| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/core/SkRect.h" |
| |
| #include "include/core/SkM44.h" |
| #include "include/private/base/SkDebug.h" |
| #include "src/core/SkRectPriv.h" |
| |
| class SkMatrix; |
| |
| bool SkIRect::intersect(const SkIRect& a, const SkIRect& b) { |
| SkIRect tmp = { |
| std::max(a.fLeft, b.fLeft), |
| std::max(a.fTop, b.fTop), |
| std::min(a.fRight, b.fRight), |
| std::min(a.fBottom, b.fBottom) |
| }; |
| if (tmp.isEmpty()) { |
| return false; |
| } |
| *this = tmp; |
| return true; |
| } |
| |
| void SkIRect::join(const SkIRect& r) { |
| // do nothing if the params are empty |
| if (r.fLeft >= r.fRight || r.fTop >= r.fBottom) { |
| return; |
| } |
| |
| // if we are empty, just assign |
| if (fLeft >= fRight || fTop >= fBottom) { |
| *this = r; |
| } else { |
| if (r.fLeft < fLeft) fLeft = r.fLeft; |
| if (r.fTop < fTop) fTop = r.fTop; |
| if (r.fRight > fRight) fRight = r.fRight; |
| if (r.fBottom > fBottom) fBottom = r.fBottom; |
| } |
| } |
| |
| ///////////////////////////////////////////////////////////////////////////// |
| |
| void SkRect::toQuad(SkPoint quad[4]) const { |
| SkASSERT(quad); |
| |
| quad[0].set(fLeft, fTop); |
| quad[1].set(fRight, fTop); |
| quad[2].set(fRight, fBottom); |
| quad[3].set(fLeft, fBottom); |
| } |
| |
| #include "src/base/SkVx.h" |
| |
| bool SkRect::setBoundsCheck(const SkPoint pts[], int count) { |
| SkASSERT((pts && count > 0) || count == 0); |
| |
| if (count <= 0) { |
| this->setEmpty(); |
| return true; |
| } |
| |
| skvx::float4 min, max; |
| if (count & 1) { |
| min = max = skvx::float2::Load(pts).xyxy(); |
| pts += 1; |
| count -= 1; |
| } else { |
| min = max = skvx::float4::Load(pts); |
| pts += 2; |
| count -= 2; |
| } |
| |
| skvx::float4 accum = min * 0; |
| while (count) { |
| skvx::float4 xy = skvx::float4::Load(pts); |
| accum = accum * xy; |
| min = skvx::min(min, xy); |
| max = skvx::max(max, xy); |
| pts += 2; |
| count -= 2; |
| } |
| |
| const bool all_finite = all(accum * 0 == 0); |
| if (all_finite) { |
| this->setLTRB(std::min(min[0], min[2]), std::min(min[1], min[3]), |
| std::max(max[0], max[2]), std::max(max[1], max[3])); |
| } else { |
| this->setEmpty(); |
| } |
| return all_finite; |
| } |
| |
| void SkRect::setBoundsNoCheck(const SkPoint pts[], int count) { |
| if (!this->setBoundsCheck(pts, count)) { |
| this->setLTRB(SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN); |
| } |
| } |
| |
| #define CHECK_INTERSECT(al, at, ar, ab, bl, bt, br, bb) \ |
| SkScalar L = std::max(al, bl); \ |
| SkScalar R = std::min(ar, br); \ |
| SkScalar T = std::max(at, bt); \ |
| SkScalar B = std::min(ab, bb); \ |
| do { if (!(L < R && T < B)) return false; } while (0) |
| // do the !(opposite) check so we return false if either arg is NaN |
| |
| bool SkRect::intersect(const SkRect& r) { |
| CHECK_INTERSECT(r.fLeft, r.fTop, r.fRight, r.fBottom, fLeft, fTop, fRight, fBottom); |
| this->setLTRB(L, T, R, B); |
| return true; |
| } |
| |
| bool SkRect::intersect(const SkRect& a, const SkRect& b) { |
| CHECK_INTERSECT(a.fLeft, a.fTop, a.fRight, a.fBottom, b.fLeft, b.fTop, b.fRight, b.fBottom); |
| this->setLTRB(L, T, R, B); |
| return true; |
| } |
| |
| void SkRect::join(const SkRect& r) { |
| if (r.isEmpty()) { |
| return; |
| } |
| |
| if (this->isEmpty()) { |
| *this = r; |
| } else { |
| fLeft = std::min(fLeft, r.fLeft); |
| fTop = std::min(fTop, r.fTop); |
| fRight = std::max(fRight, r.fRight); |
| fBottom = std::max(fBottom, r.fBottom); |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| #include "include/core/SkString.h" |
| #include "src/core/SkStringUtils.h" |
| |
| static const char* set_scalar(SkString* storage, SkScalar value, SkScalarAsStringType asType) { |
| storage->reset(); |
| SkAppendScalar(storage, value, asType); |
| return storage->c_str(); |
| } |
| |
| void SkRect::dump(bool asHex) const { |
| SkScalarAsStringType asType = asHex ? kHex_SkScalarAsStringType : kDec_SkScalarAsStringType; |
| |
| SkString line; |
| if (asHex) { |
| SkString tmp; |
| line.printf( "SkRect::MakeLTRB(%s, /* %f */\n", set_scalar(&tmp, fLeft, asType), fLeft); |
| line.appendf(" %s, /* %f */\n", set_scalar(&tmp, fTop, asType), fTop); |
| line.appendf(" %s, /* %f */\n", set_scalar(&tmp, fRight, asType), fRight); |
| line.appendf(" %s /* %f */);", set_scalar(&tmp, fBottom, asType), fBottom); |
| } else { |
| SkString strL, strT, strR, strB; |
| SkAppendScalarDec(&strL, fLeft); |
| SkAppendScalarDec(&strT, fTop); |
| SkAppendScalarDec(&strR, fRight); |
| SkAppendScalarDec(&strB, fBottom); |
| line.printf("SkRect::MakeLTRB(%s, %s, %s, %s);", |
| strL.c_str(), strT.c_str(), strR.c_str(), strB.c_str()); |
| } |
| SkDebugf("%s\n", line.c_str()); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| template<typename R> |
| static bool subtract(const R& a, const R& b, R* out) { |
| if (a.isEmpty() || b.isEmpty() || !R::Intersects(a, b)) { |
| // Either already empty, or subtracting the empty rect, or there's no intersection, so |
| // in all cases the answer is A. |
| *out = a; |
| return true; |
| } |
| |
| // 4 rectangles to consider. If the edge in A is contained in B, the resulting difference can |
| // be represented exactly as a rectangle. Otherwise the difference is the largest subrectangle |
| // that is disjoint from B: |
| // 1. Left part of A: (A.left, A.top, B.left, A.bottom) |
| // 2. Right part of A: (B.right, A.top, A.right, A.bottom) |
| // 3. Top part of A: (A.left, A.top, A.right, B.top) |
| // 4. Bottom part of A: (A.left, B.bottom, A.right, A.bottom) |
| // |
| // Depending on how B intersects A, there will be 1 to 4 positive areas: |
| // - 4 occur when A contains B |
| // - 3 occur when B intersects a single edge |
| // - 2 occur when B intersects at a corner, or spans two opposing edges |
| // - 1 occurs when B spans two opposing edges and contains a 3rd, resulting in an exact rect |
| // - 0 occurs when B contains A, resulting in the empty rect |
| // |
| // Compute the relative areas of the 4 rects described above. Since each subrectangle shares |
| // either the width or height of A, we only have to divide by the other dimension, which avoids |
| // overflow on int32 types, and even if the float relative areas overflow to infinity, the |
| // comparisons work out correctly and (one of) the infinitely large subrects will be chosen. |
| float aHeight = (float) a.height(); |
| float aWidth = (float) a.width(); |
| float leftArea = 0.f, rightArea = 0.f, topArea = 0.f, bottomArea = 0.f; |
| int positiveCount = 0; |
| if (b.fLeft > a.fLeft) { |
| leftArea = (b.fLeft - a.fLeft) / aWidth; |
| positiveCount++; |
| } |
| if (a.fRight > b.fRight) { |
| rightArea = (a.fRight - b.fRight) / aWidth; |
| positiveCount++; |
| } |
| if (b.fTop > a.fTop) { |
| topArea = (b.fTop - a.fTop) / aHeight; |
| positiveCount++; |
| } |
| if (a.fBottom > b.fBottom) { |
| bottomArea = (a.fBottom - b.fBottom) / aHeight; |
| positiveCount++; |
| } |
| |
| if (positiveCount == 0) { |
| SkASSERT(b.contains(a)); |
| *out = R::MakeEmpty(); |
| return true; |
| } |
| |
| *out = a; |
| if (leftArea > rightArea && leftArea > topArea && leftArea > bottomArea) { |
| // Left chunk of A, so the new right edge is B's left edge |
| out->fRight = b.fLeft; |
| } else if (rightArea > topArea && rightArea > bottomArea) { |
| // Right chunk of A, so the new left edge is B's right edge |
| out->fLeft = b.fRight; |
| } else if (topArea > bottomArea) { |
| // Top chunk of A, so the new bottom edge is B's top edge |
| out->fBottom = b.fTop; |
| } else { |
| // Bottom chunk of A, so the new top edge is B's bottom edge |
| SkASSERT(bottomArea > 0.f); |
| out->fTop = b.fBottom; |
| } |
| |
| // If we have 1 valid area, the disjoint shape is representable as a rectangle. |
| SkASSERT(!R::Intersects(*out, b)); |
| return positiveCount == 1; |
| } |
| |
| bool SkRectPriv::Subtract(const SkRect& a, const SkRect& b, SkRect* out) { |
| return subtract<SkRect>(a, b, out); |
| } |
| |
| bool SkRectPriv::Subtract(const SkIRect& a, const SkIRect& b, SkIRect* out) { |
| return subtract<SkIRect>(a, b, out); |
| } |
| |
| |
| bool SkRectPriv::QuadContainsRect(const SkMatrix& m, const SkIRect& a, const SkIRect& b) { |
| return QuadContainsRect(SkM44(m), SkRect::Make(a), SkRect::Make(b)); |
| } |
| |
| bool SkRectPriv::QuadContainsRect(const SkM44& m, const SkRect& a, const SkRect& b) { |
| SkDEBUGCODE(SkM44 inverse;) |
| SkASSERT(m.invert(&inverse)); |
| // With empty rectangles, the calculated edges could give surprising results. If 'a' were not |
| // sorted, its normals would point outside the sorted rectangle, so lots of potential rects |
| // would be seen as "contained". If 'a' is all 0s, its edge equations are also (0,0,0) so every |
| // point has a distance of 0, and would be interpreted as inside. |
| if (a.isEmpty()) { |
| return false; |
| } |
| // However, 'b' is only used to define its 4 corners to check against the transformed edges. |
| // This is valid regardless of b's emptiness or sortedness. |
| |
| // Calculate the 4 homogenous coordinates of 'a' transformed by 'm' where Z=0 and W=1. |
| auto ax = skvx::float4{a.fLeft, a.fRight, a.fRight, a.fLeft}; |
| auto ay = skvx::float4{a.fTop, a.fTop, a.fBottom, a.fBottom}; |
| |
| auto max = m.rc(0,0)*ax + m.rc(0,1)*ay + m.rc(0,3); |
| auto may = m.rc(1,0)*ax + m.rc(1,1)*ay + m.rc(1,3); |
| auto maw = m.rc(3,0)*ax + m.rc(3,1)*ay + m.rc(3,3); |
| |
| if (all(maw < 0.f)) { |
| // If all points of A are mapped to w < 0, then the edge equations end up representing the |
| // convex hull of projected points when A should in fact be considered empty. |
| return false; |
| } |
| |
| // Cross product of adjacent vertices provides homogenous lines for the 4 sides of the quad |
| auto lA = may*skvx::shuffle<1,2,3,0>(maw) - maw*skvx::shuffle<1,2,3,0>(may); |
| auto lB = maw*skvx::shuffle<1,2,3,0>(max) - max*skvx::shuffle<1,2,3,0>(maw); |
| auto lC = max*skvx::shuffle<1,2,3,0>(may) - may*skvx::shuffle<1,2,3,0>(max); |
| |
| // Before transforming, the corners of 'a' were in CW order, but afterwards they may become CCW, |
| // so the sign corrects the direction of the edge normals to point inwards. |
| float sign = (lA[0]*lB[1] - lB[0]*lA[1]) < 0 ? -1.f : 1.f; |
| |
| // Calculate distance from 'b' to each edge. Since 'b' has presumably been transformed by 'm' |
| // *and* projected, this assumes W = 1. |
| auto d0 = sign * (lA*b.fLeft + lB*b.fTop + lC); |
| auto d1 = sign * (lA*b.fRight + lB*b.fTop + lC); |
| auto d2 = sign * (lA*b.fRight + lB*b.fBottom + lC); |
| auto d3 = sign * (lA*b.fLeft + lB*b.fBottom + lC); |
| |
| // 'b' is contained in the mapped rectangle if all distances are >= 0 |
| return all((d0 >= 0.f) & (d1 >= 0.f) & (d2 >= 0.f) & (d3 >= 0.f)); |
| } |