == kPremul_SkAlphaType &&
dstInfo.alphaType() == kUnpremul_SkAlphaType;
bool needColorConversion =
SkColorSpaceXformSteps::Required(this->colorInfo().colorSpace(), dstInfo.colorSpace());
const GrCaps* caps = direct->priv().caps();
// This is the getImageData equivalent to the canvas2D putImageData fast path. We probably don't
// care so much about getImageData performance. However, in order to ensure putImageData/
// getImageData in "legacy" mode are round-trippable we use the GPU to do the complementary
// unpremul step to writeSurfacePixels's premul step (which is determined empirically in
// fContext->vaildaPMUPMConversionExists()).
GrBackendFormat defaultRGBAFormat = caps->getDefaultBackendFormat(GrColorType::kRGBA_8888,
GrRenderable::kYes);
bool canvas2DFastPath = unpremul && !needColorConversion &&
(GrColorType::kRGBA_8888 == dstInfo.colorType() ||
GrColorType::kBGRA_8888 == dstInfo.colorType()) &&
SkToBool(srcProxy->asTextureProxy()) &&
(srcProxy->config() == kRGBA_8888_GrPixelConfig ||
srcProxy->config() == kBGRA_8888_GrPixelConfig) &&
defaultRGBAFormat.isValid() &&
direct->priv().validPMUPMConversionExists();
auto readFlag = caps->surfaceSupportsReadPixels(srcSurface);
if (readFlag == GrCaps::SurfaceReadPixelsSupport::kUnsupported) {
return false;
}
if (readFlag == GrCaps::SurfaceReadPixelsSupport::kCopyToTexture2D || canvas2DFastPath) {
GrColorType colorType =
canvas2DFastPath ? GrColorType::kRGBA_8888 : this->colorInfo().colorType();
sk_sp<SkColorSpace> cs = canvas2DFastPath ? nullptr : this->colorInfo().refColorSpace();
auto tempCtx = direct->priv().makeDeferredRenderTargetContext(
SkBackingFit::kApprox, dstInfo.width(), dstInfo.height(), colorType, std::move(cs),
1, GrMipMapped::kNo, kTopLeft_GrSurfaceOrigin, nullptr, SkBudgeted::kYes);
if (!tempCtx) {
return false;
}
std::unique_ptr<GrFragmentProcessor> fp;
if (canvas2DFastPath) {
fp = direct->priv().createPMToUPMEffect(
GrSimpleTextureEffect::Make(sk_ref_sp(srcProxy->asTextureProxy()),
SkMatrix::I()));
if (dstInfo.colorType() == GrColorType::kBGRA_8888) {
fp = GrFragmentProcessor::SwizzleOutput(std::move(fp), GrSwizzle::BGRA());
dstInfo = dstInfo.makeColorType(GrColorType::kRGBA_8888);
}
// The render target context is incorrectly tagged as kPremul even though we're writing
// unpremul data thanks to the PMToUPM effect. Fake out the dst alpha type so we don't
// double unpremul.
dstInfo = dstInfo.makeAlphaType(kPremul_SkAlphaType);
} else {
fp = GrSimpleTextureEffect::Make(sk_ref_sp(srcProxy->asTextureProxy()), SkMatrix::I());
}
if (!fp) {
return false;
}
GrPaint paint;
paint.setPorterDuffXPFactory(SkBlendMode::kSrc);
paint.addColorFragmentProcessor(std::move(fp));
tempCtx->asRenderTargetContext()->fillRectToRect(
GrNoClip(), std::move(paint), GrAA::kNo, SkMatrix::I(),
SkRect::MakeWH(dstInfo.width(), dstInfo.height()),
SkRect::MakeXYWH(pt.fX, pt.fY, dstInfo.width(), dstInfo.height()));
return tempCtx->readPixels(dstInfo, dst, rowBytes, {0, 0}, direct);
}
bool flip = srcProxy->origin() == kBottomLeft_GrSurfaceOrigin;
auto supportedRead = caps->supportedReadPixelsColorType(
this->colorInfo().colorType(), srcProxy->backendFormat(), dstInfo.colorType());
bool makeTight = !caps->readPixelsRowBytesSupport() && tightRowBytes != rowBytes;
bool convert = unpremul || premul || needColorConversion || flip || makeTight ||
(dstInfo.colorType() != supportedRead.fColorType);
std::unique_ptr<char[]> tmpPixels;
GrImageInfo tmpInfo;
void* readDst = dst;
size_t readRB = rowBytes;
if (convert) {
tmpInfo = {supportedRead.fColorType, this->colorInfo().alphaType(),
this->colorInfo().refColorSpace(), dstInfo.width(), dstInfo.height()};
size_t tmpRB = tmpInfo.minRowBytes();
size_t size = tmpRB * tmpInfo.height();
// Chrome MSAN bots require the data to be initialized (hence the ()).
tmpPixels.reset(new char[size]());
readDst = tmpPixels.get();
readRB = tmpRB;
pt.fY = flip ? srcSurface->height() - pt.fY - dstInfo.height() : pt.fY;
}
direct->priv().flushSurface(srcProxy);
if (!direct->priv().getGpu()->readPixels(srcSurface, pt.fX, pt.fY, dstInfo.width(),
dstInfo.height(), this->colorInfo().colorType(),
supportedRead.fColorType, readDst, readRB)) {
return false;
}
if (convert) {
return GrConvertPixels(dstInfo, dst, rowBytes, tmpInfo, readDst, readRB, flip);
}
return true;
}
bool GrSurfaceContext::writePixels(const GrImageInfo& origSrcInfo, const void* src, size_t rowBytes,
SkIPoint pt, GrContext* direct) {
ASSERT_SINGLE_OWNER
RETURN_FALSE_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_AUDIT_TRAIL_AUTO_FRAME(this->auditTrail(), "GrSurfaceContext::writePixels");
if (!direct && !(direct = fContext->priv().asDirectContext())) {
return false;
}
if (this->asSurfaceProxy()->readOnly()) {
return false;
}
if (!src) {
return false;
}
size_t tightRowBytes = origSrcInfo.minRowBytes();
if (!rowBytes) {
rowBytes = tightRowBytes;
} else if (rowBytes < tightRowBytes) {
return false;
}
if (!origSrcInfo.isValid()) {
return false;
}
GrSurfaceProxy* dstProxy = this->asSurfaceProxy();
if (!dstProxy->instantiate(direct->priv().resourceProvider())) {
return false;
}
GrSurface* dstSurface = dstProxy->peekSurface();
auto srcInfo = origSrcInfo;
if (!srcInfo.clip(this->width(), this->height(), &pt, &src, rowBytes)) {
return false;
}
// Our tight row bytes may have been changed by clipping.
tightRowBytes = srcInfo.minRowBytes();
bool premul = this->colorInfo().alphaType() == kPremul_SkAlphaType &&
srcInfo.alphaType() == kUnpremul_SkAlphaType;
bool unpremul = this->colorInfo().alphaType() == kUnpremul_SkAlphaType &&
srcInfo.alphaType() == kPremul_SkAlphaType;
bool needColorConversion =
SkColorSpaceXformSteps::Required(srcInfo.colorSpace(), this->colorInfo().colorSpace());
const GrCaps* caps = direct->priv().caps();
auto rgbaDefaultFormat = caps->getDefaultBackendFormat(GrColorType::kRGBA_8888,
GrRenderable::kNo);
// For canvas2D putImageData performance we have a special code path for unpremul RGBA_8888 srcs
// that are premultiplied on the GPU. This is kept as narrow as possible for now.
bool canvas2DFastPath = !caps->avoidWritePixelsFastPath() && premul && !needColorConversion &&
(srcInfo.colorType() == GrColorType::kRGBA_8888 ||
srcInfo.colorType() == GrColorType::kBGRA_8888) &&
SkToBool(this->asRenderTargetContext()) &&
(dstProxy->config() == kRGBA_8888_GrPixelConfig ||
dstProxy->config() == kBGRA_8888_GrPixelConfig) &&
rgbaDefaultFormat.isValid() &&
direct->priv().validPMUPMConversionExists();
if (!caps->surfaceSupportsWritePixels(dstSurface) || canvas2DFastPath) {
GrSurfaceDesc desc;
desc.fWidth = srcInfo.width();
desc.fHeight = srcInfo.height();
GrColorType colorType;
GrBackendFormat format;
SkAlphaType alphaType;
if (canvas2DFastPath) {
desc.fConfig = kRGBA_8888_GrPixelConfig;
colorType = GrColorType::kRGBA_8888;
format = rgbaDefaultFormat;
alphaType = kUnpremul_SkAlphaType;
} else {
desc.fConfig = dstProxy->config();
colorType = this->colorInfo().colorType();
format = dstProxy->backendFormat().makeTexture2D();
if (!format.isValid()) {
return false;
}
alphaType = this->colorInfo().alphaType();
}
// It is more efficient for us to write pixels into a top left origin so we prefer that.
// However, if the final proxy isn't a render target then we must use a copy to move the
// data into it which requires the origins to match. If the final proxy is a render target
// we can use a draw instead which doesn't have this origin restriction. Thus for render
// targets we will use top left and otherwise we will make the origins match.
GrSurfaceOrigin tempOrigin =
this->asRenderTargetContext() ? kTopLeft_GrSurfaceOrigin : dstProxy->origin();
auto tempProxy = direct->priv().proxyProvider()->createProxy(
format, desc, GrRenderable::kNo, 1, tempOrigin, GrMipMapped::kNo,
SkBackingFit::kApprox, SkBudgeted::kYes, GrProtected::kNo);
if (!tempProxy) {
return false;
}
auto tempCtx = direct->priv().drawingManager()->makeTextureContext(
tempProxy, colorType, alphaType, this->colorInfo().refColorSpace());
if (!tempCtx) {
return false;
}
// In the fast path we always write the srcData to the temp context as though it were RGBA.
// When the data is really BGRA the write will cause the R and B channels to be swapped in
// the intermediate surface which gets corrected by a swizzle effect when drawing to the
// dst.
if (canvas2DFastPath) {
srcInfo = srcInfo.makeColorType(GrColorType::kRGBA_8888);
}
if (!tempCtx->writePixels(srcInfo, src, rowBytes, {0, 0}, direct)) {
return false;
}
if (this->asRenderTargetContext()) {
std::unique_ptr<GrFragmentProcessor> fp;
if (canvas2DFastPath) {
fp = direct->priv().createUPMToPMEffect(
GrSimpleTextureEffect::Make(std::move(tempProxy), SkMatrix::I()));
// Important: check the original src color type here!
if (origSrcInfo.colorType() == GrColorType::kBGRA_8888) {
fp = GrFragmentProcessor::SwizzleOutput(std::move(fp), GrSwizzle::BGRA());
}
} else {
fp = GrSimpleTextureEffect::Make(std::move(tempProxy), SkMatrix::I());
}
if (!fp) {
return false;
}
GrPaint paint;
paint.setPorterDuffXPFactory(SkBlendMode::kSrc);
paint.addColorFragmentProcessor(std::move(fp));
this->asRenderTargetContext()->fillRectToRect(
GrNoClip(), std::move(paint), GrAA::kNo, SkMatrix::I(),
SkRect::MakeXYWH(pt.fX, pt.fY, srcInfo.width(), srcInfo.height()),
SkRect::MakeWH(srcInfo.width(), srcInfo.height()));
} else {
SkIRect srcRect = SkIRect::MakeWH(srcInfo.width(), srcInfo.height());
SkIPoint dstPoint = SkIPoint::Make(pt.fX, pt.fY);
if (!this->copy(tempProxy.get(), srcRect, dstPoint)) {
return false;
}
}
return true;
}
GrColorType allowedColorType =
caps->supportedWritePixelsColorType(this->colorInfo().colorType(),
dstProxy->backendFormat(),
srcInfo.colorType()).fColorType;
bool flip = dstProxy->origin() == kBottomLeft_GrSurfaceOrigin;
bool makeTight = !caps->writePixelsRowBytesSupport() && rowBytes != tightRowBytes;
bool convert = premul || unpremul || needColorConversion || makeTight ||
(srcInfo.colorType() != allowedColorType) || flip;
std::unique_ptr<char[]> tmpPixels;
GrColorType srcColorType = srcInfo.colorType();
if (convert) {
GrImageInfo tmpInfo(allowedColorType, this->colorInfo().alphaType(),
this->colorInfo().refColorSpace(), srcInfo.width(), srcInfo.height());
auto tmpRB = tmpInfo.minRowBytes();
tmpPixels.reset(new char[tmpRB * tmpInfo.height()]);
GrConvertPixels(tmpInfo, tmpPixels.get(), tmpRB, srcInfo, src, rowBytes, flip);
srcColorType = tmpInfo.colorType();
rowBytes = tmpRB;
src = tmpPixels.get();
pt.fY = flip ? dstSurface->height() - pt.fY - tmpInfo.height() : pt.fY;
}
// On platforms that prefer flushes over VRAM use (i.e., ANGLE) we're better off forcing a
// complete flush here. On platforms that prefer VRAM use over flushes we're better off
// giving the drawing manager the chance of skipping the flush (i.e., by passing in the
// destination proxy)
// TODO: should this policy decision just be moved into the drawing manager?
direct->priv().flushSurface(caps->preferVRAMUseOverFlushes() ? dstProxy : nullptr);
return direct->priv().getGpu()->writePixels(dstSurface, pt.fX, pt.fY, srcInfo.width(),
srcInfo.height(), this->colorInfo().colorType(),
srcColorType, src, rowBytes);
}
bool GrSurfaceContext::copy(GrSurfaceProxy* src, const SkIRect& srcRect, const SkIPoint& dstPoint) {
ASSERT_SINGLE_OWNER
RETURN_FALSE_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_AUDIT_TRAIL_AUTO_FRAME(this->auditTrail(), "GrSurfaceContextPriv::copy");
const GrCaps* caps = fContext->priv().caps();
SkASSERT(src->backendFormat().textureType() != GrTextureType::kExternal);
SkASSERT(src->origin() == this->asSurfaceProxy()->origin());
SkASSERT(caps->makeConfigSpecific(src->config(), src->backendFormat()) ==
caps->makeConfigSpecific(this->asSurfaceProxy()->config(),
this->asSurfaceProxy()->backendFormat()));
if (!caps->canCopySurface(this->asSurfaceProxy(), src, srcRect, dstPoint)) {
return false;
}
return this->drawingManager()->newCopyRenderTask(sk_ref_sp(src), srcRect,
this->asSurfaceProxyRef(), dstPoint);
}
std::unique_ptr<GrRenderTargetContext> GrSurfaceContext::rescale(
const SkImageInfo& info,
const SkIRect& srcRect,
SkSurface::RescaleGamma rescaleGamma,
SkFilterQuality rescaleQuality) {
auto direct = fContext->priv().asDirectContext();
if (!direct) {
return nullptr;
}
auto rtProxy = this->asRenderTargetProxy();
if (rtProxy && rtProxy->wrapsVkSecondaryCB()) {
return nullptr;
}
// We rescale by drawing and don't currently support drawing to a kUnpremul destination.
if (info.alphaType() == kUnpremul_SkAlphaType) {
return nullptr;
}
int srcW = srcRect.width();
int srcH = srcRect.height();
int srcX = srcRect.fLeft;
int srcY = srcRect.fTop;
sk_sp<GrTextureProxy> texProxy = sk_ref_sp(this->asTextureProxy());
SkCanvas::SrcRectConstraint constraint = SkCanvas::kStrict_SrcRectConstraint;
if (!texProxy) {
texProxy = GrSurfaceProxy::Copy(fContext, this->asSurfaceProxy(), GrMipMapped::kNo, srcRect,
SkBackingFit::kApprox, SkBudgeted::kNo);
if (!texProxy) {
return nullptr;
}
srcX = 0;
srcY = 0;
constraint = SkCanvas::kFast_SrcRectConstraint;
}
float sx = (float)info.width() / srcW;
float sy = (float)info.height() / srcH;
// How many bilerp/bicubic steps to do in X and Y. + means upscaling, - means downscaling.
int stepsX;
int stepsY;
if (rescaleQuality > kNone_SkFilterQuality) {
stepsX = static_cast<int>((sx > 1.f) ? ceil(log2f(sx)) : floor(log2f(sx)));
stepsY = static_cast<int>((sy > 1.f) ? ceil(log2f(sy)) : floor(log2f(sy)));
} else {
stepsX = sx != 1.f;
stepsY = sy != 1.f;
}
SkASSERT(stepsX || stepsY);
// Within a rescaling pass A is the input (if not null) and B is the output. At the end of the
// pass B is moved to A. If 'this' is the input on the first pass then tempA is null.
std::unique_ptr<GrRenderTargetContext> tempA;
std::unique_ptr<GrRenderTargetContext> tempB;
// Assume we should ignore the rescale linear request if the surface has no color space since
// it's unclear how we'd linearize from an unknown color space.
if (rescaleGamma == SkSurface::kLinear && this->colorInfo().colorSpace() &&
!this->colorInfo().colorSpace()->gammaIsLinear()) {
auto cs = this->colorInfo().colorSpace()->makeLinearGamma();
auto xform = GrColorSpaceXform::Make(this->colorInfo().colorSpace(),
this->colorInfo().alphaType(), cs.get(),
kPremul_SkAlphaType);
// We'll fall back to kRGBA_8888 if half float not supported.
auto linearRTC = fContext->priv().makeDeferredRenderTargetContextWithFallback(
SkBackingFit::kExact, srcW, srcH, GrColorType::kRGBA_F16, cs, 1, GrMipMapped::kNo,
kTopLeft_GrSurfaceOrigin);
if (!linearRTC) {
return nullptr;
}
linearRTC->drawTexture(GrNoClip(), texProxy, GrSamplerState::Filter::kNearest,
SkBlendMode::kSrc, SK_PMColor4fWHITE, SkRect::Make(srcRect),
SkRect::MakeWH(srcW, srcH), GrAA::kNo, GrQuadAAFlags::kNone,
constraint, SkMatrix::I(), std::move(xform));
texProxy = linearRTC->asTextureProxyRef();
tempA = std::move(linearRTC);
srcX = 0;
srcY = 0;
constraint = SkCanvas::kFast_SrcRectConstraint;
}
while (stepsX || stepsY) {
int nextW = info.width();
int nextH = info.height();
if (stepsX < 0) {
nextW = info.width() << (-stepsX - 1);
stepsX++;
} else if (stepsX != 0) {
if (stepsX > 1) {
nextW = srcW * 2;
}
--stepsX;
}
if (stepsY < 0) {
nextH = info.height() << (-stepsY - 1);
stepsY++;
} else if (stepsY != 0) {
if (stepsY > 1) {
nextH = srcH * 2;
}
--stepsY;
}
auto input = tempA ? tempA.get() : this;
GrColorType colorType = input->colorInfo().colorType();
auto cs = input->colorInfo().refColorSpace();
sk_sp<GrColorSpaceXform> xform;
auto prevAlphaType = input->colorInfo().alphaType();
if (!stepsX && !stepsY) {
// Might as well fold conversion to final info in the last step.
cs = info.refColorSpace();
colorType = SkColorTypeToGrColorType(info.colorType());
xform = GrColorSpaceXform::Make(input->colorInfo().colorSpace(),
input->colorInfo().alphaType(), cs.get(),
info.alphaType());
}
tempB = fContext->priv().makeDeferredRenderTargetContextWithFallback(
SkBackingFit::kExact, nextW, nextH, colorType, std::move(cs), 1, GrMipMapped::kNo,
kTopLeft_GrSurfaceOrigin);
if (!tempB) {
return nullptr;
}
auto dstRect = SkRect::MakeWH(nextW, nextH);
if (rescaleQuality == kHigh_SkFilterQuality) {
SkMatrix matrix;
matrix.setScaleTranslate((float)srcW / nextW, (float)srcH / nextH, srcX, srcY);
std::unique_ptr<GrFragmentProcessor> fp;
auto dir = GrBicubicEffect::Direction::kXY;
if (nextW == srcW) {
dir = GrBicubicEffect::Direction::kY;
} else if (nextH == srcH) {
dir = GrBicubicEffect::Direction::kX;
}
if (srcW != texProxy->width() || srcH != texProxy->height()) {
auto domain = GrTextureDomain::MakeTexelDomain(
SkIRect::MakeXYWH(srcX, srcY, srcW, srcH), GrTextureDomain::kClamp_Mode);
fp = GrBicubicEffect::Make(texProxy, matrix, domain, dir, prevAlphaType);
} else {
fp = GrBicubicEffect::Make(texProxy, matrix, dir, prevAlphaType);
}
if (xform) {
fp = GrColorSpaceXformEffect::Make(std::move(fp), std::move(xform));
}
GrPaint paint;
paint.addColorFragmentProcessor(std::move(fp));
paint.setPorterDuffXPFactory(SkBlendMode::kSrc);
tempB->fillRectToRect(GrNoClip(), std::move(paint), GrAA::kNo, SkMatrix::I(), dstRect,
dstRect);
} else {
auto filter = rescaleQuality == kNone_SkFilterQuality ? GrSamplerState::Filter::kNearest
: GrSamplerState::Filter::kBilerp;
auto srcSubset = SkRect::MakeXYWH(srcX, srcY, srcW, srcH);
tempB->drawTexture(GrNoClip(), texProxy, filter, SkBlendMode::kSrc, SK_PMColor4fWHITE,
srcSubset, dstRect, GrAA::kNo, GrQuadAAFlags::kNone, constraint,
SkMatrix::I(), std::move(xform));
}
texProxy = tempB->asTextureProxyRef();
tempA = std::move(tempB);
srcX = srcY = 0;
srcW = nextW;
srcH = nextH;
constraint = SkCanvas::kFast_SrcRectConstraint;
}
SkASSERT(tempA);
return tempA;
}
GrSurfaceContext::PixelTransferResult GrSurfaceContext::transferPixels(GrColorType dstCT,
const SkIRect& rect) {
SkASSERT(rect.fLeft >= 0 && rect.fRight <= this->width());
SkASSERT(rect.fTop >= 0 && rect.fBottom <= this->height());
auto direct = fContext->priv().asDirectContext();
if (!direct) {
return {};
}
auto rtProxy = this->asRenderTargetProxy();
if (rtProxy && rtProxy->wrapsVkSecondaryCB()) {
return {};
}
auto proxy = this->asSurfaceProxy();
auto supportedRead = this->caps()->supportedReadPixelsColorType(this->colorInfo().colorType(),
proxy->backendFormat(), dstCT);
// Fail if read color type does not have all of dstCT's color channels and those missing color
// channels are in the src.
uint32_t dstComponents = GrColorTypeComponentFlags(dstCT);
uint32_t legalReadComponents = GrColorTypeComponentFlags(supportedRead.fColorType);
uint32_t srcComponents = GrColorTypeComponentFlags(this->colorInfo().colorType());
if ((~legalReadComponents & dstComponents) & srcComponents) {
return {};
}
if (!this->caps()->transferBufferSupport() ||
!supportedRead.fOffsetAlignmentForTransferBuffer) {
return {};
}
size_t rowBytes = GrColorTypeBytesPerPixel(supportedRead.fColorType) * rect.width();
size_t size = rowBytes * rect.height();
auto buffer = direct->priv().resourceProvider()->createBuffer(
size, GrGpuBufferType::kXferGpuToCpu, GrAccessPattern::kStream_GrAccessPattern);
if (!buffer) {
return {};
}
auto srcRect = rect;
bool flip = proxy->origin() == kBottomLeft_GrSurfaceOrigin;
if (flip) {
srcRect = SkIRect::MakeLTRB(rect.fLeft, this->height() - rect.fBottom, rect.fRight,
this->height() - rect.fTop);
}
this->drawingManager()->newTransferFromRenderTask(this->asSurfaceProxyRef(), srcRect,
this->colorInfo().colorType(),
supportedRead.fColorType, buffer, 0);
PixelTransferResult result;
result.fTransferBuffer = std::move(buffer);
auto at = this->colorInfo().alphaType();
if (supportedRead.fColorType != dstCT || flip) {
result.fPixelConverter = [w = rect.width(), h = rect.height(), dstCT, supportedRead, at](
void* dst, const void* src) {
GrImageInfo srcInfo(supportedRead.fColorType, at, nullptr, w, h);
GrImageInfo dstInfo(dstCT, at, nullptr, w, h);
GrConvertPixels(dstInfo, dst, dstInfo.minRowBytes(),
srcInfo, src, srcInfo.minRowBytes(),
/* flipY = */ false);
};
}
return result;
}