blob: 4ad6cd93ffb390a7c77fb0819d1e7d07f3a343c0 [file] [log] [blame]
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/ccpr/GrCCDrawPathsOp.h"
#include "include/private/GrRecordingContext.h"
#include "src/gpu/GrMemoryPool.h"
#include "src/gpu/GrOpFlushState.h"
#include "src/gpu/GrRecordingContextPriv.h"
#include "src/gpu/ccpr/GrCCPathCache.h"
#include "src/gpu/ccpr/GrCCPerFlushResources.h"
#include "src/gpu/ccpr/GrCoverageCountingPathRenderer.h"
#include "src/gpu/ccpr/GrOctoBounds.h"
static bool has_coord_transforms(const GrPaint& paint) {
GrFragmentProcessor::Iter iter(paint);
while (const GrFragmentProcessor* fp = iter.next()) {
if (!fp->coordTransforms().empty()) {
return true;
}
}
return false;
}
std::unique_ptr<GrCCDrawPathsOp> GrCCDrawPathsOp::Make(
GrRecordingContext* context, const SkIRect& clipIBounds, const SkMatrix& m,
const GrShape& shape, GrPaint&& paint) {
SkRect conservativeDevBounds;
m.mapRect(&conservativeDevBounds, shape.bounds());
const SkStrokeRec& stroke = shape.style().strokeRec();
float strokeDevWidth = 0;
float conservativeInflationRadius = 0;
if (!stroke.isFillStyle()) {
strokeDevWidth = GrCoverageCountingPathRenderer::GetStrokeDevWidth(
m, stroke, &conservativeInflationRadius);
conservativeDevBounds.outset(conservativeInflationRadius, conservativeInflationRadius);
}
std::unique_ptr<GrCCDrawPathsOp> op;
float conservativeSize = SkTMax(conservativeDevBounds.height(), conservativeDevBounds.width());
if (conservativeSize > GrCoverageCountingPathRenderer::kPathCropThreshold) {
// The path is too large. Crop it or analytic AA can run out of fp32 precision.
SkPath croppedDevPath;
shape.asPath(&croppedDevPath);
croppedDevPath.transform(m, &croppedDevPath);
SkIRect cropBox = clipIBounds;
GrShape croppedDevShape;
if (stroke.isFillStyle()) {
GrCoverageCountingPathRenderer::CropPath(croppedDevPath, cropBox, &croppedDevPath);
croppedDevShape = GrShape(croppedDevPath);
conservativeDevBounds = croppedDevShape.bounds();
} else {
int r = SkScalarCeilToInt(conservativeInflationRadius);
cropBox.outset(r, r);
GrCoverageCountingPathRenderer::CropPath(croppedDevPath, cropBox, &croppedDevPath);
SkStrokeRec devStroke = stroke;
devStroke.setStrokeStyle(strokeDevWidth);
croppedDevShape = GrShape(croppedDevPath, GrStyle(devStroke, nullptr));
conservativeDevBounds = croppedDevPath.getBounds();
conservativeDevBounds.outset(conservativeInflationRadius, conservativeInflationRadius);
}
// FIXME: This breaks local coords: http://skbug.com/8003
return InternalMake(context, clipIBounds, SkMatrix::I(), croppedDevShape, strokeDevWidth,
conservativeDevBounds, std::move(paint));
}
return InternalMake(context, clipIBounds, m, shape, strokeDevWidth, conservativeDevBounds,
std::move(paint));
}
std::unique_ptr<GrCCDrawPathsOp> GrCCDrawPathsOp::InternalMake(
GrRecordingContext* context, const SkIRect& clipIBounds, const SkMatrix& m,
const GrShape& shape, float strokeDevWidth, const SkRect& conservativeDevBounds,
GrPaint&& paint) {
// The path itself should have been cropped if larger than kPathCropThreshold. If it had a
// stroke, that would have further inflated its draw bounds.
SkASSERT(SkTMax(conservativeDevBounds.height(), conservativeDevBounds.width()) <
GrCoverageCountingPathRenderer::kPathCropThreshold +
GrCoverageCountingPathRenderer::kMaxBoundsInflationFromStroke*2 + 1);
SkIRect shapeConservativeIBounds;
conservativeDevBounds.roundOut(&shapeConservativeIBounds);
SkIRect maskDevIBounds;
if (!maskDevIBounds.intersect(clipIBounds, shapeConservativeIBounds)) {
return nullptr;
}
GrOpMemoryPool* pool = context->priv().opMemoryPool();
return pool->allocate<GrCCDrawPathsOp>(m, shape, strokeDevWidth, shapeConservativeIBounds,
maskDevIBounds, conservativeDevBounds, std::move(paint));
}
GrCCDrawPathsOp::GrCCDrawPathsOp(const SkMatrix& m, const GrShape& shape, float strokeDevWidth,
const SkIRect& shapeConservativeIBounds,
const SkIRect& maskDevIBounds, const SkRect& conservativeDevBounds,
GrPaint&& paint)
: GrDrawOp(ClassID())
, fViewMatrixIfUsingLocalCoords(has_coord_transforms(paint) ? m : SkMatrix::I())
, fDraws(m, shape, strokeDevWidth, shapeConservativeIBounds, maskDevIBounds,
paint.getColor4f())
, fProcessors(std::move(paint)) { // Paint must be moved after fetching its color above.
SkDEBUGCODE(fBaseInstance = -1);
// If the path is clipped, CCPR will only draw the visible portion. This helps improve batching,
// since it eliminates the need for scissor when drawing to the main canvas.
// FIXME: We should parse the path right here. It will provide a tighter bounding box for us to
// give the opsTask, as well as enabling threaded parsing when using DDL.
SkRect clippedDrawBounds;
if (!clippedDrawBounds.intersect(conservativeDevBounds, SkRect::Make(maskDevIBounds))) {
clippedDrawBounds.setEmpty();
}
// We always have AA bloat, even in MSAA atlas mode. This is because by the time this Op comes
// along and draws to the main canvas, the atlas has been resolved to analytic coverage.
this->setBounds(clippedDrawBounds, GrOp::HasAABloat::kYes, GrOp::IsZeroArea::kNo);
}
GrCCDrawPathsOp::~GrCCDrawPathsOp() {
if (fOwningPerOpsTaskPaths) {
// Remove the list's dangling pointer to this Op before deleting it.
fOwningPerOpsTaskPaths->fDrawOps.remove(this);
}
}
GrCCDrawPathsOp::SingleDraw::SingleDraw(const SkMatrix& m, const GrShape& shape,
float strokeDevWidth,
const SkIRect& shapeConservativeIBounds,
const SkIRect& maskDevIBounds, const SkPMColor4f& color)
: fMatrix(m)
, fShape(shape)
, fStrokeDevWidth(strokeDevWidth)
, fShapeConservativeIBounds(shapeConservativeIBounds)
, fMaskDevIBounds(maskDevIBounds)
, fColor(color) {
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
if (fShape.hasUnstyledKey()) {
// On AOSP we round view matrix translates to integer values for cachable paths. We do this
// to match HWUI's cache hit ratio, which doesn't consider the matrix when caching paths.
fMatrix.setTranslateX(SkScalarRoundToScalar(fMatrix.getTranslateX()));
fMatrix.setTranslateY(SkScalarRoundToScalar(fMatrix.getTranslateY()));
}
#endif
}
GrProcessorSet::Analysis GrCCDrawPathsOp::finalize(
const GrCaps& caps, const GrAppliedClip* clip, bool hasMixedSampledCoverage,
GrClampType clampType) {
SkASSERT(1 == fNumDraws); // There should only be one single path draw in this Op right now.
return fDraws.head().finalize(caps, clip, hasMixedSampledCoverage, clampType, &fProcessors);
}
GrProcessorSet::Analysis GrCCDrawPathsOp::SingleDraw::finalize(
const GrCaps& caps, const GrAppliedClip* clip, bool hasMixedSampledCoverage, GrClampType
clampType, GrProcessorSet* processors) {
const GrProcessorSet::Analysis& analysis = processors->finalize(
fColor, GrProcessorAnalysisCoverage::kSingleChannel, clip,
&GrUserStencilSettings::kUnused, hasMixedSampledCoverage, caps, clampType, &fColor);
// Lines start looking jagged when they get thinner than 1px. For thin strokes it looks better
// if we can convert them to hairline (i.e., inflate the stroke width to 1px), and instead
// reduce the opacity to create the illusion of thin-ness. This strategy also helps reduce
// artifacts from coverage dilation when there are self intersections.
if (analysis.isCompatibleWithCoverageAsAlpha() &&
!fShape.style().strokeRec().isFillStyle() && fStrokeDevWidth < 1) {
// Modifying the shape affects its cache key. The draw can't have a cache entry yet or else
// our next step would invalidate it.
SkASSERT(!fCacheEntry);
SkASSERT(SkStrokeRec::kStroke_Style == fShape.style().strokeRec().getStyle());
SkPath path;
fShape.asPath(&path);
// Create a hairline version of our stroke.
SkStrokeRec hairlineStroke = fShape.style().strokeRec();
hairlineStroke.setStrokeStyle(0);
// How transparent does a 1px stroke have to be in order to appear as thin as the real one?
float coverage = fStrokeDevWidth;
fShape = GrShape(path, GrStyle(hairlineStroke, nullptr));
fStrokeDevWidth = 1;
// fShapeConservativeIBounds already accounted for this possibility of inflating the stroke.
fColor = fColor * coverage;
}
return analysis;
}
GrOp::CombineResult GrCCDrawPathsOp::onCombineIfPossible(GrOp* op, const GrCaps&) {
GrCCDrawPathsOp* that = op->cast<GrCCDrawPathsOp>();
SkASSERT(fOwningPerOpsTaskPaths);
SkASSERT(fNumDraws);
SkASSERT(!that->fOwningPerOpsTaskPaths ||
that->fOwningPerOpsTaskPaths == fOwningPerOpsTaskPaths);
SkASSERT(that->fNumDraws);
if (fProcessors != that->fProcessors ||
fViewMatrixIfUsingLocalCoords != that->fViewMatrixIfUsingLocalCoords) {
return CombineResult::kCannotCombine;
}
fDraws.append(std::move(that->fDraws), &fOwningPerOpsTaskPaths->fAllocator);
SkDEBUGCODE(fNumDraws += that->fNumDraws);
SkDEBUGCODE(that->fNumDraws = 0);
return CombineResult::kMerged;
}
void GrCCDrawPathsOp::addToOwningPerOpsTaskPaths(sk_sp<GrCCPerOpsTaskPaths> owningPerOpsTaskPaths) {
SkASSERT(1 == fNumDraws);
SkASSERT(!fOwningPerOpsTaskPaths);
fOwningPerOpsTaskPaths = std::move(owningPerOpsTaskPaths);
fOwningPerOpsTaskPaths->fDrawOps.addToTail(this);
}
void GrCCDrawPathsOp::accountForOwnPaths(GrCCPathCache* pathCache,
GrOnFlushResourceProvider* onFlushRP,
GrCCPerFlushResourceSpecs* specs) {
for (SingleDraw& draw : fDraws) {
draw.accountForOwnPath(pathCache, onFlushRP, specs);
}
}
void GrCCDrawPathsOp::SingleDraw::accountForOwnPath(
GrCCPathCache* pathCache, GrOnFlushResourceProvider* onFlushRP,
GrCCPerFlushResourceSpecs* specs) {
using CoverageType = GrCCAtlas::CoverageType;
SkPath path;
fShape.asPath(&path);
SkASSERT(!fCacheEntry);
if (pathCache) {
fCacheEntry = pathCache->find(
onFlushRP, fShape, fMaskDevIBounds, fMatrix, &fCachedMaskShift);
}
if (fCacheEntry) {
if (const GrCCCachedAtlas* cachedAtlas = fCacheEntry->cachedAtlas()) {
SkASSERT(cachedAtlas->getOnFlushProxy());
if (CoverageType::kA8_LiteralCoverage == cachedAtlas->coverageType()) {
++specs->fNumCachedPaths;
} else {
// Suggest that this path be copied to a literal coverage atlas, to save memory.
// (The client may decline this copy via DoCopiesToA8Coverage::kNo.)
int idx = (fShape.style().strokeRec().isFillStyle())
? GrCCPerFlushResourceSpecs::kFillIdx
: GrCCPerFlushResourceSpecs::kStrokeIdx;
++specs->fNumCopiedPaths[idx];
specs->fCopyPathStats[idx].statPath(path);
specs->fCopyAtlasSpecs.accountForSpace(fCacheEntry->width(), fCacheEntry->height());
fDoCopyToA8Coverage = true;
}
return;
}
if (this->shouldCachePathMask(onFlushRP->caps()->maxRenderTargetSize())) {
fDoCachePathMask = true;
// We don't cache partial masks; ensure the bounds include the entire path.
fMaskDevIBounds = fShapeConservativeIBounds;
}
}
// Plan on rendering this path in a new atlas.
int idx = (fShape.style().strokeRec().isFillStyle())
? GrCCPerFlushResourceSpecs::kFillIdx
: GrCCPerFlushResourceSpecs::kStrokeIdx;
++specs->fNumRenderedPaths[idx];
specs->fRenderedPathStats[idx].statPath(path);
specs->fRenderedAtlasSpecs.accountForSpace(fMaskDevIBounds.width(), fMaskDevIBounds.height());
SkDEBUGCODE(fWasCountedAsRender = true);
}
bool GrCCDrawPathsOp::SingleDraw::shouldCachePathMask(int maxRenderTargetSize) const {
SkASSERT(fCacheEntry);
SkASSERT(!fCacheEntry->cachedAtlas());
if (fCacheEntry->hitCount() <= 1) {
return false; // Don't cache a path mask until at least its second hit.
}
int shapeMaxDimension = SkTMax(
fShapeConservativeIBounds.height(), fShapeConservativeIBounds.width());
if (shapeMaxDimension > maxRenderTargetSize) {
return false; // This path isn't cachable.
}
int64_t shapeArea = sk_64_mul(
fShapeConservativeIBounds.height(), fShapeConservativeIBounds.width());
if (shapeArea < 100*100) {
// If a path is small enough, we might as well try to render and cache the entire thing, no
// matter how much of it is actually visible.
return true;
}
// The hitRect should already be contained within the shape's bounds, but we still intersect it
// because it's possible for edges very near pixel boundaries (e.g., 0.999999), to round out
// inconsistently, depending on the integer translation values and fp32 precision.
SkIRect hitRect = fCacheEntry->hitRect().makeOffset(fCachedMaskShift.x(), fCachedMaskShift.y());
hitRect.intersect(fShapeConservativeIBounds);
// Render and cache the entire path mask if we see enough of it to justify rendering all the
// pixels. Our criteria for "enough" is that we must have seen at least 50% of the path in the
// past, and in this particular draw we must see at least 10% of it.
int64_t hitArea = sk_64_mul(hitRect.height(), hitRect.width());
int64_t drawArea = sk_64_mul(fMaskDevIBounds.height(), fMaskDevIBounds.width());
return hitArea*2 >= shapeArea && drawArea*10 >= shapeArea;
}
void GrCCDrawPathsOp::setupResources(
GrCCPathCache* pathCache, GrOnFlushResourceProvider* onFlushRP,
GrCCPerFlushResources* resources, DoCopiesToA8Coverage doCopies) {
SkASSERT(fNumDraws > 0);
SkASSERT(-1 == fBaseInstance);
fBaseInstance = resources->nextPathInstanceIdx();
for (SingleDraw& draw : fDraws) {
draw.setupResources(pathCache, onFlushRP, resources, doCopies, this);
}
if (!fInstanceRanges.empty()) {
fInstanceRanges.back().fEndInstanceIdx = resources->nextPathInstanceIdx();
}
}
void GrCCDrawPathsOp::SingleDraw::setupResources(
GrCCPathCache* pathCache, GrOnFlushResourceProvider* onFlushRP,
GrCCPerFlushResources* resources, DoCopiesToA8Coverage doCopies, GrCCDrawPathsOp* op) {
SkPath path;
fShape.asPath(&path);
auto fillRule = (fShape.style().strokeRec().isFillStyle())
? GrFillRuleForSkPath(path)
: GrFillRule::kNonzero;
if (fCacheEntry) {
// Does the path already exist in a cached atlas texture?
if (fCacheEntry->cachedAtlas()) {
SkASSERT(fCacheEntry->cachedAtlas()->getOnFlushProxy());
if (DoCopiesToA8Coverage::kYes == doCopies && fDoCopyToA8Coverage) {
resources->upgradeEntryToLiteralCoverageAtlas(
pathCache, onFlushRP, fCacheEntry.get(), fillRule);
SkASSERT(fCacheEntry->cachedAtlas());
SkASSERT(GrCCAtlas::CoverageType::kA8_LiteralCoverage
== fCacheEntry->cachedAtlas()->coverageType());
SkASSERT(fCacheEntry->cachedAtlas()->getOnFlushProxy());
}
#if 0
// Simple color manipulation to visualize cached paths.
fColor = (GrCCAtlas::CoverageType::kA8_LiteralCoverage
== fCacheEntry->cachedAtlas()->coverageType())
? SkPMColor4f{0,0,.25,.25} : SkPMColor4f{0,.25,0,.25};
#endif
auto coverageMode = GrCCPathProcessor::GetCoverageMode(
fCacheEntry->cachedAtlas()->coverageType());
op->recordInstance(coverageMode, fCacheEntry->cachedAtlas()->getOnFlushProxy(),
resources->nextPathInstanceIdx());
resources->appendDrawPathInstance().set(
*fCacheEntry, fCachedMaskShift, SkPMColor4f_toFP16(fColor), fillRule);
#ifdef SK_DEBUG
if (fWasCountedAsRender) {
// A path mask didn't exist for this path at the beginning of flush, but we have one
// now. What this means is that we've drawn the same path multiple times this flush.
// Let the resources know that we reused one for their internal debug counters.
resources->debugOnly_didReuseRenderedPath();
}
#endif
return;
}
}
// Render the raw path into a coverage count atlas. renderShapeInAtlas() gives us two tight
// bounding boxes: One in device space, as well as a second one rotated an additional 45
// degrees. The path vertex shader uses these two bounding boxes to generate an octagon that
// circumscribes the path.
GrOctoBounds octoBounds;
SkIRect devIBounds;
SkIVector devToAtlasOffset;
if (auto atlas = resources->renderShapeInAtlas(
fMaskDevIBounds, fMatrix, fShape, fStrokeDevWidth, &octoBounds, &devIBounds,
&devToAtlasOffset)) {
auto coverageMode = GrCCPathProcessor::GetCoverageMode(
resources->renderedPathCoverageType());
op->recordInstance(coverageMode, atlas->textureProxy(), resources->nextPathInstanceIdx());
resources->appendDrawPathInstance().set(
octoBounds, devToAtlasOffset, SkPMColor4f_toFP16(fColor), fillRule);
if (fDoCachePathMask) {
SkASSERT(fCacheEntry);
SkASSERT(!fCacheEntry->cachedAtlas());
SkASSERT(fShapeConservativeIBounds == fMaskDevIBounds);
fCacheEntry->setCoverageCountAtlas(
onFlushRP, atlas, devToAtlasOffset, octoBounds, devIBounds, fCachedMaskShift);
}
}
}
inline void GrCCDrawPathsOp::recordInstance(
GrCCPathProcessor::CoverageMode coverageMode, GrTextureProxy* atlasProxy, int instanceIdx) {
if (fInstanceRanges.empty()) {
fInstanceRanges.push_back({coverageMode, atlasProxy, instanceIdx});
} else if (fInstanceRanges.back().fAtlasProxy != atlasProxy) {
fInstanceRanges.back().fEndInstanceIdx = instanceIdx;
fInstanceRanges.push_back({coverageMode, atlasProxy, instanceIdx});
}
SkASSERT(fInstanceRanges.back().fCoverageMode == coverageMode);
SkASSERT(fInstanceRanges.back().fAtlasProxy == atlasProxy);
}
void GrCCDrawPathsOp::onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) {
SkASSERT(fOwningPerOpsTaskPaths);
const GrCCPerFlushResources* resources = fOwningPerOpsTaskPaths->fFlushResources.get();
if (!resources) {
return; // Setup failed.
}
GrPipeline::InitArgs initArgs;
initArgs.fCaps = &flushState->caps();
initArgs.fDstProxy = flushState->drawOpArgs().fDstProxy;
initArgs.fOutputSwizzle = flushState->drawOpArgs().fOutputSwizzle;
auto clip = flushState->detachAppliedClip();
GrPipeline::FixedDynamicState fixedDynamicState(clip.scissorState().rect());
GrPipeline pipeline(initArgs, std::move(fProcessors), std::move(clip));
int baseInstance = fBaseInstance;
SkASSERT(baseInstance >= 0); // Make sure setupResources() has been called.
for (const InstanceRange& range : fInstanceRanges) {
SkASSERT(range.fEndInstanceIdx > baseInstance);
const GrTextureProxy* atlas = range.fAtlasProxy;
SkASSERT(atlas->isInstantiated());
GrCCPathProcessor pathProc(
range.fCoverageMode, atlas->peekTexture(), atlas->textureSwizzle(), atlas->origin(),
fViewMatrixIfUsingLocalCoords);
GrTextureProxy* atlasProxy = range.fAtlasProxy;
fixedDynamicState.fPrimitiveProcessorTextures = &atlasProxy;
pathProc.drawPaths(flushState, pipeline, &fixedDynamicState, *resources, baseInstance,
range.fEndInstanceIdx, this->bounds());
baseInstance = range.fEndInstanceIdx;
}
}