blob: fcacafee80fa5cd065abc41b9a4b41cb52b6de1f [file] [log] [blame]
/*
* Copyright 2022 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/graphite/DrawAtlas.h"
#include <memory>
#include "include/gpu/graphite/Recorder.h"
#include "include/private/SkTPin.h"
#include "src/core/SkMathPriv.h"
#include "src/core/SkOpts.h"
#include "src/core/SkTraceEvent.h"
#include "src/gpu/AtlasTypes.h"
#include "src/gpu/graphite/Caps.h"
#include "src/gpu/graphite/CommandTypes.h"
#include "src/gpu/graphite/DrawContext.h"
#include "src/gpu/graphite/RecorderPriv.h"
#include "src/gpu/graphite/TextureProxy.h"
namespace skgpu::graphite {
#if defined(DUMP_ATLAS_DATA)
static const constexpr bool kDumpAtlasData = true;
#else
static const constexpr bool kDumpAtlasData = false;
#endif
#ifdef SK_DEBUG
void DrawAtlas::validate(const AtlasLocator& atlasLocator) const {
// Verify that the plotIndex stored in the PlotLocator is consistent with the glyph rectangle
int numPlotsX = fTextureWidth / fPlotWidth;
int numPlotsY = fTextureHeight / fPlotHeight;
int plotIndex = atlasLocator.plotIndex();
auto topLeft = atlasLocator.topLeft();
int plotX = topLeft.x() / fPlotWidth;
int plotY = topLeft.y() / fPlotHeight;
SkASSERT(plotIndex == (numPlotsY - plotY - 1) * numPlotsX + (numPlotsX - plotX - 1));
}
#endif
std::unique_ptr<DrawAtlas> DrawAtlas::Make(SkColorType colorType, size_t bpp, int width,
int height, int plotWidth, int plotHeight,
AtlasGenerationCounter* generationCounter,
AllowMultitexturing allowMultitexturing,
PlotEvictionCallback* evictor,
std::string_view label) {
std::unique_ptr<DrawAtlas> atlas(new DrawAtlas(colorType, bpp, width, height,
plotWidth, plotHeight, generationCounter,
allowMultitexturing, label));
if (evictor != nullptr) {
atlas->fEvictionCallbacks.emplace_back(evictor);
}
return atlas;
}
///////////////////////////////////////////////////////////////////////////////
DrawAtlas::DrawAtlas(SkColorType colorType, size_t bpp, int width, int height,
int plotWidth, int plotHeight, AtlasGenerationCounter* generationCounter,
AllowMultitexturing allowMultitexturing, std::string_view label)
: fColorType(colorType)
, fBytesPerPixel(bpp)
, fTextureWidth(width)
, fTextureHeight(height)
, fPlotWidth(plotWidth)
, fPlotHeight(plotHeight)
, fLabel(label)
, fGenerationCounter(generationCounter)
, fAtlasGeneration(fGenerationCounter->next())
, fPrevFlushToken(DrawToken::AlreadyFlushedToken())
, fFlushesSinceLastUse(0)
, fMaxPages(AllowMultitexturing::kYes == allowMultitexturing ?
PlotLocator::kMaxMultitexturePages : 1)
, fNumActivePages(0) {
int numPlotsX = width/plotWidth;
int numPlotsY = height/plotHeight;
SkASSERT(numPlotsX * numPlotsY <= PlotLocator::kMaxPlots);
SkASSERT(fPlotWidth * numPlotsX == fTextureWidth);
SkASSERT(fPlotHeight * numPlotsY == fTextureHeight);
fNumPlots = numPlotsX * numPlotsY;
this->createPages(generationCounter);
}
inline void DrawAtlas::processEviction(PlotLocator plotLocator) {
for (PlotEvictionCallback* evictor : fEvictionCallbacks) {
evictor->evict(plotLocator);
}
fAtlasGeneration = fGenerationCounter->next();
}
inline bool DrawAtlas::updatePlot(AtlasLocator* atlasLocator, Plot* plot) {
int pageIdx = plot->pageIndex();
this->makeMRU(plot, pageIdx);
// The actual upload will be created in recordUploads().
atlasLocator->updatePlotLocator(plot->plotLocator());
SkDEBUGCODE(this->validate(*atlasLocator);)
return true;
}
bool DrawAtlas::addToPage(unsigned int pageIdx, int width, int height, const void* image,
AtlasLocator* atlasLocator) {
SkASSERT(fProxies[pageIdx]);
// look through all allocated plots for one we can share, in Most Recently Refed order
PlotList::Iter plotIter;
plotIter.init(fPages[pageIdx].fPlotList, PlotList::Iter::kHead_IterStart);
for (Plot* plot = plotIter.get(); plot; plot = plotIter.next()) {
if (plot->addSubImage(width, height, image, atlasLocator)) {
return this->updatePlot(atlasLocator, plot);
}
}
return false;
}
bool DrawAtlas::recordUploads(DrawContext* dc, Recorder* recorder) {
TRACE_EVENT0("skia.gpu", TRACE_FUNC);
for (uint32_t pageIdx = 0; pageIdx < fNumActivePages; ++pageIdx) {
PlotList::Iter plotIter;
plotIter.init(fPages[pageIdx].fPlotList, PlotList::Iter::kHead_IterStart);
for (Plot* plot = plotIter.get(); plot; plot = plotIter.next()) {
if (plot->needsUpload()) {
TextureProxy* proxy = fProxies[pageIdx].get();
SkASSERT(proxy);
const void* dataPtr;
SkIRect dstRect;
std::tie(dataPtr, dstRect) = plot->prepareForUpload();
std::vector<MipLevel> levels;
levels.push_back({dataPtr, fBytesPerPixel*fPlotWidth});
if (!dc->recordUpload(recorder, sk_ref_sp(proxy), fColorType, levels, dstRect)) {
return false;
}
}
}
}
return true;
}
// Number of atlas-related flushes beyond which we consider a plot to no longer be in use.
//
// This value is somewhat arbitrary -- the idea is to keep it low enough that
// a page with unused plots will get removed reasonably quickly, but allow it
// to hang around for a bit in case it's needed. The assumption is that flushes
// are rare; i.e., we are not continually refreshing the frame.
static constexpr auto kPlotRecentlyUsedCount = 32;
static constexpr auto kAtlasRecentlyUsedCount = 128;
DrawAtlas::ErrorCode DrawAtlas::addToAtlas(Recorder* recorder,
int width, int height, const void* image,
AtlasLocator* atlasLocator) {
if (width > fPlotWidth || height > fPlotHeight) {
return ErrorCode::kError;
}
// Look through each page to see if we can upload without having to flush
// We prioritize this upload to the first pages, not the most recently used, to make it easier
// to remove unused pages in reverse page order.
for (unsigned int pageIdx = 0; pageIdx < fNumActivePages; ++pageIdx) {
if (this->addToPage(pageIdx, width, height, image, atlasLocator)) {
return ErrorCode::kSucceeded;
}
}
// If the above fails, then see if the least recently used plot per page has already been
// queued for upload if we're at max page allocation, or if the plot has aged out otherwise.
// We wait until we've grown to the full number of pages to begin evicting already queued
// plots so that we can maximize the opportunity for reuse.
// As before we prioritize this upload to the first pages, not the most recently used.
if (fNumActivePages == this->maxPages()) {
for (unsigned int pageIdx = 0; pageIdx < fNumActivePages; ++pageIdx) {
Plot* plot = fPages[pageIdx].fPlotList.tail();
SkASSERT(plot);
if (plot->lastUseToken() < recorder->priv().tokenTracker()->nextTokenToFlush()) {
this->processEvictionAndResetRects(plot);
SkDEBUGCODE(bool verify = )plot->addSubImage(width, height, image, atlasLocator);
SkASSERT(verify);
if (!this->updatePlot(atlasLocator, plot)) {
return ErrorCode::kError;
}
return ErrorCode::kSucceeded;
}
}
} else {
// If we haven't activated all the available pages, try to create a new one and add to it
if (!this->activateNewPage(recorder)) {
return ErrorCode::kError;
}
if (this->addToPage(fNumActivePages-1, width, height, image, atlasLocator)) {
return ErrorCode::kSucceeded;
} else {
// If we fail to upload to a newly activated page then something has gone terribly
// wrong - return an error
return ErrorCode::kError;
}
}
if (!fNumActivePages) {
return ErrorCode::kError;
}
// All plots are currently in use by the current set of draws, so we need to fail. This
// gives the Device a chance to snap the current set of uploads and draws, advance the draw
// token, and call back into this function. The subsequent call will have plots available
// for fresh uploads.
return ErrorCode::kTryAgain;
}
void DrawAtlas::compact(DrawToken startTokenForNextFlush) {
if (fNumActivePages < 1) {
fPrevFlushToken = startTokenForNextFlush;
return;
}
// For all plots, reset number of flushes since used if used this frame.
PlotList::Iter plotIter;
bool atlasUsedThisFlush = false;
for (uint32_t pageIndex = 0; pageIndex < fNumActivePages; ++pageIndex) {
plotIter.init(fPages[pageIndex].fPlotList, PlotList::Iter::kHead_IterStart);
while (Plot* plot = plotIter.get()) {
// Reset number of flushes since used
if (plot->lastUseToken().inInterval(fPrevFlushToken, startTokenForNextFlush)) {
plot->resetFlushesSinceLastUsed();
atlasUsedThisFlush = true;
}
plotIter.next();
}
}
if (atlasUsedThisFlush) {
fFlushesSinceLastUse = 0;
} else {
++fFlushesSinceLastUse;
}
// We only try to compact if the atlas was used in the recently completed flush or
// hasn't been used in a long time.
// This is to handle the case where a lot of text or path rendering has occurred but then just
// a blinking cursor is drawn.
if (atlasUsedThisFlush || fFlushesSinceLastUse > kAtlasRecentlyUsedCount) {
SkTArray<Plot*> availablePlots;
uint32_t lastPageIndex = fNumActivePages - 1;
// For all plots but the last one, update number of flushes since used, and check to see
// if there are any in the first pages that the last page can safely upload to.
for (uint32_t pageIndex = 0; pageIndex < lastPageIndex; ++pageIndex) {
if constexpr (kDumpAtlasData) {
SkDebugf("page %d: ", pageIndex);
}
plotIter.init(fPages[pageIndex].fPlotList, PlotList::Iter::kHead_IterStart);
while (Plot* plot = plotIter.get()) {
// Update number of flushes since plot was last used
// We only increment the 'sinceLastUsed' count for flushes where the atlas was used
// to avoid deleting everything when we return to text drawing in the blinking
// cursor case
if (!plot->lastUseToken().inInterval(fPrevFlushToken, startTokenForNextFlush)) {
plot->incFlushesSinceLastUsed();
}
if constexpr (kDumpAtlasData) {
SkDebugf("%d ", plot->flushesSinceLastUsed());
}
// Count plots we can potentially upload to in all pages except the last one
// (the potential compactee).
if (plot->flushesSinceLastUsed() > kPlotRecentlyUsedCount) {
availablePlots.push_back() = plot;
}
plotIter.next();
}
if constexpr (kDumpAtlasData) {
SkDebugf("\n");
}
}
// Count recently used plots in the last page and evict any that are no longer in use.
// Since we prioritize uploading to the first pages, this will eventually
// clear out usage of this page unless we have a large need.
plotIter.init(fPages[lastPageIndex].fPlotList, PlotList::Iter::kHead_IterStart);
unsigned int usedPlots = 0;
if constexpr (kDumpAtlasData) {
SkDebugf("page %d: ", lastPageIndex);
}
while (Plot* plot = plotIter.get()) {
// Update number of flushes since plot was last used
if (!plot->lastUseToken().inInterval(fPrevFlushToken, startTokenForNextFlush)) {
plot->incFlushesSinceLastUsed();
}
if constexpr (kDumpAtlasData) {
SkDebugf("%d ", plot->flushesSinceLastUsed());
}
// If this plot was used recently
if (plot->flushesSinceLastUsed() <= kPlotRecentlyUsedCount) {
usedPlots++;
} else if (plot->lastUseToken() != DrawToken::AlreadyFlushedToken()) {
// otherwise if aged out just evict it.
this->processEvictionAndResetRects(plot);
}
plotIter.next();
}
if constexpr (kDumpAtlasData) {
SkDebugf("\n");
}
// If recently used plots in the last page are using less than a quarter of the page, try
// to evict them if there's available space in lower index pages. Since we prioritize
// uploading to the first pages, this will eventually clear out usage of this page unless
// we have a large need.
if (availablePlots.count() && usedPlots && usedPlots <= fNumPlots / 4) {
plotIter.init(fPages[lastPageIndex].fPlotList, PlotList::Iter::kHead_IterStart);
while (Plot* plot = plotIter.get()) {
// If this plot was used recently
if (plot->flushesSinceLastUsed() <= kPlotRecentlyUsedCount) {
// See if there's room in an lower index page and if so evict.
// We need to be somewhat harsh here so that a handful of plots that are
// consistently in use don't end up locking the page in memory.
if (availablePlots.count() > 0) {
this->processEvictionAndResetRects(plot);
this->processEvictionAndResetRects(availablePlots.back());
availablePlots.pop_back();
--usedPlots;
}
if (!usedPlots || !availablePlots.count()) {
break;
}
}
plotIter.next();
}
}
// If none of the plots in the last page have been used recently, delete it.
if (!usedPlots) {
if constexpr (kDumpAtlasData) {
SkDebugf("delete %d\n", fNumActivePages-1);
}
this->deactivateLastPage();
fFlushesSinceLastUse = 0;
}
}
fPrevFlushToken = startTokenForNextFlush;
}
bool DrawAtlas::createPages(AtlasGenerationCounter* generationCounter) {
SkASSERT(SkIsPow2(fTextureWidth) && SkIsPow2(fTextureHeight));
int numPlotsX = fTextureWidth/fPlotWidth;
int numPlotsY = fTextureHeight/fPlotHeight;
for (uint32_t i = 0; i < this->maxPages(); ++i) {
// Proxies are uncreated at first
fProxies[i] = nullptr;
// set up allocated plots
fPages[i].fPlotArray = std::make_unique<sk_sp<Plot>[]>(numPlotsX * numPlotsY);
sk_sp<Plot>* currPlot = fPages[i].fPlotArray.get();
for (int y = numPlotsY - 1, r = 0; y >= 0; --y, ++r) {
for (int x = numPlotsX - 1, c = 0; x >= 0; --x, ++c) {
uint32_t plotIndex = r * numPlotsX + c;
currPlot->reset(new Plot(
i, plotIndex, generationCounter, x, y, fPlotWidth, fPlotHeight, fColorType,
fBytesPerPixel));
// build LRU list
fPages[i].fPlotList.addToHead(currPlot->get());
++currPlot;
}
}
}
return true;
}
bool DrawAtlas::activateNewPage(Recorder* recorder) {
SkASSERT(fNumActivePages < this->maxPages());
SkASSERT(!fProxies[fNumActivePages]);
auto textureInfo = recorder->priv().caps()->getDefaultSampledTextureInfo(fColorType,
/*levelCount=*/1,
Protected::kNo,
Renderable::kNo);
fProxies[fNumActivePages].reset(new TextureProxy({fTextureWidth, fTextureHeight}, textureInfo,
SkBudgeted::kYes));
if (!fProxies[fNumActivePages]) {
return false;
}
if constexpr (kDumpAtlasData) {
SkDebugf("activated page#: %d\n", fNumActivePages);
}
++fNumActivePages;
return true;
}
inline void DrawAtlas::deactivateLastPage() {
SkASSERT(fNumActivePages);
uint32_t lastPageIndex = fNumActivePages - 1;
int numPlotsX = fTextureWidth/fPlotWidth;
int numPlotsY = fTextureHeight/fPlotHeight;
fPages[lastPageIndex].fPlotList.reset();
for (int r = 0; r < numPlotsY; ++r) {
for (int c = 0; c < numPlotsX; ++c) {
uint32_t plotIndex = r * numPlotsX + c;
Plot* currPlot = fPages[lastPageIndex].fPlotArray[plotIndex].get();
currPlot->resetRects();
currPlot->resetFlushesSinceLastUsed();
// rebuild the LRU list
SkDEBUGCODE(currPlot->resetListPtrs());
fPages[lastPageIndex].fPlotList.addToHead(currPlot);
}
}
// remove ref to the texture proxy
fProxies[lastPageIndex].reset();
--fNumActivePages;
}
void DrawAtlas::evictAllPlots() {
PlotList::Iter plotIter;
for (uint32_t pageIndex = 0; pageIndex < fNumActivePages; ++pageIndex) {
plotIter.init(fPages[pageIndex].fPlotList, PlotList::Iter::kHead_IterStart);
while (Plot* plot = plotIter.get()) {
this->processEvictionAndResetRects(plot);
plotIter.next();
}
}
}
DrawAtlasConfig::DrawAtlasConfig(int maxTextureSize, size_t maxBytes) {
static const SkISize kARGBDimensions[] = {
{256, 256}, // maxBytes < 2^19
{512, 256}, // 2^19 <= maxBytes < 2^20
{512, 512}, // 2^20 <= maxBytes < 2^21
{1024, 512}, // 2^21 <= maxBytes < 2^22
{1024, 1024}, // 2^22 <= maxBytes < 2^23
{2048, 1024}, // 2^23 <= maxBytes
};
// Index 0 corresponds to maxBytes of 2^18, so start by dividing it by that
maxBytes >>= 18;
// Take the floor of the log to get the index
int index = maxBytes > 0
? SkTPin<int>(SkPrevLog2(maxBytes), 0, std::size(kARGBDimensions) - 1)
: 0;
SkASSERT(kARGBDimensions[index].width() <= kMaxAtlasDim);
SkASSERT(kARGBDimensions[index].height() <= kMaxAtlasDim);
fARGBDimensions.set(std::min<int>(kARGBDimensions[index].width(), maxTextureSize),
std::min<int>(kARGBDimensions[index].height(), maxTextureSize));
fMaxTextureSize = std::min<int>(maxTextureSize, kMaxAtlasDim);
}
SkISize DrawAtlasConfig::atlasDimensions(MaskFormat type) const {
if (MaskFormat::kA8 == type) {
// A8 is always 2x the ARGB dimensions, clamped to the max allowed texture size
return { std::min<int>(2 * fARGBDimensions.width(), fMaxTextureSize),
std::min<int>(2 * fARGBDimensions.height(), fMaxTextureSize) };
} else {
return fARGBDimensions;
}
}
SkISize DrawAtlasConfig::plotDimensions(MaskFormat type) const {
if (MaskFormat::kA8 == type) {
SkISize atlasDimensions = this->atlasDimensions(type);
// For A8 we want to grow the plots at larger texture sizes to accept more of the
// larger SDF glyphs. Since the largest SDF glyph can be 170x170 with padding, this
// allows us to pack 3 in a 512x256 plot, or 9 in a 512x512 plot.
// This will give us 512x256 plots for 2048x1024, 512x512 plots for 2048x2048,
// and 256x256 plots otherwise.
int plotWidth = atlasDimensions.width() >= 2048 ? 512 : 256;
int plotHeight = atlasDimensions.height() >= 2048 ? 512 : 256;
return { plotWidth, plotHeight };
} else {
// ARGB and LCD always use 256x256 plots -- this has been shown to be faster
return { 256, 256 };
}
}
} // namespace skgpu::graphite