blob: 4b311b5207082e612a2941d5ec0aeab948ac4a28 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/core/SkRectPriv.h"
#include "src/gpu/GrCaps.h"
#include "src/gpu/GrDefaultGeoProcFactory.h"
#include "src/gpu/GrOpFlushState.h"
#include "src/gpu/SkGr.h"
#include "src/gpu/ops/GrDrawVerticesOp.h"
#include "src/gpu/ops/GrSimpleMeshDrawOpHelper.h"
namespace {
class DrawVerticesOp final : public GrMeshDrawOp {
private:
using Helper = GrSimpleMeshDrawOpHelper;
public:
DEFINE_OP_CLASS_ID
DrawVerticesOp(const Helper::MakeArgs&, const SkPMColor4f&, sk_sp<SkVertices>,
const SkVertices::Bone bones[], int boneCount, GrPrimitiveType, GrAAType,
sk_sp<GrColorSpaceXform>, const SkMatrix& viewMatrix);
const char* name() const override { return "DrawVerticesOp"; }
void visitProxies(const VisitProxyFunc& func) const override {
fHelper.visitProxies(func);
}
#ifdef SK_DEBUG
SkString dumpInfo() const override;
#endif
FixedFunctionFlags fixedFunctionFlags() const override;
GrProcessorSet::Analysis finalize(const GrCaps&, const GrAppliedClip*,
bool hasMixedSampledCoverage, GrClampType) override;
private:
enum class ColorArrayType {
kPremulGrColor,
kSkColor,
};
void onPrepareDraws(Target*) override;
void onExecute(GrOpFlushState*, const SkRect& chainBounds) override;
void drawVolatile(Target*);
void drawNonVolatile(Target*);
void fillBuffers(bool hasColorAttribute,
bool hasLocalCoordsAttribute,
size_t vertexStride,
void* verts,
uint16_t* indices) const;
void drawVertices(Target*,
sk_sp<const GrGeometryProcessor>,
sk_sp<const GrBuffer> vertexBuffer,
int firstVertex,
sk_sp<const GrBuffer> indexBuffer,
int firstIndex);
sk_sp<GrGeometryProcessor> makeGP(const GrShaderCaps* shaderCaps,
bool* hasColorAttribute,
bool* hasLocalCoordAttribute) const;
GrPrimitiveType primitiveType() const { return fPrimitiveType; }
bool combinablePrimitive() const {
return GrPrimitiveType::kTriangles == fPrimitiveType ||
GrPrimitiveType::kLines == fPrimitiveType ||
GrPrimitiveType::kPoints == fPrimitiveType;
}
CombineResult onCombineIfPossible(GrOp* t, const GrCaps&) override;
struct Mesh {
SkPMColor4f fColor; // Used if this->hasPerVertexColors() is false.
sk_sp<SkVertices> fVertices;
SkMatrix fViewMatrix;
bool fIgnoreTexCoords;
bool fIgnoreColors;
bool hasExplicitLocalCoords() const {
return fVertices->hasTexCoords() && !fIgnoreTexCoords;
}
bool hasPerVertexColors() const {
return fVertices->hasColors() && !fIgnoreColors;
}
};
bool isIndexed() const {
// Consistency enforced in onCombineIfPossible.
return fMeshes[0].fVertices->hasIndices();
}
bool requiresPerVertexColors() const {
return SkToBool(kRequiresPerVertexColors_Flag & fFlags);
}
bool anyMeshHasExplicitLocalCoords() const {
return SkToBool(kAnyMeshHasExplicitLocalCoords_Flag & fFlags);
}
bool hasMultipleViewMatrices() const {
return SkToBool(kHasMultipleViewMatrices_Flag & fFlags);
}
enum Flags {
kRequiresPerVertexColors_Flag = 0x1,
kAnyMeshHasExplicitLocalCoords_Flag = 0x2,
kHasMultipleViewMatrices_Flag = 0x4,
};
Helper fHelper;
SkSTArray<1, Mesh, true> fMeshes;
// GrPrimitiveType is more expressive than fVertices.mode() so it is used instead and we ignore
// the SkVertices mode (though fPrimitiveType may have been inferred from it).
GrPrimitiveType fPrimitiveType;
uint32_t fFlags;
int fVertexCount;
int fIndexCount;
ColorArrayType fColorArrayType;
sk_sp<GrColorSpaceXform> fColorSpaceXform;
typedef GrMeshDrawOp INHERITED;
};
DrawVerticesOp::DrawVerticesOp(const Helper::MakeArgs& helperArgs, const SkPMColor4f& color,
sk_sp<SkVertices> vertices, const SkVertices::Bone bones[],
int boneCount, GrPrimitiveType primitiveType, GrAAType aaType,
sk_sp<GrColorSpaceXform> colorSpaceXform,
const SkMatrix& viewMatrix)
: INHERITED(ClassID())
, fHelper(helperArgs, aaType)
, fPrimitiveType(primitiveType)
, fColorSpaceXform(std::move(colorSpaceXform)) {
SkASSERT(vertices);
fVertexCount = vertices->vertexCount();
fIndexCount = vertices->indexCount();
fColorArrayType = vertices->hasColors() ? ColorArrayType::kSkColor
: ColorArrayType::kPremulGrColor;
Mesh& mesh = fMeshes.push_back();
mesh.fColor = color;
mesh.fViewMatrix = viewMatrix;
mesh.fVertices = std::move(vertices);
mesh.fIgnoreTexCoords = false;
mesh.fIgnoreColors = false;
if (mesh.fVertices->hasBones() && bones) {
// Perform the transformations on the CPU instead of the GPU.
mesh.fVertices = mesh.fVertices->applyBones(bones, boneCount);
} else {
SkASSERT(!bones || boneCount == 1);
}
fFlags = 0;
if (mesh.hasPerVertexColors()) {
fFlags |= kRequiresPerVertexColors_Flag;
}
if (mesh.hasExplicitLocalCoords()) {
fFlags |= kAnyMeshHasExplicitLocalCoords_Flag;
}
// Special case for meshes with a world transform but no bone weights.
// These will be considered normal vertices draws without bones.
if (!mesh.fVertices->hasBones() && boneCount == 1) {
SkMatrix worldTransform;
worldTransform.setAffine(bones[0].values);
mesh.fViewMatrix.preConcat(worldTransform);
}
IsHairline zeroArea;
if (GrIsPrimTypeLines(primitiveType) || GrPrimitiveType::kPoints == primitiveType) {
zeroArea = IsHairline::kYes;
} else {
zeroArea = IsHairline::kNo;
}
this->setTransformedBounds(mesh.fVertices->bounds(),
mesh.fViewMatrix,
HasAABloat::kNo,
zeroArea);
}
#ifdef SK_DEBUG
SkString DrawVerticesOp::dumpInfo() const {
SkString string;
string.appendf("PrimType: %d, MeshCount %d, VCount: %d, ICount: %d\n", (int)fPrimitiveType,
fMeshes.count(), fVertexCount, fIndexCount);
string += fHelper.dumpInfo();
string += INHERITED::dumpInfo();
return string;
}
#endif
GrDrawOp::FixedFunctionFlags DrawVerticesOp::fixedFunctionFlags() const {
return fHelper.fixedFunctionFlags();
}
GrProcessorSet::Analysis DrawVerticesOp::finalize(
const GrCaps& caps, const GrAppliedClip* clip, bool hasMixedSampledCoverage,
GrClampType clampType) {
GrProcessorAnalysisColor gpColor;
if (this->requiresPerVertexColors()) {
gpColor.setToUnknown();
} else {
gpColor.setToConstant(fMeshes.front().fColor);
}
auto result = fHelper.finalizeProcessors(caps, clip, hasMixedSampledCoverage, clampType,
GrProcessorAnalysisCoverage::kNone, &gpColor);
if (gpColor.isConstant(&fMeshes.front().fColor)) {
fMeshes.front().fIgnoreColors = true;
fFlags &= ~kRequiresPerVertexColors_Flag;
fColorArrayType = ColorArrayType::kPremulGrColor;
}
if (!fHelper.usesLocalCoords()) {
fMeshes[0].fIgnoreTexCoords = true;
fFlags &= ~kAnyMeshHasExplicitLocalCoords_Flag;
}
return result;
}
sk_sp<GrGeometryProcessor> DrawVerticesOp::makeGP(const GrShaderCaps* shaderCaps,
bool* hasColorAttribute,
bool* hasLocalCoordAttribute) const {
using namespace GrDefaultGeoProcFactory;
LocalCoords::Type localCoordsType;
if (fHelper.usesLocalCoords()) {
// If we have multiple view matrices we will transform the positions into device space. We
// must then also provide untransformed positions as local coords.
if (this->anyMeshHasExplicitLocalCoords() || this->hasMultipleViewMatrices()) {
*hasLocalCoordAttribute = true;
localCoordsType = LocalCoords::kHasExplicit_Type;
} else {
*hasLocalCoordAttribute = false;
localCoordsType = LocalCoords::kUsePosition_Type;
}
} else {
localCoordsType = LocalCoords::kUnused_Type;
*hasLocalCoordAttribute = false;
}
Color color(fMeshes[0].fColor);
if (this->requiresPerVertexColors()) {
if (fColorArrayType == ColorArrayType::kPremulGrColor) {
color.fType = Color::kPremulGrColorAttribute_Type;
} else {
color.fType = Color::kUnpremulSkColorAttribute_Type;
color.fColorSpaceXform = fColorSpaceXform;
}
*hasColorAttribute = true;
} else {
*hasColorAttribute = false;
}
const SkMatrix& vm = this->hasMultipleViewMatrices() ? SkMatrix::I() : fMeshes[0].fViewMatrix;
return GrDefaultGeoProcFactory::Make(shaderCaps,
color,
Coverage::kSolid_Type,
localCoordsType,
vm);
}
void DrawVerticesOp::onPrepareDraws(Target* target) {
bool hasMapBufferSupport = GrCaps::kNone_MapFlags != target->caps().mapBufferFlags();
if (fMeshes[0].fVertices->isVolatile() || !hasMapBufferSupport) {
this->drawVolatile(target);
} else {
this->drawNonVolatile(target);
}
}
void DrawVerticesOp::drawVolatile(Target* target) {
bool hasColorAttribute;
bool hasLocalCoordsAttribute;
sk_sp<GrGeometryProcessor> gp = this->makeGP(target->caps().shaderCaps(),
&hasColorAttribute,
&hasLocalCoordsAttribute);
// Allocate buffers.
size_t vertexStride = gp->vertexStride();
sk_sp<const GrBuffer> vertexBuffer;
int firstVertex = 0;
void* verts = target->makeVertexSpace(vertexStride, fVertexCount, &vertexBuffer, &firstVertex);
if (!verts) {
SkDebugf("Could not allocate vertices\n");
return;
}
sk_sp<const GrBuffer> indexBuffer;
int firstIndex = 0;
uint16_t* indices = nullptr;
if (this->isIndexed()) {
indices = target->makeIndexSpace(fIndexCount, &indexBuffer, &firstIndex);
if (!indices) {
SkDebugf("Could not allocate indices\n");
return;
}
}
// Fill the buffers.
this->fillBuffers(hasColorAttribute,
hasLocalCoordsAttribute,
vertexStride,
verts,
indices);
// Draw the vertices.
this->drawVertices(target, std::move(gp), std::move(vertexBuffer), firstVertex, indexBuffer,
firstIndex);
}
void DrawVerticesOp::drawNonVolatile(Target* target) {
static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
bool hasColorAttribute;
bool hasLocalCoordsAttribute;
sk_sp<GrGeometryProcessor> gp = this->makeGP(target->caps().shaderCaps(),
&hasColorAttribute,
&hasLocalCoordsAttribute);
SkASSERT(fMeshes.count() == 1); // Non-volatile meshes should never combine.
// Get the resource provider.
GrResourceProvider* rp = target->resourceProvider();
// Generate keys for the buffers.
GrUniqueKey vertexKey, indexKey;
GrUniqueKey::Builder vertexKeyBuilder(&vertexKey, kDomain, 2);
GrUniqueKey::Builder indexKeyBuilder(&indexKey, kDomain, 2);
vertexKeyBuilder[0] = indexKeyBuilder[0] = fMeshes[0].fVertices->uniqueID();
vertexKeyBuilder[1] = 0;
indexKeyBuilder[1] = 1;
vertexKeyBuilder.finish();
indexKeyBuilder.finish();
// Try to grab data from the cache.
sk_sp<GrGpuBuffer> vertexBuffer = rp->findByUniqueKey<GrGpuBuffer>(vertexKey);
sk_sp<GrGpuBuffer> indexBuffer =
this->isIndexed() ? rp->findByUniqueKey<GrGpuBuffer>(indexKey) : nullptr;
// Draw using the cached buffers if possible.
if (vertexBuffer && (!this->isIndexed() || indexBuffer)) {
this->drawVertices(target, std::move(gp), std::move(vertexBuffer), 0,
std::move(indexBuffer), 0);
return;
}
// Allocate vertex buffer.
size_t vertexStride = gp->vertexStride();
vertexBuffer = rp->createBuffer(
fVertexCount * vertexStride, GrGpuBufferType::kVertex, kStatic_GrAccessPattern);
void* verts = vertexBuffer ? vertexBuffer->map() : nullptr;
if (!verts) {
SkDebugf("Could not allocate vertices\n");
return;
}
// Allocate index buffer.
uint16_t* indices = nullptr;
if (this->isIndexed()) {
indexBuffer = rp->createBuffer(
fIndexCount * sizeof(uint16_t), GrGpuBufferType::kIndex, kStatic_GrAccessPattern);
indices = indexBuffer ? static_cast<uint16_t*>(indexBuffer->map()) : nullptr;
if (!indices) {
SkDebugf("Could not allocate indices\n");
return;
}
}
// Fill the buffers.
this->fillBuffers(hasColorAttribute,
hasLocalCoordsAttribute,
vertexStride,
verts,
indices);
// Unmap the buffers.
vertexBuffer->unmap();
if (indexBuffer) {
indexBuffer->unmap();
}
// Cache the buffers.
rp->assignUniqueKeyToResource(vertexKey, vertexBuffer.get());
rp->assignUniqueKeyToResource(indexKey, indexBuffer.get());
// Draw the vertices.
this->drawVertices(target, std::move(gp), std::move(vertexBuffer), 0, std::move(indexBuffer),
0);
}
void DrawVerticesOp::fillBuffers(bool hasColorAttribute,
bool hasLocalCoordsAttribute,
size_t vertexStride,
void* verts,
uint16_t* indices) const {
int instanceCount = fMeshes.count();
// Copy data into the buffers.
int vertexOffset = 0;
// We have a fast case below for uploading the vertex data when the matrix is translate
// only and there are colors but not local coords.
bool fastAttrs = hasColorAttribute && !hasLocalCoordsAttribute;
for (int i = 0; i < instanceCount; i++) {
// Get each mesh.
const Mesh& mesh = fMeshes[i];
// Copy data into the index buffer.
if (indices) {
int indexCount = mesh.fVertices->indexCount();
for (int j = 0; j < indexCount; ++j) {
*indices++ = mesh.fVertices->indices()[j] + vertexOffset;
}
}
// Copy data into the vertex buffer.
int vertexCount = mesh.fVertices->vertexCount();
const SkPoint* positions = mesh.fVertices->positions();
const SkColor* colors = mesh.fVertices->colors();
const SkPoint* localCoords = mesh.fVertices->texCoords();
bool fastMesh = (!this->hasMultipleViewMatrices() ||
mesh.fViewMatrix.getType() <= SkMatrix::kTranslate_Mask) &&
mesh.hasPerVertexColors();
if (fastAttrs && fastMesh) {
// Fast case.
struct V {
SkPoint fPos;
uint32_t fColor;
};
SkASSERT(sizeof(V) == vertexStride);
V* v = (V*)verts;
Sk2f t(0, 0);
if (this->hasMultipleViewMatrices()) {
t = Sk2f(mesh.fViewMatrix.getTranslateX(), mesh.fViewMatrix.getTranslateY());
}
for (int j = 0; j < vertexCount; ++j) {
Sk2f p = Sk2f::Load(positions++) + t;
p.store(&v[j].fPos);
v[j].fColor = colors[j];
}
verts = v + vertexCount;
} else {
// Normal case.
static constexpr size_t kColorOffset = sizeof(SkPoint);
size_t offset = kColorOffset;
if (hasColorAttribute) {
offset += sizeof(uint32_t);
}
size_t localCoordOffset = offset;
if (hasLocalCoordsAttribute) {
offset += sizeof(SkPoint);
}
// TODO4F: Preserve float colors
GrColor color = mesh.fColor.toBytes_RGBA();
for (int j = 0; j < vertexCount; ++j) {
if (this->hasMultipleViewMatrices()) {
mesh.fViewMatrix.mapPoints(((SkPoint*)verts), &positions[j], 1);
} else {
*((SkPoint*)verts) = positions[j];
}
if (hasColorAttribute) {
if (mesh.hasPerVertexColors()) {
*(uint32_t*)((intptr_t)verts + kColorOffset) = colors[j];
} else {
*(uint32_t*)((intptr_t)verts + kColorOffset) = color;
}
}
if (hasLocalCoordsAttribute) {
if (mesh.hasExplicitLocalCoords()) {
*(SkPoint*)((intptr_t)verts + localCoordOffset) = localCoords[j];
} else {
*(SkPoint*)((intptr_t)verts + localCoordOffset) = positions[j];
}
}
verts = (void*)((intptr_t)verts + vertexStride);
}
}
vertexOffset += vertexCount;
}
}
void DrawVerticesOp::drawVertices(Target* target,
sk_sp<const GrGeometryProcessor> gp,
sk_sp<const GrBuffer> vertexBuffer,
int firstVertex,
sk_sp<const GrBuffer> indexBuffer,
int firstIndex) {
GrMesh* mesh = target->allocMesh(this->primitiveType());
if (this->isIndexed()) {
mesh->setIndexed(std::move(indexBuffer), fIndexCount, firstIndex, 0, fVertexCount - 1,
GrPrimitiveRestart::kNo);
} else {
mesh->setNonIndexedNonInstanced(fVertexCount);
}
mesh->setVertexData(std::move(vertexBuffer), firstVertex);
target->recordDraw(std::move(gp), mesh);
}
void DrawVerticesOp::onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) {
fHelper.executeDrawsAndUploads(this, flushState, chainBounds);
}
GrOp::CombineResult DrawVerticesOp::onCombineIfPossible(GrOp* t, const GrCaps& caps) {
DrawVerticesOp* that = t->cast<DrawVerticesOp>();
if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) {
return CombineResult::kCannotCombine;
}
// Non-volatile meshes cannot batch, because if a non-volatile mesh batches with another mesh,
// then on the next frame, if that non-volatile mesh is drawn, it will draw the other mesh
// that was saved in its vertex buffer, which is not necessarily there anymore.
if (!this->fMeshes[0].fVertices->isVolatile() || !that->fMeshes[0].fVertices->isVolatile()) {
return CombineResult::kCannotCombine;
}
if (!this->combinablePrimitive() || this->primitiveType() != that->primitiveType()) {
return CombineResult::kCannotCombine;
}
if (fMeshes[0].fVertices->hasIndices() != that->fMeshes[0].fVertices->hasIndices()) {
return CombineResult::kCannotCombine;
}
if (fColorArrayType != that->fColorArrayType) {
return CombineResult::kCannotCombine;
}
if (fVertexCount + that->fVertexCount > SkTo<int>(UINT16_MAX)) {
return CombineResult::kCannotCombine;
}
// NOTE: For SkColor vertex colors, the source color space is always sRGB, and the destination
// gamut is determined by the render target context. A mis-match should be impossible.
SkASSERT(GrColorSpaceXform::Equals(fColorSpaceXform.get(), that->fColorSpaceXform.get()));
// If either op required explicit local coords or per-vertex colors the combined mesh does. Same
// with multiple view matrices.
fFlags |= that->fFlags;
if (!this->requiresPerVertexColors() && this->fMeshes[0].fColor != that->fMeshes[0].fColor) {
fFlags |= kRequiresPerVertexColors_Flag;
}
// Check whether we are about to acquire a mesh with a different view matrix.
if (!this->hasMultipleViewMatrices() &&
!this->fMeshes[0].fViewMatrix.cheapEqualTo(that->fMeshes[0].fViewMatrix)) {
fFlags |= kHasMultipleViewMatrices_Flag;
}
fMeshes.push_back_n(that->fMeshes.count(), that->fMeshes.begin());
fVertexCount += that->fVertexCount;
fIndexCount += that->fIndexCount;
return CombineResult::kMerged;
}
} // anonymous namespace
std::unique_ptr<GrDrawOp> GrDrawVerticesOp::Make(GrRecordingContext* context,
GrPaint&& paint,
sk_sp<SkVertices> vertices,
const SkVertices::Bone bones[],
int boneCount,
const SkMatrix& viewMatrix,
GrAAType aaType,
sk_sp<GrColorSpaceXform> colorSpaceXform,
GrPrimitiveType* overridePrimType) {
SkASSERT(vertices);
GrPrimitiveType primType = overridePrimType ? *overridePrimType
: SkVertexModeToGrPrimitiveType(vertices->mode());
return GrSimpleMeshDrawOpHelper::FactoryHelper<DrawVerticesOp>(context, std::move(paint),
std::move(vertices),
bones, boneCount,
primType, aaType,
std::move(colorSpaceXform),
viewMatrix);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#if GR_TEST_UTILS
#include "src/gpu/GrDrawOpTest.h"
static uint32_t seed_vertices(GrPrimitiveType type) {
switch (type) {
case GrPrimitiveType::kTriangles:
case GrPrimitiveType::kTriangleStrip:
return 3;
case GrPrimitiveType::kPoints:
return 1;
case GrPrimitiveType::kLines:
case GrPrimitiveType::kLineStrip:
return 2;
case GrPrimitiveType::kPath:
SkASSERT(0);
return 0;
}
SK_ABORT("Incomplete switch\n");
}
static uint32_t primitive_vertices(GrPrimitiveType type) {
switch (type) {
case GrPrimitiveType::kTriangles:
return 3;
case GrPrimitiveType::kLines:
return 2;
case GrPrimitiveType::kTriangleStrip:
case GrPrimitiveType::kPoints:
case GrPrimitiveType::kLineStrip:
return 1;
case GrPrimitiveType::kPath:
SkASSERT(0);
return 0;
}
SK_ABORT("Incomplete switch\n");
}
static SkPoint random_point(SkRandom* random, SkScalar min, SkScalar max) {
SkPoint p;
p.fX = random->nextRangeScalar(min, max);
p.fY = random->nextRangeScalar(min, max);
return p;
}
static void randomize_params(size_t count, size_t maxVertex, SkScalar min, SkScalar max,
SkRandom* random, SkTArray<SkPoint>* positions,
SkTArray<SkPoint>* texCoords, bool hasTexCoords,
SkTArray<uint32_t>* colors, bool hasColors,
SkTArray<uint16_t>* indices, bool hasIndices) {
for (uint32_t v = 0; v < count; v++) {
positions->push_back(random_point(random, min, max));
if (hasTexCoords) {
texCoords->push_back(random_point(random, min, max));
}
if (hasColors) {
colors->push_back(GrRandomColor(random));
}
if (hasIndices) {
SkASSERT(maxVertex <= UINT16_MAX);
indices->push_back(random->nextULessThan((uint16_t)maxVertex));
}
}
}
GR_DRAW_OP_TEST_DEFINE(DrawVerticesOp) {
GrPrimitiveType type;
do {
type = GrPrimitiveType(random->nextULessThan(kNumGrPrimitiveTypes));
} while (type == GrPrimitiveType::kPath);
uint32_t primitiveCount = random->nextRangeU(1, 100);
// TODO make 'sensible' indexbuffers
SkTArray<SkPoint> positions;
SkTArray<SkPoint> texCoords;
SkTArray<uint32_t> colors;
SkTArray<uint16_t> indices;
bool hasTexCoords = random->nextBool();
bool hasIndices = random->nextBool();
bool hasColors = random->nextBool();
uint32_t vertexCount = seed_vertices(type) + (primitiveCount - 1) * primitive_vertices(type);
static const SkScalar kMinVertExtent = -100.f;
static const SkScalar kMaxVertExtent = 100.f;
randomize_params(seed_vertices(type), vertexCount, kMinVertExtent, kMaxVertExtent, random,
&positions, &texCoords, hasTexCoords, &colors, hasColors, &indices,
hasIndices);
for (uint32_t i = 1; i < primitiveCount; i++) {
randomize_params(primitive_vertices(type), vertexCount, kMinVertExtent, kMaxVertExtent,
random, &positions, &texCoords, hasTexCoords, &colors, hasColors, &indices,
hasIndices);
}
SkMatrix viewMatrix = GrTest::TestMatrix(random);
sk_sp<GrColorSpaceXform> colorSpaceXform = GrTest::TestColorXform(random);
static constexpr SkVertices::VertexMode kIgnoredMode = SkVertices::kTriangles_VertexMode;
sk_sp<SkVertices> vertices = SkVertices::MakeCopy(kIgnoredMode, vertexCount, positions.begin(),
texCoords.begin(), colors.begin(),
hasIndices ? indices.count() : 0,
indices.begin());
GrAAType aaType = GrAAType::kNone;
if (numSamples > 1 && random->nextBool()) {
aaType = GrAAType::kMSAA;
}
return GrDrawVerticesOp::Make(context, std::move(paint), std::move(vertices), nullptr, 0,
viewMatrix, aaType, std::move(colorSpaceXform), &type);
}
#endif