blob: 90d4a88a7d193f930c61ed4996f5914da850f5ac [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/effects/GrPorterDuffXferProcessor.h"
#include "include/gpu/GrBlend.h"
#include "include/gpu/GrTypes.h"
#include "include/private/SkTo.h"
#include "src/gpu/GrCaps.h"
#include "src/gpu/GrPipeline.h"
#include "src/gpu/GrProcessor.h"
#include "src/gpu/GrProcessorAnalysis.h"
#include "src/gpu/GrXferProcessor.h"
#include "src/gpu/glsl/GrGLSLBlend.h"
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
#include "src/gpu/glsl/GrGLSLProgramDataManager.h"
#include "src/gpu/glsl/GrGLSLUniformHandler.h"
#include "src/gpu/glsl/GrGLSLXferProcessor.h"
/**
* Wraps the shader outputs and HW blend state that comprise a Porter Duff blend mode with coverage.
*/
class BlendFormula {
public:
/**
* Values the shader can write to primary and secondary outputs. These must all be modulated by
* coverage to support mixed samples. The XP will ignore the multiplies when not using coverage.
*/
enum OutputType {
kNone_OutputType, //<! 0
kCoverage_OutputType, //<! inputCoverage
kModulate_OutputType, //<! inputColor * inputCoverage
kSAModulate_OutputType, //<! inputColor.a * inputCoverage
kISAModulate_OutputType, //<! (1 - inputColor.a) * inputCoverage
kISCModulate_OutputType, //<! (1 - inputColor) * inputCoverage
kLast_OutputType = kISCModulate_OutputType
};
BlendFormula() = default;
constexpr BlendFormula(OutputType primaryOut, OutputType secondaryOut, GrBlendEquation equation,
GrBlendCoeff srcCoeff, GrBlendCoeff dstCoeff)
: fPrimaryOutputType(primaryOut)
, fSecondaryOutputType(secondaryOut)
, fBlendEquation(equation)
, fSrcCoeff(srcCoeff)
, fDstCoeff(dstCoeff)
, fProps(GetProperties(primaryOut, secondaryOut, equation, srcCoeff, dstCoeff)) {}
BlendFormula& operator=(const BlendFormula& other) {
SkDEBUGCODE(other.validatePreoptimized());
fData = other.fData;
return *this;
}
bool operator==(const BlendFormula& other) const {
SkDEBUGCODE(this->validatePreoptimized());
SkDEBUGCODE(other.validatePreoptimized());
return fData == other.fData;
}
bool hasSecondaryOutput() const {
SkDEBUGCODE(this->validatePreoptimized());
return kNone_OutputType != fSecondaryOutputType;
}
bool modifiesDst() const {
SkDEBUGCODE(this->validatePreoptimized());
return SkToBool(fProps & kModifiesDst_Property);
}
bool usesDstColor() const {
SkDEBUGCODE(this->validatePreoptimized());
return SkToBool(fProps & kUsesDstColor_Property);
}
bool usesInputColor() const {
SkDEBUGCODE(this->validatePreoptimized());
return SkToBool(fProps & kUsesInputColor_Property);
}
bool canTweakAlphaForCoverage() const {
SkDEBUGCODE(this->validatePreoptimized());
return SkToBool(fProps & kCanTweakAlphaForCoverage_Property);
}
GrBlendEquation equation() const {
SkDEBUGCODE(this->validatePreoptimized());
return fBlendEquation;
}
GrBlendCoeff srcCoeff() const {
SkDEBUGCODE(this->validatePreoptimized());
return fSrcCoeff;
}
GrBlendCoeff dstCoeff() const {
SkDEBUGCODE(this->validatePreoptimized());
return fDstCoeff;
}
OutputType primaryOutput() const {
SkDEBUGCODE(this->validatePreoptimized());
return fPrimaryOutputType;
}
OutputType secondaryOutput() const {
SkDEBUGCODE(this->validatePreoptimized());
return fSecondaryOutputType;
}
private:
enum Properties {
kModifiesDst_Property = 1,
kUsesDstColor_Property = 1 << 1,
kUsesInputColor_Property = 1 << 2,
kCanTweakAlphaForCoverage_Property = 1 << 3,
kLast_Property = kCanTweakAlphaForCoverage_Property
};
GR_DECL_BITFIELD_OPS_FRIENDS(Properties)
#ifdef SK_DEBUG
void validatePreoptimized() const {
// The provided formula should already be optimized before a BlendFormula is constructed.
// Preferably these asserts would be done statically in the constexpr constructor, but this
// is not allowed in C++11.
SkASSERT((kNone_OutputType == fPrimaryOutputType) ==
!GrBlendCoeffsUseSrcColor(fSrcCoeff, fDstCoeff));
SkASSERT(!GrBlendCoeffRefsSrc2(fSrcCoeff));
SkASSERT((kNone_OutputType == fSecondaryOutputType) == !GrBlendCoeffRefsSrc2(fDstCoeff));
SkASSERT(fPrimaryOutputType != fSecondaryOutputType ||
kNone_OutputType == fPrimaryOutputType);
SkASSERT(kNone_OutputType != fPrimaryOutputType ||
kNone_OutputType == fSecondaryOutputType);
}
#endif
/**
* Deduce the properties of a BlendFormula.
*/
static constexpr Properties GetProperties(OutputType PrimaryOut, OutputType SecondaryOut,
GrBlendEquation BlendEquation, GrBlendCoeff SrcCoeff,
GrBlendCoeff DstCoeff);
union {
struct {
// We allot the enums one more bit than they require because MSVC seems to sign-extend
// them when the top bit is set. (This is in violation of the C++03 standard 9.6/4)
OutputType fPrimaryOutputType : 4;
OutputType fSecondaryOutputType : 4;
GrBlendEquation fBlendEquation : 6;
GrBlendCoeff fSrcCoeff : 6;
GrBlendCoeff fDstCoeff : 6;
Properties fProps : 32 - (4 + 4 + 6 + 6 + 6);
};
uint32_t fData;
};
GR_STATIC_ASSERT(kLast_OutputType < (1 << 3));
GR_STATIC_ASSERT(kLast_GrBlendEquation < (1 << 5));
GR_STATIC_ASSERT(kLast_GrBlendCoeff < (1 << 5));
GR_STATIC_ASSERT(kLast_Property < (1 << 6));
};
GR_STATIC_ASSERT(4 == sizeof(BlendFormula));
GR_MAKE_BITFIELD_OPS(BlendFormula::Properties);
constexpr BlendFormula::Properties BlendFormula::GetProperties(OutputType PrimaryOut,
OutputType SecondaryOut,
GrBlendEquation BlendEquation,
GrBlendCoeff SrcCoeff,
GrBlendCoeff DstCoeff) {
return static_cast<Properties>(
(GrBlendModifiesDst(BlendEquation, SrcCoeff, DstCoeff) ? kModifiesDst_Property : 0) |
(GrBlendCoeffsUseDstColor(SrcCoeff, DstCoeff) ? kUsesDstColor_Property : 0) |
((PrimaryOut >= kModulate_OutputType && GrBlendCoeffsUseSrcColor(SrcCoeff, DstCoeff)) ||
(SecondaryOut >= kModulate_OutputType &&
GrBlendCoeffRefsSrc2(DstCoeff))
? kUsesInputColor_Property
: 0) | // We assert later that SrcCoeff doesn't ref src2.
((kModulate_OutputType == PrimaryOut || kNone_OutputType == PrimaryOut) &&
kNone_OutputType == SecondaryOut &&
GrBlendAllowsCoverageAsAlpha(BlendEquation, SrcCoeff, DstCoeff)
? kCanTweakAlphaForCoverage_Property
: 0));
}
/**
* When there is no coverage, or the blend mode can tweak alpha for coverage, we use the standard
* Porter Duff formula.
*/
static constexpr BlendFormula MakeCoeffFormula(GrBlendCoeff srcCoeff, GrBlendCoeff dstCoeff) {
// When the coeffs are (Zero, Zero) or (Zero, One) we set the primary output to none.
return (kZero_GrBlendCoeff == srcCoeff &&
(kZero_GrBlendCoeff == dstCoeff || kOne_GrBlendCoeff == dstCoeff))
? BlendFormula(BlendFormula::kNone_OutputType, BlendFormula::kNone_OutputType,
kAdd_GrBlendEquation, kZero_GrBlendCoeff, dstCoeff)
: BlendFormula(BlendFormula::kModulate_OutputType, BlendFormula::kNone_OutputType,
kAdd_GrBlendEquation, srcCoeff, dstCoeff);
}
/**
* Basic coeff formula similar to MakeCoeffFormula but we will make the src f*Sa. This is used in
* LCD dst-out.
*/
static constexpr BlendFormula MakeSAModulateFormula(GrBlendCoeff srcCoeff, GrBlendCoeff dstCoeff) {
return BlendFormula(BlendFormula::kSAModulate_OutputType, BlendFormula::kNone_OutputType,
kAdd_GrBlendEquation, srcCoeff, dstCoeff);
}
/**
* When there is coverage, the equation with f=coverage is:
*
* D' = f * (S * srcCoeff + D * dstCoeff) + (1-f) * D
*
* This can be rewritten as:
*
* D' = f * S * srcCoeff + D * (1 - [f * (1 - dstCoeff)])
*
* To implement this formula, we output [f * (1 - dstCoeff)] for the secondary color and replace the
* HW dst coeff with IS2C.
*
* Xfer modes: dst-atop (Sa!=1)
*/
static constexpr BlendFormula MakeCoverageFormula(
BlendFormula::OutputType oneMinusDstCoeffModulateOutput, GrBlendCoeff srcCoeff) {
return BlendFormula(BlendFormula::kModulate_OutputType, oneMinusDstCoeffModulateOutput,
kAdd_GrBlendEquation, srcCoeff, kIS2C_GrBlendCoeff);
}
/**
* When there is coverage and the src coeff is Zero, the equation with f=coverage becomes:
*
* D' = f * D * dstCoeff + (1-f) * D
*
* This can be rewritten as:
*
* D' = D - D * [f * (1 - dstCoeff)]
*
* To implement this formula, we output [f * (1 - dstCoeff)] for the primary color and use a reverse
* subtract HW blend equation with coeffs of (DC, One).
*
* Xfer modes: clear, dst-out (Sa=1), dst-in (Sa!=1), modulate (Sc!=1)
*/
static constexpr BlendFormula MakeCoverageSrcCoeffZeroFormula(
BlendFormula::OutputType oneMinusDstCoeffModulateOutput) {
return BlendFormula(oneMinusDstCoeffModulateOutput, BlendFormula::kNone_OutputType,
kReverseSubtract_GrBlendEquation, kDC_GrBlendCoeff, kOne_GrBlendCoeff);
}
/**
* When there is coverage and the dst coeff is Zero, the equation with f=coverage becomes:
*
* D' = f * S * srcCoeff + (1-f) * D
*
* To implement this formula, we output [f] for the secondary color and replace the HW dst coeff
* with IS2A. (Note that we can avoid dual source blending when Sa=1 by using ISA.)
*
* Xfer modes (Sa!=1): src, src-in, src-out
*/
static constexpr BlendFormula MakeCoverageDstCoeffZeroFormula(GrBlendCoeff srcCoeff) {
return BlendFormula(BlendFormula::kModulate_OutputType, BlendFormula::kCoverage_OutputType,
kAdd_GrBlendEquation, srcCoeff, kIS2A_GrBlendCoeff);
}
// Older GCC won't like the constexpr arrays because of
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61484.
// MSVC 2015 crashes with an internal compiler error.
#if !defined(__clang__) && ((defined(__GNUC__) && __GNUC__ < 5) || (defined(_MSC_VER) && _MSC_VER <= 1910))
# define MAYBE_CONSTEXPR const
#else
# define MAYBE_CONSTEXPR constexpr
#endif
/**
* This table outlines the blend formulas we will use with each xfermode, with and without coverage,
* with and without an opaque input color. Optimization properties are deduced at compile time so we
* can make runtime decisions quickly. RGB coverage is not supported.
*/
static MAYBE_CONSTEXPR BlendFormula gBlendTable[2][2][(int)SkBlendMode::kLastCoeffMode + 1] = {
/*>> No coverage, input color unknown <<*/ {{
/* clear */ MakeCoeffFormula(kZero_GrBlendCoeff, kZero_GrBlendCoeff),
/* src */ MakeCoeffFormula(kOne_GrBlendCoeff, kZero_GrBlendCoeff),
/* dst */ MakeCoeffFormula(kZero_GrBlendCoeff, kOne_GrBlendCoeff),
/* src-over */ MakeCoeffFormula(kOne_GrBlendCoeff, kISA_GrBlendCoeff),
/* dst-over */ MakeCoeffFormula(kIDA_GrBlendCoeff, kOne_GrBlendCoeff),
/* src-in */ MakeCoeffFormula(kDA_GrBlendCoeff, kZero_GrBlendCoeff),
/* dst-in */ MakeCoeffFormula(kZero_GrBlendCoeff, kSA_GrBlendCoeff),
/* src-out */ MakeCoeffFormula(kIDA_GrBlendCoeff, kZero_GrBlendCoeff),
/* dst-out */ MakeCoeffFormula(kZero_GrBlendCoeff, kISA_GrBlendCoeff),
/* src-atop */ MakeCoeffFormula(kDA_GrBlendCoeff, kISA_GrBlendCoeff),
/* dst-atop */ MakeCoeffFormula(kIDA_GrBlendCoeff, kSA_GrBlendCoeff),
/* xor */ MakeCoeffFormula(kIDA_GrBlendCoeff, kISA_GrBlendCoeff),
/* plus */ MakeCoeffFormula(kOne_GrBlendCoeff, kOne_GrBlendCoeff),
/* modulate */ MakeCoeffFormula(kZero_GrBlendCoeff, kSC_GrBlendCoeff),
/* screen */ MakeCoeffFormula(kOne_GrBlendCoeff, kISC_GrBlendCoeff),
}, /*>> Has coverage, input color unknown <<*/ {
/* clear */ MakeCoverageSrcCoeffZeroFormula(BlendFormula::kCoverage_OutputType),
/* src */ MakeCoverageDstCoeffZeroFormula(kOne_GrBlendCoeff),
/* dst */ MakeCoeffFormula(kZero_GrBlendCoeff, kOne_GrBlendCoeff),
/* src-over */ MakeCoeffFormula(kOne_GrBlendCoeff, kISA_GrBlendCoeff),
/* dst-over */ MakeCoeffFormula(kIDA_GrBlendCoeff, kOne_GrBlendCoeff),
/* src-in */ MakeCoverageDstCoeffZeroFormula(kDA_GrBlendCoeff),
/* dst-in */ MakeCoverageSrcCoeffZeroFormula(BlendFormula::kISAModulate_OutputType),
/* src-out */ MakeCoverageDstCoeffZeroFormula(kIDA_GrBlendCoeff),
/* dst-out */ MakeCoeffFormula(kZero_GrBlendCoeff, kISA_GrBlendCoeff),
/* src-atop */ MakeCoeffFormula(kDA_GrBlendCoeff, kISA_GrBlendCoeff),
/* dst-atop */ MakeCoverageFormula(BlendFormula::kISAModulate_OutputType, kIDA_GrBlendCoeff),
/* xor */ MakeCoeffFormula(kIDA_GrBlendCoeff, kISA_GrBlendCoeff),
/* plus */ MakeCoeffFormula(kOne_GrBlendCoeff, kOne_GrBlendCoeff),
/* modulate */ MakeCoverageSrcCoeffZeroFormula(BlendFormula::kISCModulate_OutputType),
/* screen */ MakeCoeffFormula(kOne_GrBlendCoeff, kISC_GrBlendCoeff),
}}, /*>> No coverage, input color opaque <<*/ {{
/* clear */ MakeCoeffFormula(kZero_GrBlendCoeff, kZero_GrBlendCoeff),
/* src */ MakeCoeffFormula(kOne_GrBlendCoeff, kZero_GrBlendCoeff),
/* dst */ MakeCoeffFormula(kZero_GrBlendCoeff, kOne_GrBlendCoeff),
/* src-over */ MakeCoeffFormula(kOne_GrBlendCoeff, kISA_GrBlendCoeff), // see comment below
/* dst-over */ MakeCoeffFormula(kIDA_GrBlendCoeff, kOne_GrBlendCoeff),
/* src-in */ MakeCoeffFormula(kDA_GrBlendCoeff, kZero_GrBlendCoeff),
/* dst-in */ MakeCoeffFormula(kZero_GrBlendCoeff, kOne_GrBlendCoeff),
/* src-out */ MakeCoeffFormula(kIDA_GrBlendCoeff, kZero_GrBlendCoeff),
/* dst-out */ MakeCoeffFormula(kZero_GrBlendCoeff, kZero_GrBlendCoeff),
/* src-atop */ MakeCoeffFormula(kDA_GrBlendCoeff, kZero_GrBlendCoeff),
/* dst-atop */ MakeCoeffFormula(kIDA_GrBlendCoeff, kOne_GrBlendCoeff),
/* xor */ MakeCoeffFormula(kIDA_GrBlendCoeff, kZero_GrBlendCoeff),
/* plus */ MakeCoeffFormula(kOne_GrBlendCoeff, kOne_GrBlendCoeff),
/* modulate */ MakeCoeffFormula(kZero_GrBlendCoeff, kSC_GrBlendCoeff),
/* screen */ MakeCoeffFormula(kOne_GrBlendCoeff, kISC_GrBlendCoeff),
}, /*>> Has coverage, input color opaque <<*/ {
/* clear */ MakeCoverageSrcCoeffZeroFormula(BlendFormula::kCoverage_OutputType),
/* src */ MakeCoeffFormula(kOne_GrBlendCoeff, kISA_GrBlendCoeff),
/* dst */ MakeCoeffFormula(kZero_GrBlendCoeff, kOne_GrBlendCoeff),
/* src-over */ MakeCoeffFormula(kOne_GrBlendCoeff, kISA_GrBlendCoeff),
/* dst-over */ MakeCoeffFormula(kIDA_GrBlendCoeff, kOne_GrBlendCoeff),
/* src-in */ MakeCoeffFormula(kDA_GrBlendCoeff, kISA_GrBlendCoeff),
/* dst-in */ MakeCoeffFormula(kZero_GrBlendCoeff, kOne_GrBlendCoeff),
/* src-out */ MakeCoeffFormula(kIDA_GrBlendCoeff, kISA_GrBlendCoeff),
/* dst-out */ MakeCoverageSrcCoeffZeroFormula(BlendFormula::kCoverage_OutputType),
/* src-atop */ MakeCoeffFormula(kDA_GrBlendCoeff, kISA_GrBlendCoeff),
/* dst-atop */ MakeCoeffFormula(kIDA_GrBlendCoeff, kOne_GrBlendCoeff),
/* xor */ MakeCoeffFormula(kIDA_GrBlendCoeff, kISA_GrBlendCoeff),
/* plus */ MakeCoeffFormula(kOne_GrBlendCoeff, kOne_GrBlendCoeff),
/* modulate */ MakeCoverageSrcCoeffZeroFormula(BlendFormula::kISCModulate_OutputType),
/* screen */ MakeCoeffFormula(kOne_GrBlendCoeff, kISC_GrBlendCoeff),
}}};
// In the above table src-over is not optimized to src mode when the color is opaque because we
// found no advantage to doing so. Also, we are using a global src-over XP in most cases which is
// not specialized for opaque input. If the table were set to use the src formula then we'd have to
// change when we use this global XP to keep analysis and practice in sync.
static MAYBE_CONSTEXPR BlendFormula gLCDBlendTable[(int)SkBlendMode::kLastCoeffMode + 1] = {
/* clear */ MakeCoverageSrcCoeffZeroFormula(BlendFormula::kCoverage_OutputType),
/* src */ MakeCoverageFormula(BlendFormula::kCoverage_OutputType, kOne_GrBlendCoeff),
/* dst */ MakeCoeffFormula(kZero_GrBlendCoeff, kOne_GrBlendCoeff),
/* src-over */ MakeCoverageFormula(BlendFormula::kSAModulate_OutputType, kOne_GrBlendCoeff),
/* dst-over */ MakeCoeffFormula(kIDA_GrBlendCoeff, kOne_GrBlendCoeff),
/* src-in */ MakeCoverageFormula(BlendFormula::kCoverage_OutputType, kDA_GrBlendCoeff),
/* dst-in */ MakeCoverageSrcCoeffZeroFormula(BlendFormula::kISAModulate_OutputType),
/* src-out */ MakeCoverageFormula(BlendFormula::kCoverage_OutputType, kIDA_GrBlendCoeff),
/* dst-out */ MakeSAModulateFormula(kZero_GrBlendCoeff, kISC_GrBlendCoeff),
/* src-atop */ MakeCoverageFormula(BlendFormula::kSAModulate_OutputType, kDA_GrBlendCoeff),
/* dst-atop */ MakeCoverageFormula(BlendFormula::kISAModulate_OutputType, kIDA_GrBlendCoeff),
/* xor */ MakeCoverageFormula(BlendFormula::kSAModulate_OutputType, kIDA_GrBlendCoeff),
/* plus */ MakeCoeffFormula(kOne_GrBlendCoeff, kOne_GrBlendCoeff),
/* modulate */ MakeCoverageSrcCoeffZeroFormula(BlendFormula::kISCModulate_OutputType),
/* screen */ MakeCoeffFormula(kOne_GrBlendCoeff, kISC_GrBlendCoeff),
};
#undef MAYBE_CONSTEXPR
static BlendFormula get_blend_formula(bool isOpaque,
bool hasCoverage,
bool hasMixedSamples,
SkBlendMode xfermode) {
SkASSERT((unsigned)xfermode <= (unsigned)SkBlendMode::kLastCoeffMode);
bool conflatesCoverage = hasCoverage || hasMixedSamples;
return gBlendTable[isOpaque][conflatesCoverage][(int)xfermode];
}
static BlendFormula get_lcd_blend_formula(SkBlendMode xfermode) {
SkASSERT((unsigned)xfermode <= (unsigned)SkBlendMode::kLastCoeffMode);
return gLCDBlendTable[(int)xfermode];
}
///////////////////////////////////////////////////////////////////////////////
class PorterDuffXferProcessor : public GrXferProcessor {
public:
PorterDuffXferProcessor(BlendFormula blendFormula, GrProcessorAnalysisCoverage coverage)
: INHERITED(kPorterDuffXferProcessor_ClassID, false, false, coverage)
, fBlendFormula(blendFormula) {
}
const char* name() const override { return "Porter Duff"; }
GrGLSLXferProcessor* createGLSLInstance() const override;
BlendFormula getBlendFormula() const { return fBlendFormula; }
private:
void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override;
bool onHasSecondaryOutput() const override { return fBlendFormula.hasSecondaryOutput(); }
void onGetBlendInfo(GrXferProcessor::BlendInfo* blendInfo) const override {
blendInfo->fEquation = fBlendFormula.equation();
blendInfo->fSrcBlend = fBlendFormula.srcCoeff();
blendInfo->fDstBlend = fBlendFormula.dstCoeff();
blendInfo->fWriteColor = fBlendFormula.modifiesDst();
}
bool onIsEqual(const GrXferProcessor& xpBase) const override {
const PorterDuffXferProcessor& xp = xpBase.cast<PorterDuffXferProcessor>();
return fBlendFormula == xp.fBlendFormula;
}
const BlendFormula fBlendFormula;
typedef GrXferProcessor INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
static void append_color_output(const PorterDuffXferProcessor& xp,
GrGLSLXPFragmentBuilder* fragBuilder,
BlendFormula::OutputType outputType, const char* output,
const char* inColor, const char* inCoverage) {
SkASSERT(inCoverage);
SkASSERT(inColor);
switch (outputType) {
case BlendFormula::kNone_OutputType:
fragBuilder->codeAppendf("%s = half4(0.0);", output);
break;
case BlendFormula::kCoverage_OutputType:
// We can have a coverage formula while not reading coverage if there are mixed samples.
fragBuilder->codeAppendf("%s = %s;", output, inCoverage);
break;
case BlendFormula::kModulate_OutputType:
fragBuilder->codeAppendf("%s = %s * %s;", output, inColor, inCoverage);
break;
case BlendFormula::kSAModulate_OutputType:
fragBuilder->codeAppendf("%s = %s.a * %s;", output, inColor, inCoverage);
break;
case BlendFormula::kISAModulate_OutputType:
fragBuilder->codeAppendf("%s = (1.0 - %s.a) * %s;", output, inColor, inCoverage);
break;
case BlendFormula::kISCModulate_OutputType:
fragBuilder->codeAppendf("%s = (half4(1.0) - %s) * %s;", output, inColor, inCoverage);
break;
default:
SK_ABORT("Unsupported output type.");
break;
}
}
class GLPorterDuffXferProcessor : public GrGLSLXferProcessor {
public:
static void GenKey(const GrProcessor& processor, GrProcessorKeyBuilder* b) {
const PorterDuffXferProcessor& xp = processor.cast<PorterDuffXferProcessor>();
b->add32(xp.getBlendFormula().primaryOutput() |
(xp.getBlendFormula().secondaryOutput() << 3));
GR_STATIC_ASSERT(BlendFormula::kLast_OutputType < 8);
}
private:
void emitOutputsForBlendState(const EmitArgs& args) override {
const PorterDuffXferProcessor& xp = args.fXP.cast<PorterDuffXferProcessor>();
GrGLSLXPFragmentBuilder* fragBuilder = args.fXPFragBuilder;
BlendFormula blendFormula = xp.getBlendFormula();
if (blendFormula.hasSecondaryOutput()) {
append_color_output(xp, fragBuilder, blendFormula.secondaryOutput(),
args.fOutputSecondary, args.fInputColor, args.fInputCoverage);
}
append_color_output(xp, fragBuilder, blendFormula.primaryOutput(), args.fOutputPrimary,
args.fInputColor, args.fInputCoverage);
}
void onSetData(const GrGLSLProgramDataManager&, const GrXferProcessor&) override {}
typedef GrGLSLXferProcessor INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
void PorterDuffXferProcessor::onGetGLSLProcessorKey(const GrShaderCaps&,
GrProcessorKeyBuilder* b) const {
GLPorterDuffXferProcessor::GenKey(*this, b);
}
GrGLSLXferProcessor* PorterDuffXferProcessor::createGLSLInstance() const {
return new GLPorterDuffXferProcessor;
}
///////////////////////////////////////////////////////////////////////////////
class ShaderPDXferProcessor : public GrXferProcessor {
public:
ShaderPDXferProcessor(bool hasMixedSamples, SkBlendMode xfermode,
GrProcessorAnalysisCoverage coverage)
: INHERITED(kShaderPDXferProcessor_ClassID, true, hasMixedSamples, coverage)
, fXfermode(xfermode) {
}
const char* name() const override { return "Porter Duff Shader"; }
GrGLSLXferProcessor* createGLSLInstance() const override;
SkBlendMode getXfermode() const { return fXfermode; }
private:
void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override;
bool onIsEqual(const GrXferProcessor& xpBase) const override {
const ShaderPDXferProcessor& xp = xpBase.cast<ShaderPDXferProcessor>();
return fXfermode == xp.fXfermode;
}
const SkBlendMode fXfermode;
typedef GrXferProcessor INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
class GLShaderPDXferProcessor : public GrGLSLXferProcessor {
public:
static void GenKey(const GrProcessor& processor, GrProcessorKeyBuilder* b) {
const ShaderPDXferProcessor& xp = processor.cast<ShaderPDXferProcessor>();
b->add32((int)xp.getXfermode());
}
private:
void emitBlendCodeForDstRead(GrGLSLXPFragmentBuilder* fragBuilder,
GrGLSLUniformHandler* uniformHandler,
const char* srcColor,
const char* srcCoverage,
const char* dstColor,
const char* outColor,
const char* outColorSecondary,
const GrXferProcessor& proc) override {
const ShaderPDXferProcessor& xp = proc.cast<ShaderPDXferProcessor>();
GrGLSLBlend::AppendMode(fragBuilder, srcColor, dstColor, outColor, xp.getXfermode());
// Apply coverage.
INHERITED::DefaultCoverageModulation(fragBuilder, srcCoverage, dstColor, outColor,
outColorSecondary, xp);
}
void onSetData(const GrGLSLProgramDataManager&, const GrXferProcessor&) override {}
typedef GrGLSLXferProcessor INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
void ShaderPDXferProcessor::onGetGLSLProcessorKey(const GrShaderCaps&,
GrProcessorKeyBuilder* b) const {
GLShaderPDXferProcessor::GenKey(*this, b);
}
GrGLSLXferProcessor* ShaderPDXferProcessor::createGLSLInstance() const {
return new GLShaderPDXferProcessor;
}
///////////////////////////////////////////////////////////////////////////////
class PDLCDXferProcessor : public GrXferProcessor {
public:
static sk_sp<const GrXferProcessor> Make(SkBlendMode mode,
const GrProcessorAnalysisColor& inputColor);
~PDLCDXferProcessor() override;
const char* name() const override { return "Porter Duff LCD"; }
GrGLSLXferProcessor* createGLSLInstance() const override;
float alpha() const { return fAlpha; }
private:
PDLCDXferProcessor(const SkPMColor4f& blendConstant, float alpha);
void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override;
void onGetBlendInfo(GrXferProcessor::BlendInfo* blendInfo) const override {
blendInfo->fSrcBlend = kConstC_GrBlendCoeff;
blendInfo->fDstBlend = kISC_GrBlendCoeff;
blendInfo->fBlendConstant = fBlendConstant;
}
bool onIsEqual(const GrXferProcessor& xpBase) const override {
const PDLCDXferProcessor& xp = xpBase.cast<PDLCDXferProcessor>();
if (fBlendConstant != xp.fBlendConstant || fAlpha != xp.fAlpha) {
return false;
}
return true;
}
SkPMColor4f fBlendConstant;
float fAlpha;
typedef GrXferProcessor INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
class GLPDLCDXferProcessor : public GrGLSLXferProcessor {
public:
GLPDLCDXferProcessor(const GrProcessor&) : fLastAlpha(SK_FloatNaN) {}
~GLPDLCDXferProcessor() override {}
static void GenKey(const GrProcessor& processor, const GrShaderCaps& caps,
GrProcessorKeyBuilder* b) {}
private:
void emitOutputsForBlendState(const EmitArgs& args) override {
const char* alpha;
fAlphaUniform = args.fUniformHandler->addUniform(kFragment_GrShaderFlag, kHalf_GrSLType,
"alpha", &alpha);
GrGLSLXPFragmentBuilder* fragBuilder = args.fXPFragBuilder;
// We want to force our primary output to be alpha * Coverage, where alpha is the alpha
// value of the src color. We know that there are no color stages (or we wouldn't have
// created this xp) and the r,g, and b channels of the op's input color are baked into the
// blend constant.
SkASSERT(args.fInputCoverage);
fragBuilder->codeAppendf("%s = %s * %s;", args.fOutputPrimary, alpha, args.fInputCoverage);
}
void onSetData(const GrGLSLProgramDataManager& pdm, const GrXferProcessor& xp) override {
float alpha = xp.cast<PDLCDXferProcessor>().alpha();
if (fLastAlpha != alpha) {
pdm.set1f(fAlphaUniform, alpha);
fLastAlpha = alpha;
}
}
GrGLSLUniformHandler::UniformHandle fAlphaUniform;
float fLastAlpha;
typedef GrGLSLXferProcessor INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
PDLCDXferProcessor::PDLCDXferProcessor(const SkPMColor4f& blendConstant, float alpha)
: INHERITED(kPDLCDXferProcessor_ClassID, false, false, GrProcessorAnalysisCoverage::kLCD)
, fBlendConstant(blendConstant)
, fAlpha(alpha) {
}
sk_sp<const GrXferProcessor> PDLCDXferProcessor::Make(SkBlendMode mode,
const GrProcessorAnalysisColor& color) {
if (SkBlendMode::kSrcOver != mode) {
return nullptr;
}
SkPMColor4f blendConstantPM;
if (!color.isConstant(&blendConstantPM)) {
return nullptr;
}
SkColor4f blendConstantUPM = blendConstantPM.unpremul();
float alpha = blendConstantUPM.fA;
blendConstantPM = { blendConstantUPM.fR, blendConstantUPM.fG, blendConstantUPM.fB, 1 };
return sk_sp<GrXferProcessor>(new PDLCDXferProcessor(blendConstantPM, alpha));
}
PDLCDXferProcessor::~PDLCDXferProcessor() {
}
void PDLCDXferProcessor::onGetGLSLProcessorKey(const GrShaderCaps& caps,
GrProcessorKeyBuilder* b) const {
GLPDLCDXferProcessor::GenKey(*this, caps, b);
}
GrGLSLXferProcessor* PDLCDXferProcessor::createGLSLInstance() const {
return new GLPDLCDXferProcessor(*this);
}
///////////////////////////////////////////////////////////////////////////////
constexpr GrPorterDuffXPFactory::GrPorterDuffXPFactory(SkBlendMode xfermode)
: fBlendMode(xfermode) {}
const GrXPFactory* GrPorterDuffXPFactory::Get(SkBlendMode blendMode) {
SkASSERT((unsigned)blendMode <= (unsigned)SkBlendMode::kLastCoeffMode);
// If these objects are constructed as static constexpr by cl.exe (2015 SP2) the vtables are
// null.
#ifdef SK_BUILD_FOR_WIN
#define _CONSTEXPR_
#else
#define _CONSTEXPR_ constexpr
#endif
static _CONSTEXPR_ const GrPorterDuffXPFactory gClearPDXPF(SkBlendMode::kClear);
static _CONSTEXPR_ const GrPorterDuffXPFactory gSrcPDXPF(SkBlendMode::kSrc);
static _CONSTEXPR_ const GrPorterDuffXPFactory gDstPDXPF(SkBlendMode::kDst);
static _CONSTEXPR_ const GrPorterDuffXPFactory gSrcOverPDXPF(SkBlendMode::kSrcOver);
static _CONSTEXPR_ const GrPorterDuffXPFactory gDstOverPDXPF(SkBlendMode::kDstOver);
static _CONSTEXPR_ const GrPorterDuffXPFactory gSrcInPDXPF(SkBlendMode::kSrcIn);
static _CONSTEXPR_ const GrPorterDuffXPFactory gDstInPDXPF(SkBlendMode::kDstIn);
static _CONSTEXPR_ const GrPorterDuffXPFactory gSrcOutPDXPF(SkBlendMode::kSrcOut);
static _CONSTEXPR_ const GrPorterDuffXPFactory gDstOutPDXPF(SkBlendMode::kDstOut);
static _CONSTEXPR_ const GrPorterDuffXPFactory gSrcATopPDXPF(SkBlendMode::kSrcATop);
static _CONSTEXPR_ const GrPorterDuffXPFactory gDstATopPDXPF(SkBlendMode::kDstATop);
static _CONSTEXPR_ const GrPorterDuffXPFactory gXorPDXPF(SkBlendMode::kXor);
static _CONSTEXPR_ const GrPorterDuffXPFactory gPlusPDXPF(SkBlendMode::kPlus);
static _CONSTEXPR_ const GrPorterDuffXPFactory gModulatePDXPF(SkBlendMode::kModulate);
static _CONSTEXPR_ const GrPorterDuffXPFactory gScreenPDXPF(SkBlendMode::kScreen);
#undef _CONSTEXPR_
switch (blendMode) {
case SkBlendMode::kClear:
return &gClearPDXPF;
case SkBlendMode::kSrc:
return &gSrcPDXPF;
case SkBlendMode::kDst:
return &gDstPDXPF;
case SkBlendMode::kSrcOver:
return &gSrcOverPDXPF;
case SkBlendMode::kDstOver:
return &gDstOverPDXPF;
case SkBlendMode::kSrcIn:
return &gSrcInPDXPF;
case SkBlendMode::kDstIn:
return &gDstInPDXPF;
case SkBlendMode::kSrcOut:
return &gSrcOutPDXPF;
case SkBlendMode::kDstOut:
return &gDstOutPDXPF;
case SkBlendMode::kSrcATop:
return &gSrcATopPDXPF;
case SkBlendMode::kDstATop:
return &gDstATopPDXPF;
case SkBlendMode::kXor:
return &gXorPDXPF;
case SkBlendMode::kPlus:
return &gPlusPDXPF;
case SkBlendMode::kModulate:
return &gModulatePDXPF;
case SkBlendMode::kScreen:
return &gScreenPDXPF;
default:
SK_ABORT("Unexpected blend mode.");
}
}
sk_sp<const GrXferProcessor> GrPorterDuffXPFactory::makeXferProcessor(
const GrProcessorAnalysisColor& color, GrProcessorAnalysisCoverage coverage,
bool hasMixedSamples, const GrCaps& caps, GrClampType clampType) const {
BlendFormula blendFormula;
bool isLCD = coverage == GrProcessorAnalysisCoverage::kLCD;
if (isLCD) {
// See comment in MakeSrcOverXferProcessor about color.isOpaque here
if (SkBlendMode::kSrcOver == fBlendMode && color.isConstant() && /*color.isOpaque() &&*/
!caps.shaderCaps()->dualSourceBlendingSupport() &&
!caps.shaderCaps()->dstReadInShaderSupport()) {
// If we don't have dual source blending or in shader dst reads, we fall back to this
// trick for rendering SrcOver LCD text instead of doing a dst copy.
return PDLCDXferProcessor::Make(fBlendMode, color);
}
blendFormula = get_lcd_blend_formula(fBlendMode);
} else {
blendFormula =
get_blend_formula(color.isOpaque(), GrProcessorAnalysisCoverage::kNone != coverage,
hasMixedSamples, fBlendMode);
}
// Skia always saturates after the kPlus blend mode, so it requires shader-based blending when
// pixels aren't guaranteed to automatically be normalized (i.e. any floating point config).
if ((blendFormula.hasSecondaryOutput() && !caps.shaderCaps()->dualSourceBlendingSupport()) ||
(isLCD && (SkBlendMode::kSrcOver != fBlendMode /*|| !color.isOpaque()*/)) ||
(GrClampType::kAuto != clampType && SkBlendMode::kPlus == fBlendMode)) {
return sk_sp<const GrXferProcessor>(new ShaderPDXferProcessor(hasMixedSamples, fBlendMode,
coverage));
}
return sk_sp<const GrXferProcessor>(new PorterDuffXferProcessor(blendFormula, coverage));
}
static inline GrXPFactory::AnalysisProperties analysis_properties(
const GrProcessorAnalysisColor& color, const GrProcessorAnalysisCoverage& coverage,
const GrCaps& caps, GrClampType clampType, SkBlendMode mode) {
using AnalysisProperties = GrXPFactory::AnalysisProperties;
AnalysisProperties props = AnalysisProperties::kNone;
bool hasCoverage = GrProcessorAnalysisCoverage::kNone != coverage;
bool isLCD = GrProcessorAnalysisCoverage::kLCD == coverage;
BlendFormula formula;
if (isLCD) {
formula = gLCDBlendTable[(int)mode];
} else {
formula = gBlendTable[color.isOpaque()][hasCoverage][(int)mode];
}
if (formula.canTweakAlphaForCoverage() && !isLCD) {
props |= AnalysisProperties::kCompatibleWithCoverageAsAlpha;
}
if (isLCD) {
// See comment in MakeSrcOverXferProcessor about color.isOpaque here
if (SkBlendMode::kSrcOver == mode && color.isConstant() && /*color.isOpaque() &&*/
!caps.shaderCaps()->dualSourceBlendingSupport() &&
!caps.shaderCaps()->dstReadInShaderSupport()) {
props |= AnalysisProperties::kIgnoresInputColor;
} else {
// For LCD blending, if the color is not opaque we must read the dst in shader even if
// we have dual source blending. The opaqueness check must be done after blending so for
// simplicity we only allow src-over to not take the dst read path (though src, src-in,
// and DstATop would also work). We also fall into the dst read case for src-over if we
// do not have dual source blending.
if (SkBlendMode::kSrcOver != mode ||
/*!color.isOpaque() ||*/ // See comment in MakeSrcOverXferProcessor about isOpaque.
(formula.hasSecondaryOutput() && !caps.shaderCaps()->dualSourceBlendingSupport())) {
props |= AnalysisProperties::kReadsDstInShader;
}
}
} else {
// With dual-source blending we never need the destination color in the shader.
if (!caps.shaderCaps()->dualSourceBlendingSupport()) {
// Mixed samples implicity computes a fractional coverage from sample coverage. This
// could affect the formula used. However, we don't expect to have mixed samples without
// dual source blending.
SkASSERT(!caps.mixedSamplesSupport());
if (formula.hasSecondaryOutput()) {
props |= AnalysisProperties::kReadsDstInShader;
}
}
}
if (GrClampType::kAuto != clampType && SkBlendMode::kPlus == mode) {
props |= AnalysisProperties::kReadsDstInShader;
}
if (!formula.modifiesDst() || !formula.usesInputColor()) {
props |= AnalysisProperties::kIgnoresInputColor;
}
return props;
}
GrXPFactory::AnalysisProperties GrPorterDuffXPFactory::analysisProperties(
const GrProcessorAnalysisColor& color,
const GrProcessorAnalysisCoverage& coverage,
const GrCaps& caps,
GrClampType clampType) const {
return analysis_properties(color, coverage, caps, clampType, fBlendMode);
}
GR_DEFINE_XP_FACTORY_TEST(GrPorterDuffXPFactory);
#if GR_TEST_UTILS
const GrXPFactory* GrPorterDuffXPFactory::TestGet(GrProcessorTestData* d) {
SkBlendMode mode = SkBlendMode(d->fRandom->nextULessThan((int)SkBlendMode::kLastCoeffMode));
return GrPorterDuffXPFactory::Get(mode);
}
#endif
void GrPorterDuffXPFactory::TestGetXPOutputTypes(const GrXferProcessor* xp,
int* outPrimary,
int* outSecondary) {
if (!!strcmp(xp->name(), "Porter Duff")) {
*outPrimary = *outSecondary = -1;
return;
}
BlendFormula blendFormula = static_cast<const PorterDuffXferProcessor*>(xp)->getBlendFormula();
*outPrimary = blendFormula.primaryOutput();
*outSecondary = blendFormula.secondaryOutput();
}
////////////////////////////////////////////////////////////////////////////////////////////////
// SrcOver Global functions
////////////////////////////////////////////////////////////////////////////////////////////////
const GrXferProcessor& GrPorterDuffXPFactory::SimpleSrcOverXP() {
static BlendFormula gSrcOverBlendFormula =
MakeCoeffFormula(kOne_GrBlendCoeff, kISA_GrBlendCoeff);
static PorterDuffXferProcessor gSrcOverXP(gSrcOverBlendFormula,
GrProcessorAnalysisCoverage::kSingleChannel);
return gSrcOverXP;
}
sk_sp<const GrXferProcessor> GrPorterDuffXPFactory::MakeSrcOverXferProcessor(
const GrProcessorAnalysisColor& color, GrProcessorAnalysisCoverage coverage,
bool hasMixedSamples, const GrCaps& caps) {
// We want to not make an xfer processor if possible. Thus for the simple case where we are not
// doing lcd blending we will just use our global SimpleSrcOverXP. This slightly differs from
// the general case where we convert a src-over blend that has solid coverage and an opaque
// color to src-mode, which allows disabling of blending.
if (coverage != GrProcessorAnalysisCoverage::kLCD) {
// We return nullptr here, which our caller interprets as meaning "use SimpleSrcOverXP".
// We don't simply return the address of that XP here because our caller would have to unref
// it and since it is a global object and GrProgramElement's ref-cnting system is not thread
// safe.
return nullptr;
}
// Currently up the stack Skia is requiring that the dst is opaque or that the client has said
// the opaqueness doesn't matter. Thus for src-over we don't need to worry about the src color
// being opaque or not. This allows us to use faster code paths as well as avoid various bugs
// that occur with dst reads in the shader blending. For now we disable the check for
// opaqueness, but in the future we should pass down the knowledge about dst opaqueness and make
// the correct decision here.
//
// This also fixes a chrome bug on macs where we are getting random fuzziness when doing
// blending in the shader for non opaque sources.
if (color.isConstant() && /*color.isOpaque() &&*/
!caps.shaderCaps()->dualSourceBlendingSupport() &&
!caps.shaderCaps()->dstReadInShaderSupport()) {
// If we don't have dual source blending or in shader dst reads, we fall
// back to this trick for rendering SrcOver LCD text instead of doing a
// dst copy.
return PDLCDXferProcessor::Make(SkBlendMode::kSrcOver, color);
}
BlendFormula blendFormula;
blendFormula = get_lcd_blend_formula(SkBlendMode::kSrcOver);
// See comment above regarding why the opaque check is commented out here.
if (/*!color.isOpaque() ||*/
(blendFormula.hasSecondaryOutput() && !caps.shaderCaps()->dualSourceBlendingSupport())) {
return sk_sp<GrXferProcessor>(
new ShaderPDXferProcessor(hasMixedSamples, SkBlendMode::kSrcOver, coverage));
}
return sk_sp<GrXferProcessor>(new PorterDuffXferProcessor(blendFormula, coverage));
}
sk_sp<const GrXferProcessor> GrPorterDuffXPFactory::MakeNoCoverageXP(SkBlendMode blendmode) {
BlendFormula formula = get_blend_formula(false, false, false, blendmode);
return sk_make_sp<PorterDuffXferProcessor>(formula, GrProcessorAnalysisCoverage::kNone);
}
GrXPFactory::AnalysisProperties GrPorterDuffXPFactory::SrcOverAnalysisProperties(
const GrProcessorAnalysisColor& color,
const GrProcessorAnalysisCoverage& coverage,
const GrCaps& caps,
GrClampType clampType) {
return analysis_properties(color, coverage, caps, clampType, SkBlendMode::kSrcOver);
}