blob: 389a49a504b30b040ecd9f120a977a5f704ff003 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrVkGpu.h"
#include "GrContextPriv.h"
#include "GrBackendSemaphore.h"
#include "GrBackendSurface.h"
#include "GrContextOptions.h"
#include "GrGeometryProcessor.h"
#include "GrGpuResourceCacheAccess.h"
#include "GrMesh.h"
#include "GrPipeline.h"
#include "GrRenderTargetPriv.h"
#include "GrTexturePriv.h"
#include "GrVkAMDMemoryAllocator.h"
#include "GrVkCommandBuffer.h"
#include "GrVkCommandPool.h"
#include "GrVkGpuCommandBuffer.h"
#include "GrVkImage.h"
#include "GrVkIndexBuffer.h"
#include "GrVkInterface.h"
#include "GrVkMemory.h"
#include "GrVkPipeline.h"
#include "GrVkPipelineState.h"
#include "GrVkRenderPass.h"
#include "GrVkResourceProvider.h"
#include "GrVkSemaphore.h"
#include "GrVkTexture.h"
#include "GrVkTextureRenderTarget.h"
#include "GrVkTransferBuffer.h"
#include "GrVkVertexBuffer.h"
#include "SkConvertPixels.h"
#include "SkMipMap.h"
#include "SkSLCompiler.h"
#include "SkTo.h"
#include "vk/GrVkExtensions.h"
#include "vk/GrVkTypes.h"
#include <utility>
#if !defined(SK_BUILD_FOR_WIN)
#include <unistd.h>
#endif // !defined(SK_BUILD_FOR_WIN)
#if defined(SK_BUILD_FOR_WIN) && defined(SK_DEBUG)
#include "SkLeanWindows.h"
#endif
#define VK_CALL(X) GR_VK_CALL(this->vkInterface(), X)
#define VK_CALL_RET(RET, X) GR_VK_CALL_RET(this->vkInterface(), RET, X)
#define VK_CALL_ERRCHECK(X) GR_VK_CALL_ERRCHECK(this->vkInterface(), X)
sk_sp<GrGpu> GrVkGpu::Make(const GrVkBackendContext& backendContext,
const GrContextOptions& options, GrContext* context) {
if (backendContext.fInstance == VK_NULL_HANDLE ||
backendContext.fPhysicalDevice == VK_NULL_HANDLE ||
backendContext.fDevice == VK_NULL_HANDLE ||
backendContext.fQueue == VK_NULL_HANDLE) {
return nullptr;
}
if (!backendContext.fGetProc) {
return nullptr;
}
PFN_vkEnumerateInstanceVersion localEnumerateInstanceVersion =
reinterpret_cast<PFN_vkEnumerateInstanceVersion>(
backendContext.fGetProc("vkEnumerateInstanceVersion",
VK_NULL_HANDLE, VK_NULL_HANDLE));
uint32_t instanceVersion = 0;
if (!localEnumerateInstanceVersion) {
instanceVersion = VK_MAKE_VERSION(1, 0, 0);
} else {
VkResult err = localEnumerateInstanceVersion(&instanceVersion);
if (err) {
SkDebugf("Failed to enumerate instance version. Err: %d\n", err);
return nullptr;
}
}
PFN_vkGetPhysicalDeviceProperties localGetPhysicalDeviceProperties =
reinterpret_cast<PFN_vkGetPhysicalDeviceProperties>(
backendContext.fGetProc("vkGetPhysicalDeviceProperties",
backendContext.fInstance,
VK_NULL_HANDLE));
if (!localGetPhysicalDeviceProperties) {
return nullptr;
}
VkPhysicalDeviceProperties physDeviceProperties;
localGetPhysicalDeviceProperties(backendContext.fPhysicalDevice, &physDeviceProperties);
uint32_t physDevVersion = physDeviceProperties.apiVersion;
uint32_t apiVersion = backendContext.fMaxAPIVersion ? backendContext.fMaxAPIVersion
: instanceVersion;
instanceVersion = SkTMin(instanceVersion, apiVersion);
physDevVersion = SkTMin(physDevVersion, apiVersion);
sk_sp<const GrVkInterface> interface;
if (backendContext.fVkExtensions) {
interface.reset(new GrVkInterface(backendContext.fGetProc,
backendContext.fInstance,
backendContext.fDevice,
instanceVersion,
physDevVersion,
backendContext.fVkExtensions));
if (!interface->validate(instanceVersion, physDevVersion, backendContext.fVkExtensions)) {
return nullptr;
}
} else {
// None of our current GrVkExtension flags actually affect the vulkan backend so we just
// make an empty GrVkExtensions and pass that to the GrVkInterface.
GrVkExtensions extensions;
interface.reset(new GrVkInterface(backendContext.fGetProc,
backendContext.fInstance,
backendContext.fDevice,
instanceVersion,
physDevVersion,
&extensions));
if (!interface->validate(instanceVersion, physDevVersion, &extensions)) {
return nullptr;
}
}
return sk_sp<GrGpu>(new GrVkGpu(context, options, backendContext, interface, instanceVersion,
physDevVersion));
}
////////////////////////////////////////////////////////////////////////////////
GrVkGpu::GrVkGpu(GrContext* context, const GrContextOptions& options,
const GrVkBackendContext& backendContext, sk_sp<const GrVkInterface> interface,
uint32_t instanceVersion, uint32_t physicalDeviceVersion)
: INHERITED(context)
, fInterface(std::move(interface))
, fMemoryAllocator(backendContext.fMemoryAllocator)
, fInstance(backendContext.fInstance)
, fPhysicalDevice(backendContext.fPhysicalDevice)
, fDevice(backendContext.fDevice)
, fQueue(backendContext.fQueue)
, fQueueIndex(backendContext.fGraphicsQueueIndex)
, fResourceProvider(this)
, fDisconnected(false) {
SkASSERT(!backendContext.fOwnsInstanceAndDevice);
if (!fMemoryAllocator) {
// We were not given a memory allocator at creation
fMemoryAllocator.reset(new GrVkAMDMemoryAllocator(backendContext.fPhysicalDevice,
fDevice, fInterface));
}
fCompiler = new SkSL::Compiler();
if (backendContext.fDeviceFeatures2) {
fVkCaps.reset(new GrVkCaps(options, this->vkInterface(), backendContext.fPhysicalDevice,
*backendContext.fDeviceFeatures2, instanceVersion,
physicalDeviceVersion,
*backendContext.fVkExtensions));
} else if (backendContext.fDeviceFeatures) {
VkPhysicalDeviceFeatures2 features2;
features2.pNext = nullptr;
features2.features = *backendContext.fDeviceFeatures;
fVkCaps.reset(new GrVkCaps(options, this->vkInterface(), backendContext.fPhysicalDevice,
features2, instanceVersion, physicalDeviceVersion,
*backendContext.fVkExtensions));
} else {
VkPhysicalDeviceFeatures2 features;
memset(&features, 0, sizeof(VkPhysicalDeviceFeatures2));
features.pNext = nullptr;
if (backendContext.fFeatures & kGeometryShader_GrVkFeatureFlag) {
features.features.geometryShader = true;
}
if (backendContext.fFeatures & kDualSrcBlend_GrVkFeatureFlag) {
features.features.dualSrcBlend = true;
}
if (backendContext.fFeatures & kSampleRateShading_GrVkFeatureFlag) {
features.features.sampleRateShading = true;
}
fVkCaps.reset(new GrVkCaps(options, this->vkInterface(), backendContext.fPhysicalDevice,
features, instanceVersion, physicalDeviceVersion,
GrVkExtensions()));
}
fCaps.reset(SkRef(fVkCaps.get()));
VK_CALL(GetPhysicalDeviceProperties(backendContext.fPhysicalDevice, &fPhysDevProps));
VK_CALL(GetPhysicalDeviceMemoryProperties(backendContext.fPhysicalDevice, &fPhysDevMemProps));
fResourceProvider.init();
fCmdPool = fResourceProvider.findOrCreateCommandPool();
fCurrentCmdBuffer = fCmdPool->getPrimaryCommandBuffer();
SkASSERT(fCurrentCmdBuffer);
fCurrentCmdBuffer->begin(this);
}
void GrVkGpu::destroyResources() {
if (fCmdPool) {
fCmdPool->getPrimaryCommandBuffer()->end(this);
fCmdPool->close();
}
// wait for all commands to finish
VkResult res = VK_CALL(QueueWaitIdle(fQueue));
// On windows, sometimes calls to QueueWaitIdle return before actually signalling the fences
// on the command buffers even though they have completed. This causes an assert to fire when
// destroying the command buffers. Currently this ony seems to happen on windows, so we add a
// sleep to make sure the fence signals.
#ifdef SK_DEBUG
if (this->vkCaps().mustSleepOnTearDown()) {
#if defined(SK_BUILD_FOR_WIN)
Sleep(10); // In milliseconds
#else
sleep(1); // In seconds
#endif
}
#endif
#ifdef SK_DEBUG
SkASSERT(VK_SUCCESS == res || VK_ERROR_DEVICE_LOST == res);
#endif
if (fCmdPool) {
fCmdPool->unref(this);
fCmdPool = nullptr;
}
for (int i = 0; i < fSemaphoresToWaitOn.count(); ++i) {
fSemaphoresToWaitOn[i]->unref(this);
}
fSemaphoresToWaitOn.reset();
for (int i = 0; i < fSemaphoresToSignal.count(); ++i) {
fSemaphoresToSignal[i]->unref(this);
}
fSemaphoresToSignal.reset();
fCopyManager.destroyResources(this);
// must call this just before we destroy the command pool and VkDevice
fResourceProvider.destroyResources(VK_ERROR_DEVICE_LOST == res);
fMemoryAllocator.reset();
fQueue = VK_NULL_HANDLE;
fDevice = VK_NULL_HANDLE;
fInstance = VK_NULL_HANDLE;
}
GrVkGpu::~GrVkGpu() {
if (!fDisconnected) {
this->destroyResources();
}
delete fCompiler;
}
void GrVkGpu::disconnect(DisconnectType type) {
INHERITED::disconnect(type);
if (!fDisconnected) {
if (DisconnectType::kCleanup == type) {
this->destroyResources();
} else {
if (fCmdPool) {
fCmdPool->unrefAndAbandon();
fCmdPool = nullptr;
}
for (int i = 0; i < fSemaphoresToWaitOn.count(); ++i) {
fSemaphoresToWaitOn[i]->unrefAndAbandon();
}
for (int i = 0; i < fSemaphoresToSignal.count(); ++i) {
fSemaphoresToSignal[i]->unrefAndAbandon();
}
fCopyManager.abandonResources();
// must call this just before we destroy the command pool and VkDevice
fResourceProvider.abandonResources();
fMemoryAllocator.reset();
}
fSemaphoresToWaitOn.reset();
fSemaphoresToSignal.reset();
fCurrentCmdBuffer = nullptr;
fDisconnected = true;
}
}
///////////////////////////////////////////////////////////////////////////////
GrGpuRTCommandBuffer* GrVkGpu::getCommandBuffer(
GrRenderTarget* rt, GrSurfaceOrigin origin, const SkRect& bounds,
const GrGpuRTCommandBuffer::LoadAndStoreInfo& colorInfo,
const GrGpuRTCommandBuffer::StencilLoadAndStoreInfo& stencilInfo) {
if (!fCachedRTCommandBuffer) {
fCachedRTCommandBuffer.reset(new GrVkGpuRTCommandBuffer(this));
}
fCachedRTCommandBuffer->set(rt, origin, colorInfo, stencilInfo);
return fCachedRTCommandBuffer.get();
}
GrGpuTextureCommandBuffer* GrVkGpu::getCommandBuffer(GrTexture* texture, GrSurfaceOrigin origin) {
if (!fCachedTexCommandBuffer) {
fCachedTexCommandBuffer.reset(new GrVkGpuTextureCommandBuffer(this));
}
fCachedTexCommandBuffer->set(texture, origin);
return fCachedTexCommandBuffer.get();
}
void GrVkGpu::submitCommandBuffer(SyncQueue sync, GrGpuFinishedProc finishedProc,
GrGpuFinishedContext finishedContext) {
SkASSERT(fCurrentCmdBuffer);
if (!fCurrentCmdBuffer->hasWork() && kForce_SyncQueue != sync &&
!fSemaphoresToSignal.count() && !fSemaphoresToWaitOn.count()) {
SkASSERT(fDrawables.empty());
fResourceProvider.checkCommandBuffers();
if (finishedProc) {
fResourceProvider.addFinishedProcToActiveCommandBuffers(finishedProc, finishedContext);
}
return;
}
fCurrentCmdBuffer->end(this);
fCmdPool->close();
fCurrentCmdBuffer->submitToQueue(this, fQueue, sync, fSemaphoresToSignal, fSemaphoresToWaitOn);
if (finishedProc) {
// Make sure this is called after closing the current command pool
fResourceProvider.addFinishedProcToActiveCommandBuffers(finishedProc, finishedContext);
}
// We must delete and drawables that have been waitint till submit for us to destroy.
fDrawables.reset();
for (int i = 0; i < fSemaphoresToWaitOn.count(); ++i) {
fSemaphoresToWaitOn[i]->unref(this);
}
fSemaphoresToWaitOn.reset();
for (int i = 0; i < fSemaphoresToSignal.count(); ++i) {
fSemaphoresToSignal[i]->unref(this);
}
fSemaphoresToSignal.reset();
// Release old command pool and create a new one
fCmdPool->unref(this);
fResourceProvider.checkCommandBuffers();
fCmdPool = fResourceProvider.findOrCreateCommandPool();
fCurrentCmdBuffer = fCmdPool->getPrimaryCommandBuffer();
fCurrentCmdBuffer->begin(this);
}
///////////////////////////////////////////////////////////////////////////////
sk_sp<GrGpuBuffer> GrVkGpu::onCreateBuffer(size_t size, GrGpuBufferType type,
GrAccessPattern accessPattern, const void* data) {
sk_sp<GrGpuBuffer> buff;
switch (type) {
case GrGpuBufferType::kVertex:
SkASSERT(kDynamic_GrAccessPattern == accessPattern ||
kStatic_GrAccessPattern == accessPattern);
buff = GrVkVertexBuffer::Make(this, size, kDynamic_GrAccessPattern == accessPattern);
break;
case GrGpuBufferType::kIndex:
SkASSERT(kDynamic_GrAccessPattern == accessPattern ||
kStatic_GrAccessPattern == accessPattern);
buff = GrVkIndexBuffer::Make(this, size, kDynamic_GrAccessPattern == accessPattern);
break;
case GrGpuBufferType::kXferCpuToGpu:
SkASSERT(kDynamic_GrAccessPattern == accessPattern ||
kStream_GrAccessPattern == accessPattern);
buff = GrVkTransferBuffer::Make(this, size, GrVkBuffer::kCopyRead_Type);
break;
case GrGpuBufferType::kXferGpuToCpu:
SkASSERT(kDynamic_GrAccessPattern == accessPattern ||
kStream_GrAccessPattern == accessPattern);
buff = GrVkTransferBuffer::Make(this, size, GrVkBuffer::kCopyWrite_Type);
break;
default:
SK_ABORT("Unknown buffer type.");
return nullptr;
}
if (data && buff) {
buff->updateData(data, size);
}
return buff;
}
bool GrVkGpu::onWritePixels(GrSurface* surface, int left, int top, int width, int height,
GrColorType srcColorType, const GrMipLevel texels[],
int mipLevelCount) {
GrVkTexture* vkTex = static_cast<GrVkTexture*>(surface->asTexture());
if (!vkTex) {
return false;
}
// Make sure we have at least the base level
if (!mipLevelCount || !texels[0].fPixels) {
return false;
}
SkASSERT(!GrPixelConfigIsCompressed(vkTex->config()));
bool success = false;
bool linearTiling = vkTex->isLinearTiled();
if (linearTiling) {
if (mipLevelCount > 1) {
SkDebugf("Can't upload mipmap data to linear tiled texture");
return false;
}
if (VK_IMAGE_LAYOUT_PREINITIALIZED != vkTex->currentLayout()) {
// Need to change the layout to general in order to perform a host write
vkTex->setImageLayout(this,
VK_IMAGE_LAYOUT_GENERAL,
VK_ACCESS_HOST_WRITE_BIT,
VK_PIPELINE_STAGE_HOST_BIT,
false);
this->submitCommandBuffer(kForce_SyncQueue);
}
success = this->uploadTexDataLinear(vkTex, left, top, width, height, srcColorType,
texels[0].fPixels, texels[0].fRowBytes);
} else {
SkASSERT(mipLevelCount <= vkTex->texturePriv().maxMipMapLevel() + 1);
success = this->uploadTexDataOptimal(vkTex, left, top, width, height, srcColorType, texels,
mipLevelCount);
}
return success;
}
bool GrVkGpu::onTransferPixelsTo(GrTexture* texture, int left, int top, int width, int height,
GrColorType bufferColorType, GrGpuBuffer* transferBuffer,
size_t bufferOffset, size_t rowBytes) {
// Can't transfer compressed data
SkASSERT(!GrPixelConfigIsCompressed(texture->config()));
// Vulkan only supports 4-byte aligned offsets
if (SkToBool(bufferOffset & 0x2)) {
return false;
}
GrVkTexture* vkTex = static_cast<GrVkTexture*>(texture);
if (!vkTex) {
return false;
}
GrVkTransferBuffer* vkBuffer = static_cast<GrVkTransferBuffer*>(transferBuffer);
if (!vkBuffer) {
return false;
}
SkDEBUGCODE(
SkIRect subRect = SkIRect::MakeXYWH(left, top, width, height);
SkIRect bounds = SkIRect::MakeWH(texture->width(), texture->height());
SkASSERT(bounds.contains(subRect));
)
int bpp = GrColorTypeBytesPerPixel(bufferColorType);
if (rowBytes == 0) {
rowBytes = bpp * width;
}
// Set up copy region
VkBufferImageCopy region;
memset(&region, 0, sizeof(VkBufferImageCopy));
region.bufferOffset = bufferOffset;
region.bufferRowLength = (uint32_t)(rowBytes/bpp);
region.bufferImageHeight = 0;
region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
region.imageOffset = { left, top, 0 };
region.imageExtent = { (uint32_t)width, (uint32_t)height, 1 };
// Change layout of our target so it can be copied to
vkTex->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
// Copy the buffer to the image
fCurrentCmdBuffer->copyBufferToImage(this,
vkBuffer,
vkTex,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&region);
vkTex->texturePriv().markMipMapsDirty();
return true;
}
bool GrVkGpu::onTransferPixelsFrom(GrSurface* surface, int left, int top, int width, int height,
GrColorType bufferColorType, GrGpuBuffer* transferBuffer,
size_t offset) {
SkASSERT(surface);
SkASSERT(transferBuffer);
GrVkTransferBuffer* vkBuffer = static_cast<GrVkTransferBuffer*>(transferBuffer);
GrVkImage* srcImage;
if (GrVkRenderTarget* rt = static_cast<GrVkRenderTarget*>(surface->asRenderTarget())) {
// Reading from render targets that wrap a secondary command buffer is not allowed since
// it would require us to know the VkImage, which we don't have, as well as need us to
// stop and start the VkRenderPass which we don't have access to.
if (rt->wrapsSecondaryCommandBuffer()) {
return false;
}
// resolve the render target if necessary
switch (rt->getResolveType()) {
case GrVkRenderTarget::kCantResolve_ResolveType:
return false;
case GrVkRenderTarget::kAutoResolves_ResolveType:
break;
case GrVkRenderTarget::kCanResolve_ResolveType:
this->resolveRenderTargetNoFlush(rt);
break;
default:
SK_ABORT("Unknown resolve type");
}
srcImage = rt;
} else {
srcImage = static_cast<GrVkTexture*>(surface->asTexture());
}
// Set up copy region
VkBufferImageCopy region;
memset(&region, 0, sizeof(VkBufferImageCopy));
region.bufferOffset = offset;
region.bufferRowLength = width;
region.bufferImageHeight = 0;
region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
region.imageOffset = { left, top, 0 };
region.imageExtent = { (uint32_t)width, (uint32_t)height, 1 };
srcImage->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_ACCESS_TRANSFER_READ_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
fCurrentCmdBuffer->copyImageToBuffer(this, srcImage, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
vkBuffer, 1, &region);
// Make sure the copy to buffer has finished.
vkBuffer->addMemoryBarrier(this,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_ACCESS_HOST_READ_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_HOST_BIT,
false);
// The caller is responsible for syncing.
this->submitCommandBuffer(kSkip_SyncQueue);
return true;
}
void GrVkGpu::resolveImage(GrSurface* dst, GrVkRenderTarget* src, const SkIRect& srcRect,
const SkIPoint& dstPoint) {
SkASSERT(dst);
SkASSERT(src && src->numColorSamples() > 1 && src->msaaImage());
VkImageResolve resolveInfo;
resolveInfo.srcSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
resolveInfo.srcOffset = {srcRect.fLeft, srcRect.fTop, 0};
resolveInfo.dstSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
resolveInfo.dstOffset = {dstPoint.fX, dstPoint.fY, 0};
resolveInfo.extent = {(uint32_t)srcRect.width(), (uint32_t)srcRect.height(), 1};
GrVkImage* dstImage;
GrRenderTarget* dstRT = dst->asRenderTarget();
if (dstRT) {
GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(dstRT);
dstImage = vkRT;
} else {
SkASSERT(dst->asTexture());
dstImage = static_cast<GrVkTexture*>(dst->asTexture());
}
dstImage->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
src->msaaImage()->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_ACCESS_TRANSFER_READ_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
fCurrentCmdBuffer->resolveImage(this, *src->msaaImage(), *dstImage, 1, &resolveInfo);
}
void GrVkGpu::internalResolveRenderTarget(GrRenderTarget* target, bool requiresSubmit) {
if (target->needsResolve()) {
SkASSERT(target->numColorSamples() > 1);
GrVkRenderTarget* rt = static_cast<GrVkRenderTarget*>(target);
SkASSERT(rt->msaaImage());
const SkIRect& srcRect = rt->getResolveRect();
this->resolveImage(target, rt, srcRect, SkIPoint::Make(srcRect.fLeft, srcRect.fTop));
rt->flagAsResolved();
if (requiresSubmit) {
this->submitCommandBuffer(kSkip_SyncQueue);
}
}
}
bool GrVkGpu::uploadTexDataLinear(GrVkTexture* tex, int left, int top, int width, int height,
GrColorType dataColorType, const void* data, size_t rowBytes) {
SkASSERT(data);
SkASSERT(tex->isLinearTiled());
// If we're uploading compressed data then we should be using uploadCompressedTexData
SkASSERT(!GrPixelConfigIsCompressed(GrColorTypeToPixelConfig(dataColorType,
GrSRGBEncoded::kNo)));
SkDEBUGCODE(
SkIRect subRect = SkIRect::MakeXYWH(left, top, width, height);
SkIRect bounds = SkIRect::MakeWH(tex->width(), tex->height());
SkASSERT(bounds.contains(subRect));
)
int bpp = GrColorTypeBytesPerPixel(dataColorType);
size_t trimRowBytes = width * bpp;
if (!rowBytes) {
rowBytes = trimRowBytes;
}
SkASSERT(VK_IMAGE_LAYOUT_PREINITIALIZED == tex->currentLayout() ||
VK_IMAGE_LAYOUT_GENERAL == tex->currentLayout());
const VkImageSubresource subres = {
VK_IMAGE_ASPECT_COLOR_BIT,
0, // mipLevel
0, // arraySlice
};
VkSubresourceLayout layout;
const GrVkInterface* interface = this->vkInterface();
GR_VK_CALL(interface, GetImageSubresourceLayout(fDevice,
tex->image(),
&subres,
&layout));
const GrVkAlloc& alloc = tex->alloc();
VkDeviceSize offset = top * layout.rowPitch + left * bpp;
VkDeviceSize size = height*layout.rowPitch;
SkASSERT(size + offset <= alloc.fSize);
void* mapPtr = GrVkMemory::MapAlloc(this, alloc);
if (!mapPtr) {
return false;
}
mapPtr = reinterpret_cast<char*>(mapPtr) + offset;
SkRectMemcpy(mapPtr, static_cast<size_t>(layout.rowPitch), data, rowBytes, trimRowBytes,
height);
GrVkMemory::FlushMappedAlloc(this, alloc, offset, size);
GrVkMemory::UnmapAlloc(this, alloc);
return true;
}
bool GrVkGpu::uploadTexDataOptimal(GrVkTexture* tex, int left, int top, int width, int height,
GrColorType dataColorType, const GrMipLevel texels[],
int mipLevelCount) {
SkASSERT(!tex->isLinearTiled());
// The assumption is either that we have no mipmaps, or that our rect is the entire texture
SkASSERT(1 == mipLevelCount ||
(0 == left && 0 == top && width == tex->width() && height == tex->height()));
// We assume that if the texture has mip levels, we either upload to all the levels or just the
// first.
SkASSERT(1 == mipLevelCount || mipLevelCount == (tex->texturePriv().maxMipMapLevel() + 1));
// If we're uploading compressed data then we should be using uploadCompressedTexData
SkASSERT(!GrPixelConfigIsCompressed(GrColorTypeToPixelConfig(dataColorType,
GrSRGBEncoded::kNo)));
if (width == 0 || height == 0) {
return false;
}
if (GrPixelConfigToColorType(tex->config()) != dataColorType) {
return false;
}
// For RGB_888x src data we are uploading it first to an RGBA texture and then copying it to the
// dst RGB texture. Thus we do not upload mip levels for that.
if (dataColorType == GrColorType::kRGB_888x && tex->imageFormat() == VK_FORMAT_R8G8B8_UNORM) {
SkASSERT(tex->config() == kRGB_888_GrPixelConfig);
// First check that we'll be able to do the copy to the to the R8G8B8 image in the end via a
// blit or draw.
if (!this->vkCaps().configCanBeDstofBlit(kRGB_888_GrPixelConfig, tex->isLinearTiled()) &&
!this->vkCaps().maxRenderTargetSampleCount(kRGB_888_GrPixelConfig)) {
return false;
}
mipLevelCount = 1;
}
SkASSERT(this->caps()->isConfigTexturable(tex->config()));
int bpp = GrColorTypeBytesPerPixel(dataColorType);
// texels is const.
// But we may need to adjust the fPixels ptr based on the copyRect, or fRowBytes.
// Because of this we need to make a non-const shallow copy of texels.
SkAutoTMalloc<GrMipLevel> texelsShallowCopy;
texelsShallowCopy.reset(mipLevelCount);
memcpy(texelsShallowCopy.get(), texels, mipLevelCount*sizeof(GrMipLevel));
SkTArray<size_t> individualMipOffsets(mipLevelCount);
individualMipOffsets.push_back(0);
size_t combinedBufferSize = width * bpp * height;
int currentWidth = width;
int currentHeight = height;
if (!texelsShallowCopy[0].fPixels) {
combinedBufferSize = 0;
}
// The alignment must be at least 4 bytes and a multiple of the bytes per pixel of the image
// config. This works with the assumption that the bytes in pixel config is always a power of 2.
SkASSERT((bpp & (bpp - 1)) == 0);
const size_t alignmentMask = 0x3 | (bpp - 1);
for (int currentMipLevel = 1; currentMipLevel < mipLevelCount; currentMipLevel++) {
currentWidth = SkTMax(1, currentWidth/2);
currentHeight = SkTMax(1, currentHeight/2);
if (texelsShallowCopy[currentMipLevel].fPixels) {
const size_t trimmedSize = currentWidth * bpp * currentHeight;
const size_t alignmentDiff = combinedBufferSize & alignmentMask;
if (alignmentDiff != 0) {
combinedBufferSize += alignmentMask - alignmentDiff + 1;
}
individualMipOffsets.push_back(combinedBufferSize);
combinedBufferSize += trimmedSize;
} else {
individualMipOffsets.push_back(0);
}
}
if (0 == combinedBufferSize) {
// We don't actually have any data to upload so just return success
return true;
}
// allocate buffer to hold our mip data
sk_sp<GrVkTransferBuffer> transferBuffer =
GrVkTransferBuffer::Make(this, combinedBufferSize, GrVkBuffer::kCopyRead_Type);
if (!transferBuffer) {
return false;
}
int uploadLeft = left;
int uploadTop = top;
GrVkTexture* uploadTexture = tex;
// For uploading RGB_888x data to an R8G8B8_UNORM texture we must first upload the data to an
// R8G8B8A8_UNORM image and then copy it.
sk_sp<GrVkTexture> copyTexture;
if (dataColorType == GrColorType::kRGB_888x && tex->imageFormat() == VK_FORMAT_R8G8B8_UNORM) {
GrSurfaceDesc surfDesc;
surfDesc.fFlags = kRenderTarget_GrSurfaceFlag;
surfDesc.fWidth = width;
surfDesc.fHeight = height;
surfDesc.fConfig = kRGBA_8888_GrPixelConfig;
surfDesc.fSampleCnt = 1;
VkImageUsageFlags usageFlags = VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_TRANSFER_DST_BIT;
GrVkImage::ImageDesc imageDesc;
imageDesc.fImageType = VK_IMAGE_TYPE_2D;
imageDesc.fFormat = VK_FORMAT_R8G8B8A8_UNORM;
imageDesc.fWidth = width;
imageDesc.fHeight = height;
imageDesc.fLevels = 1;
imageDesc.fSamples = 1;
imageDesc.fImageTiling = VK_IMAGE_TILING_OPTIMAL;
imageDesc.fUsageFlags = usageFlags;
imageDesc.fMemProps = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
copyTexture = GrVkTexture::MakeNewTexture(this, SkBudgeted::kYes, surfDesc, imageDesc,
GrMipMapsStatus::kNotAllocated);
if (!copyTexture) {
return false;
}
uploadTexture = copyTexture.get();
uploadLeft = 0;
uploadTop = 0;
}
char* buffer = (char*) transferBuffer->map();
SkTArray<VkBufferImageCopy> regions(mipLevelCount);
currentWidth = width;
currentHeight = height;
int layerHeight = uploadTexture->height();
for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) {
if (texelsShallowCopy[currentMipLevel].fPixels) {
SkASSERT(1 == mipLevelCount || currentHeight == layerHeight);
const size_t trimRowBytes = currentWidth * bpp;
const size_t rowBytes = texelsShallowCopy[currentMipLevel].fRowBytes
? texelsShallowCopy[currentMipLevel].fRowBytes
: trimRowBytes;
// copy data into the buffer, skipping the trailing bytes
char* dst = buffer + individualMipOffsets[currentMipLevel];
const char* src = (const char*)texelsShallowCopy[currentMipLevel].fPixels;
SkRectMemcpy(dst, trimRowBytes, src, rowBytes, trimRowBytes, currentHeight);
VkBufferImageCopy& region = regions.push_back();
memset(&region, 0, sizeof(VkBufferImageCopy));
region.bufferOffset = transferBuffer->offset() + individualMipOffsets[currentMipLevel];
region.bufferRowLength = currentWidth;
region.bufferImageHeight = currentHeight;
region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, SkToU32(currentMipLevel), 0, 1 };
region.imageOffset = {uploadLeft, uploadTop, 0};
region.imageExtent = { (uint32_t)currentWidth, (uint32_t)currentHeight, 1 };
}
currentWidth = SkTMax(1, currentWidth/2);
currentHeight = SkTMax(1, currentHeight/2);
layerHeight = currentHeight;
}
// no need to flush non-coherent memory, unmap will do that for us
transferBuffer->unmap();
// Change layout of our target so it can be copied to
uploadTexture->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
// Copy the buffer to the image
fCurrentCmdBuffer->copyBufferToImage(this,
transferBuffer.get(),
uploadTexture,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
regions.count(),
regions.begin());
// If we copied the data into a temporary image first, copy that image into our main texture
// now.
if (copyTexture.get()) {
SkASSERT(dataColorType == GrColorType::kRGB_888x);
static const GrSurfaceOrigin kOrigin = kTopLeft_GrSurfaceOrigin;
SkAssertResult(this->copySurface(tex, kOrigin, copyTexture.get(), kOrigin,
SkIRect::MakeWH(width, height), SkIPoint::Make(left, top),
false));
}
if (1 == mipLevelCount) {
tex->texturePriv().markMipMapsDirty();
}
return true;
}
// It's probably possible to roll this into uploadTexDataOptimal,
// but for now it's easier to maintain as a separate entity.
bool GrVkGpu::uploadTexDataCompressed(GrVkTexture* tex, int left, int top, int width, int height,
GrColorType dataColorType, const GrMipLevel texels[],
int mipLevelCount) {
SkASSERT(!tex->isLinearTiled());
// For now the assumption is that our rect is the entire texture.
// Compressed textures are read-only so this should be a reasonable assumption.
SkASSERT(0 == left && 0 == top && width == tex->width() && height == tex->height());
// We assume that if the texture has mip levels, we either upload to all the levels or just the
// first.
SkASSERT(1 == mipLevelCount || mipLevelCount == (tex->texturePriv().maxMipMapLevel() + 1));
SkASSERT(GrPixelConfigIsCompressed(GrColorTypeToPixelConfig(dataColorType,
GrSRGBEncoded::kNo)));
if (width == 0 || height == 0) {
return false;
}
if (GrPixelConfigToColorType(tex->config()) != dataColorType) {
return false;
}
SkASSERT(this->caps()->isConfigTexturable(tex->config()));
SkTArray<size_t> individualMipOffsets(mipLevelCount);
individualMipOffsets.push_back(0);
size_t combinedBufferSize = GrCompressedFormatDataSize(tex->config(), width, height);
int currentWidth = width;
int currentHeight = height;
if (!texels[0].fPixels) {
return false;
}
// We assume that the alignment for any compressed format is at least 4 bytes and so we don't
// need to worry about alignment issues. For example, each block in ETC1 is 8 bytes.
for (int currentMipLevel = 1; currentMipLevel < mipLevelCount; currentMipLevel++) {
currentWidth = SkTMax(1, currentWidth / 2);
currentHeight = SkTMax(1, currentHeight / 2);
if (texels[currentMipLevel].fPixels) {
const size_t dataSize = GrCompressedFormatDataSize(tex->config(), currentWidth,
currentHeight);
individualMipOffsets.push_back(combinedBufferSize);
combinedBufferSize += dataSize;
} else {
return false;
}
}
if (0 == combinedBufferSize) {
// We don't have any data to upload so fail (compressed textures are read-only).
return false;
}
// allocate buffer to hold our mip data
sk_sp<GrVkTransferBuffer> transferBuffer =
GrVkTransferBuffer::Make(this, combinedBufferSize, GrVkBuffer::kCopyRead_Type);
if (!transferBuffer) {
return false;
}
int uploadLeft = left;
int uploadTop = top;
GrVkTexture* uploadTexture = tex;
char* buffer = (char*)transferBuffer->map();
SkTArray<VkBufferImageCopy> regions(mipLevelCount);
currentWidth = width;
currentHeight = height;
int layerHeight = uploadTexture->height();
for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) {
if (texels[currentMipLevel].fPixels) {
// Again, we're assuming that our rect is the entire texture
SkASSERT(currentHeight == layerHeight);
SkASSERT(0 == uploadLeft && 0 == uploadTop);
const size_t dataSize = GrCompressedFormatDataSize(tex->config(), currentWidth,
currentHeight);
// copy data into the buffer, skipping the trailing bytes
char* dst = buffer + individualMipOffsets[currentMipLevel];
const char* src = (const char*)texels[currentMipLevel].fPixels;
memcpy(dst, src, dataSize);
VkBufferImageCopy& region = regions.push_back();
memset(&region, 0, sizeof(VkBufferImageCopy));
region.bufferOffset = transferBuffer->offset() + individualMipOffsets[currentMipLevel];
region.bufferRowLength = currentWidth;
region.bufferImageHeight = currentHeight;
region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, SkToU32(currentMipLevel), 0, 1 };
region.imageOffset = { uploadLeft, uploadTop, 0 };
region.imageExtent = { (uint32_t)currentWidth, (uint32_t)currentHeight, 1 };
}
currentWidth = SkTMax(1, currentWidth / 2);
currentHeight = SkTMax(1, currentHeight / 2);
layerHeight = currentHeight;
}
// no need to flush non-coherent memory, unmap will do that for us
transferBuffer->unmap();
// Change layout of our target so it can be copied to
uploadTexture->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
// Copy the buffer to the image
fCurrentCmdBuffer->copyBufferToImage(this,
transferBuffer.get(),
uploadTexture,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
regions.count(),
regions.begin());
if (1 == mipLevelCount) {
tex->texturePriv().markMipMapsDirty();
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
sk_sp<GrTexture> GrVkGpu::onCreateTexture(const GrSurfaceDesc& desc, SkBudgeted budgeted,
const GrMipLevel texels[], int mipLevelCount) {
bool renderTarget = SkToBool(desc.fFlags & kRenderTarget_GrSurfaceFlag);
VkFormat pixelFormat;
SkAssertResult(GrPixelConfigToVkFormat(desc.fConfig, &pixelFormat));
VkImageUsageFlags usageFlags = VK_IMAGE_USAGE_SAMPLED_BIT;
if (renderTarget) {
usageFlags |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
}
// For now we will set the VK_IMAGE_USAGE_TRANSFER_DESTINATION_BIT and
// VK_IMAGE_USAGE_TRANSFER_SOURCE_BIT on every texture since we do not know whether or not we
// will be using this texture in some copy or not. Also this assumes, as is the current case,
// that all render targets in vulkan are also textures. If we change this practice of setting
// both bits, we must make sure to set the destination bit if we are uploading srcData to the
// texture.
usageFlags |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
// This ImageDesc refers to the texture that will be read by the client. Thus even if msaa is
// requested, this ImageDesc describes the resolved texture. Therefore we always have samples set
// to 1.
int mipLevels = !mipLevelCount ? 1 : mipLevelCount;
GrVkImage::ImageDesc imageDesc;
imageDesc.fImageType = VK_IMAGE_TYPE_2D;
imageDesc.fFormat = pixelFormat;
imageDesc.fWidth = desc.fWidth;
imageDesc.fHeight = desc.fHeight;
imageDesc.fLevels = mipLevels;
imageDesc.fSamples = 1;
imageDesc.fImageTiling = VK_IMAGE_TILING_OPTIMAL;
imageDesc.fUsageFlags = usageFlags;
imageDesc.fMemProps = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
GrMipMapsStatus mipMapsStatus = GrMipMapsStatus::kNotAllocated;
if (mipLevels > 1) {
mipMapsStatus = GrMipMapsStatus::kValid;
for (int i = 0; i < mipLevels; ++i) {
if (!texels[i].fPixels) {
mipMapsStatus = GrMipMapsStatus::kDirty;
break;
}
}
}
sk_sp<GrVkTexture> tex;
if (renderTarget) {
tex = GrVkTextureRenderTarget::MakeNewTextureRenderTarget(this, budgeted, desc,
imageDesc,
mipMapsStatus);
} else {
tex = GrVkTexture::MakeNewTexture(this, budgeted, desc, imageDesc, mipMapsStatus);
}
if (!tex) {
return nullptr;
}
bool isCompressed = GrPixelConfigIsCompressed(desc.fConfig);
auto colorType = GrPixelConfigToColorType(desc.fConfig);
if (mipLevelCount) {
bool success;
if (isCompressed) {
success = this->uploadTexDataCompressed(tex.get(), 0, 0, desc.fWidth, desc.fHeight,
colorType, texels, mipLevelCount);
} else {
success = this->uploadTexDataOptimal(tex.get(), 0, 0, desc.fWidth, desc.fHeight,
colorType, texels, mipLevelCount);
}
if (!success) {
tex->unref();
return nullptr;
}
}
if (SkToBool(desc.fFlags & kPerformInitialClear_GrSurfaceFlag) && !isCompressed) {
VkClearColorValue zeroClearColor;
memset(&zeroClearColor, 0, sizeof(zeroClearColor));
VkImageSubresourceRange range;
range.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
range.baseArrayLayer = 0;
range.baseMipLevel = 0;
range.layerCount = 1;
range.levelCount = 1;
tex->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false);
this->currentCommandBuffer()->clearColorImage(this, tex.get(), &zeroClearColor, 1, &range);
}
return std::move(tex);
}
////////////////////////////////////////////////////////////////////////////////
void GrVkGpu::copyBuffer(GrVkBuffer* srcBuffer, GrVkBuffer* dstBuffer, VkDeviceSize srcOffset,
VkDeviceSize dstOffset, VkDeviceSize size) {
VkBufferCopy copyRegion;
copyRegion.srcOffset = srcOffset;
copyRegion.dstOffset = dstOffset;
copyRegion.size = size;
fCurrentCmdBuffer->copyBuffer(this, srcBuffer, dstBuffer, 1, &copyRegion);
}
bool GrVkGpu::updateBuffer(GrVkBuffer* buffer, const void* src,
VkDeviceSize offset, VkDeviceSize size) {
// Update the buffer
fCurrentCmdBuffer->updateBuffer(this, buffer, offset, size, src);
return true;
}
////////////////////////////////////////////////////////////////////////////////
static bool check_image_info(const GrVkCaps& caps,
const GrVkImageInfo& info,
GrPixelConfig config,
bool isWrappedRT) {
if (VK_NULL_HANDLE == info.fImage) {
return false;
}
if (VK_NULL_HANDLE == info.fAlloc.fMemory && !isWrappedRT) {
return false;
}
if (info.fYcbcrConversionInfo.isValid()) {
if (!caps.supportsYcbcrConversion() || info.fFormat != VK_NULL_HANDLE) {
return false;
}
}
if (info.fImageLayout == VK_IMAGE_LAYOUT_PRESENT_SRC_KHR && !caps.supportsSwapchain()) {
return false;
}
SkASSERT(GrVkFormatPixelConfigPairIsValid(info.fFormat, config));
return true;
}
sk_sp<GrTexture> GrVkGpu::onWrapBackendTexture(const GrBackendTexture& backendTex,
GrWrapOwnership ownership, GrWrapCacheable cacheable,
GrIOType ioType) {
GrVkImageInfo imageInfo;
if (!backendTex.getVkImageInfo(&imageInfo)) {
return nullptr;
}
if (!check_image_info(this->vkCaps(), imageInfo, backendTex.config(), false)) {
return nullptr;
}
GrSurfaceDesc surfDesc;
surfDesc.fFlags = kNone_GrSurfaceFlags;
surfDesc.fWidth = backendTex.width();
surfDesc.fHeight = backendTex.height();
surfDesc.fConfig = backendTex.config();
surfDesc.fSampleCnt = 1;
sk_sp<GrVkImageLayout> layout = backendTex.getGrVkImageLayout();
SkASSERT(layout);
return GrVkTexture::MakeWrappedTexture(this, surfDesc, ownership, cacheable, ioType, imageInfo,
std::move(layout));
}
sk_sp<GrTexture> GrVkGpu::onWrapRenderableBackendTexture(const GrBackendTexture& backendTex,
int sampleCnt,
GrWrapOwnership ownership,
GrWrapCacheable cacheable) {
GrVkImageInfo imageInfo;
if (!backendTex.getVkImageInfo(&imageInfo)) {
return nullptr;
}
if (!check_image_info(this->vkCaps(), imageInfo, backendTex.config(), false)) {
return nullptr;
}
GrSurfaceDesc surfDesc;
surfDesc.fFlags = kRenderTarget_GrSurfaceFlag;
surfDesc.fWidth = backendTex.width();
surfDesc.fHeight = backendTex.height();
surfDesc.fConfig = backendTex.config();
surfDesc.fSampleCnt = this->caps()->getRenderTargetSampleCount(sampleCnt, backendTex.config());
sk_sp<GrVkImageLayout> layout = backendTex.getGrVkImageLayout();
SkASSERT(layout);
return GrVkTextureRenderTarget::MakeWrappedTextureRenderTarget(
this, surfDesc, ownership, cacheable, imageInfo, std::move(layout));
}
sk_sp<GrRenderTarget> GrVkGpu::onWrapBackendRenderTarget(const GrBackendRenderTarget& backendRT){
// Currently the Vulkan backend does not support wrapping of msaa render targets directly. In
// general this is not an issue since swapchain images in vulkan are never multisampled. Thus if
// you want a multisampled RT it is best to wrap the swapchain images and then let Skia handle
// creating and owning the MSAA images.
if (backendRT.sampleCnt() > 1) {
return nullptr;
}
GrVkImageInfo info;
if (!backendRT.getVkImageInfo(&info)) {
return nullptr;
}
if (!check_image_info(this->vkCaps(), info, backendRT.config(), true)) {
return nullptr;
}
GrSurfaceDesc desc;
desc.fFlags = kRenderTarget_GrSurfaceFlag;
desc.fWidth = backendRT.width();
desc.fHeight = backendRT.height();
desc.fConfig = backendRT.config();
desc.fSampleCnt = 1;
sk_sp<GrVkImageLayout> layout = backendRT.getGrVkImageLayout();
sk_sp<GrVkRenderTarget> tgt = GrVkRenderTarget::MakeWrappedRenderTarget(this, desc, info,
std::move(layout));
// We don't allow the client to supply a premade stencil buffer. We always create one if needed.
SkASSERT(!backendRT.stencilBits());
if (tgt) {
SkASSERT(tgt->canAttemptStencilAttachment());
}
return std::move(tgt);
}
sk_sp<GrRenderTarget> GrVkGpu::onWrapBackendTextureAsRenderTarget(const GrBackendTexture& tex,
int sampleCnt) {
GrVkImageInfo imageInfo;
if (!tex.getVkImageInfo(&imageInfo)) {
return nullptr;
}
if (!check_image_info(this->vkCaps(), imageInfo, tex.config(), false)) {
return nullptr;
}
GrSurfaceDesc desc;
desc.fFlags = kRenderTarget_GrSurfaceFlag;
desc.fWidth = tex.width();
desc.fHeight = tex.height();
desc.fConfig = tex.config();
desc.fSampleCnt = this->caps()->getRenderTargetSampleCount(sampleCnt, tex.config());
if (!desc.fSampleCnt) {
return nullptr;
}
sk_sp<GrVkImageLayout> layout = tex.getGrVkImageLayout();
SkASSERT(layout);
return GrVkRenderTarget::MakeWrappedRenderTarget(this, desc, imageInfo, std::move(layout));
}
sk_sp<GrRenderTarget> GrVkGpu::onWrapVulkanSecondaryCBAsRenderTarget(
const SkImageInfo& imageInfo, const GrVkDrawableInfo& vkInfo) {
int maxSize = this->caps()->maxTextureSize();
if (imageInfo.width() > maxSize || imageInfo.height() > maxSize) {
return nullptr;
}
GrBackendFormat backendFormat = GrBackendFormat::MakeVk(vkInfo.fFormat);
if (!backendFormat.isValid()) {
return nullptr;
}
GrPixelConfig config = this->caps()->getConfigFromBackendFormat(backendFormat,
imageInfo.colorType());
if (config == kUnknown_GrPixelConfig) {
return nullptr;
}
GrSurfaceDesc desc;
desc.fFlags = kRenderTarget_GrSurfaceFlag;
desc.fWidth = imageInfo.width();
desc.fHeight = imageInfo.height();
desc.fConfig = config;
desc.fSampleCnt = this->caps()->getRenderTargetSampleCount(1, config);
if (!desc.fSampleCnt) {
return nullptr;
}
return GrVkRenderTarget::MakeSecondaryCBRenderTarget(this, desc, vkInfo);
}
bool GrVkGpu::onRegenerateMipMapLevels(GrTexture* tex) {
auto* vkTex = static_cast<GrVkTexture*>(tex);
// don't do anything for linearly tiled textures (can't have mipmaps)
if (vkTex->isLinearTiled()) {
SkDebugf("Trying to create mipmap for linear tiled texture");
return false;
}
// determine if we can blit to and from this format
const GrVkCaps& caps = this->vkCaps();
if (!caps.configCanBeDstofBlit(tex->config(), false) ||
!caps.configCanBeSrcofBlit(tex->config(), false) ||
!caps.mipMapSupport()) {
return false;
}
int width = tex->width();
int height = tex->height();
VkImageBlit blitRegion;
memset(&blitRegion, 0, sizeof(VkImageBlit));
// SkMipMap doesn't include the base level in the level count so we have to add 1
uint32_t levelCount = SkMipMap::ComputeLevelCount(tex->width(), tex->height()) + 1;
SkASSERT(levelCount == vkTex->mipLevels());
// change layout of the layers so we can write to them.
vkTex->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT, false);
// setup memory barrier
SkASSERT(GrVkFormatIsSupported(vkTex->imageFormat()));
VkImageAspectFlags aspectFlags = VK_IMAGE_ASPECT_COLOR_BIT;
VkImageMemoryBarrier imageMemoryBarrier = {
VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // sType
nullptr, // pNext
VK_ACCESS_TRANSFER_WRITE_BIT, // srcAccessMask
VK_ACCESS_TRANSFER_READ_BIT, // dstAccessMask
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, // oldLayout
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, // newLayout
VK_QUEUE_FAMILY_IGNORED, // srcQueueFamilyIndex
VK_QUEUE_FAMILY_IGNORED, // dstQueueFamilyIndex
vkTex->image(), // image
{aspectFlags, 0, 1, 0, 1} // subresourceRange
};
// Blit the miplevels
uint32_t mipLevel = 1;
while (mipLevel < levelCount) {
int prevWidth = width;
int prevHeight = height;
width = SkTMax(1, width / 2);
height = SkTMax(1, height / 2);
imageMemoryBarrier.subresourceRange.baseMipLevel = mipLevel - 1;
this->addImageMemoryBarrier(vkTex->resource(), VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT, false, &imageMemoryBarrier);
blitRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, mipLevel - 1, 0, 1 };
blitRegion.srcOffsets[0] = { 0, 0, 0 };
blitRegion.srcOffsets[1] = { prevWidth, prevHeight, 1 };
blitRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, mipLevel, 0, 1 };
blitRegion.dstOffsets[0] = { 0, 0, 0 };
blitRegion.dstOffsets[1] = { width, height, 1 };
fCurrentCmdBuffer->blitImage(this,
vkTex->resource(),
vkTex->image(),
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
vkTex->resource(),
vkTex->image(),
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&blitRegion,
VK_FILTER_LINEAR);
++mipLevel;
}
if (levelCount > 1) {
// This barrier logically is not needed, but it changes the final level to the same layout
// as all the others, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL. This makes tracking of the
// layouts and future layout changes easier. The alternative here would be to track layout
// and memory accesses per layer which doesn't seem work it.
imageMemoryBarrier.subresourceRange.baseMipLevel = mipLevel - 1;
this->addImageMemoryBarrier(vkTex->resource(), VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT, false, &imageMemoryBarrier);
vkTex->updateImageLayout(VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
GrStencilAttachment* GrVkGpu::createStencilAttachmentForRenderTarget(const GrRenderTarget* rt,
int width,
int height) {
SkASSERT(width >= rt->width());
SkASSERT(height >= rt->height());
int samples = rt->numStencilSamples();
const GrVkCaps::StencilFormat& sFmt = this->vkCaps().preferredStencilFormat();
GrVkStencilAttachment* stencil(GrVkStencilAttachment::Create(this,
width,
height,
samples,
sFmt));
fStats.incStencilAttachmentCreates();
return stencil;
}
////////////////////////////////////////////////////////////////////////////////
bool copy_testing_data(GrVkGpu* gpu, const void* srcData, const GrVkAlloc& alloc,
size_t bufferOffset, size_t srcRowBytes, size_t dstRowBytes,
size_t trimRowBytes, int h) {
VkDeviceSize size = dstRowBytes * h;
VkDeviceSize offset = bufferOffset;
SkASSERT(size + offset <= alloc.fSize);
void* mapPtr = GrVkMemory::MapAlloc(gpu, alloc);
if (!mapPtr) {
return false;
}
mapPtr = reinterpret_cast<char*>(mapPtr) + offset;
if (srcData) {
// If there is no padding on dst we can do a single memcopy.
// This assumes the srcData comes in with no padding.
SkRectMemcpy(mapPtr, dstRowBytes, srcData, srcRowBytes, trimRowBytes, h);
} else {
// If there is no srcdata we always copy 0's into the textures so that it is initialized
// with some data.
memset(mapPtr, 0, dstRowBytes * h);
}
GrVkMemory::FlushMappedAlloc(gpu, alloc, offset, size);
GrVkMemory::UnmapAlloc(gpu, alloc);
return true;
}
#if GR_TEST_UTILS
bool GrVkGpu::createTestingOnlyVkImage(GrPixelConfig config, int w, int h, bool texturable,
bool renderable, GrMipMapped mipMapped, const void* srcData,
size_t srcRowBytes, GrVkImageInfo* info) {
SkASSERT(texturable || renderable);
if (!texturable) {
SkASSERT(GrMipMapped::kNo == mipMapped);
SkASSERT(!srcData);
}
VkFormat pixelFormat;
if (!GrPixelConfigToVkFormat(config, &pixelFormat)) {
return false;
}
if (texturable && !fVkCaps->isConfigTexturable(config)) {
return false;
}
if (renderable && !fVkCaps->isConfigRenderable(config)) {
return false;
}
// Currently we don't support uploading pixel data when mipped.
if (srcData && GrMipMapped::kYes == mipMapped) {
return false;
}
VkImageUsageFlags usageFlags = 0;
usageFlags |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
usageFlags |= VK_IMAGE_USAGE_TRANSFER_DST_BIT;
if (texturable) {
usageFlags |= VK_IMAGE_USAGE_SAMPLED_BIT;
}
if (renderable) {
usageFlags |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
}
VkImage image = VK_NULL_HANDLE;
GrVkAlloc alloc;
VkImageLayout initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
// Create Image
VkSampleCountFlagBits vkSamples;
if (!GrSampleCountToVkSampleCount(1, &vkSamples)) {
return false;
}
// Figure out the number of mip levels.
uint32_t mipLevels = 1;
if (GrMipMapped::kYes == mipMapped) {
mipLevels = SkMipMap::ComputeLevelCount(w, h) + 1;
}
const VkImageCreateInfo imageCreateInfo = {
VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, // sType
nullptr, // pNext
0, // VkImageCreateFlags
VK_IMAGE_TYPE_2D, // VkImageType
pixelFormat, // VkFormat
{(uint32_t)w, (uint32_t)h, 1}, // VkExtent3D
mipLevels, // mipLevels
1, // arrayLayers
vkSamples, // samples
VK_IMAGE_TILING_OPTIMAL, // VkImageTiling
usageFlags, // VkImageUsageFlags
VK_SHARING_MODE_EXCLUSIVE, // VkSharingMode
0, // queueFamilyCount
0, // pQueueFamilyIndices
initialLayout // initialLayout
};
GR_VK_CALL_ERRCHECK(this->vkInterface(),
CreateImage(this->device(), &imageCreateInfo, nullptr, &image));
if (!GrVkMemory::AllocAndBindImageMemory(this, image, false, &alloc)) {
VK_CALL(DestroyImage(this->device(), image, nullptr));
return false;
}
// We need to declare these early so that we can delete them at the end outside of the if block.
GrVkAlloc bufferAlloc;
VkBuffer buffer = VK_NULL_HANDLE;
VkResult err;
const VkCommandBufferAllocateInfo cmdInfo = {
VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, // sType
nullptr, // pNext
fCmdPool->vkCommandPool(), // commandPool
VK_COMMAND_BUFFER_LEVEL_PRIMARY, // level
1 // bufferCount
};
VkCommandBuffer cmdBuffer;
err = VK_CALL(AllocateCommandBuffers(fDevice, &cmdInfo, &cmdBuffer));
if (err) {
GrVkMemory::FreeImageMemory(this, false, alloc);
VK_CALL(DestroyImage(fDevice, image, nullptr));
return false;
}
VkCommandBufferBeginInfo cmdBufferBeginInfo;
memset(&cmdBufferBeginInfo, 0, sizeof(VkCommandBufferBeginInfo));
cmdBufferBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
cmdBufferBeginInfo.pNext = nullptr;
cmdBufferBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
cmdBufferBeginInfo.pInheritanceInfo = nullptr;
err = VK_CALL(BeginCommandBuffer(cmdBuffer, &cmdBufferBeginInfo));
SkASSERT(!err);
size_t bpp = GrBytesPerPixel(config);
SkASSERT(w && h);
const size_t trimRowBytes = w * bpp;
if (!srcRowBytes) {
srcRowBytes = trimRowBytes;
}
SkTArray<size_t> individualMipOffsets(mipLevels);
individualMipOffsets.push_back(0);
size_t combinedBufferSize = w * bpp * h;
if (GrPixelConfigIsCompressed(config)) {
combinedBufferSize = GrCompressedFormatDataSize(config, w, h);
bpp = 4; // we have at least this alignment, which will pass the code below
}
int currentWidth = w;
int currentHeight = h;
// The alignment must be at least 4 bytes and a multiple of the bytes per pixel of the image
// config. This works with the assumption that the bytes in pixel config is always a power
// of 2.
SkASSERT((bpp & (bpp - 1)) == 0);
const size_t alignmentMask = 0x3 | (bpp - 1);
for (uint32_t currentMipLevel = 1; currentMipLevel < mipLevels; currentMipLevel++) {
currentWidth = SkTMax(1, currentWidth / 2);
currentHeight = SkTMax(1, currentHeight / 2);
size_t trimmedSize;
if (GrPixelConfigIsCompressed(config)) {
trimmedSize = GrCompressedFormatDataSize(config, currentWidth, currentHeight);
} else {
trimmedSize = currentWidth * bpp * currentHeight;
}
const size_t alignmentDiff = combinedBufferSize & alignmentMask;
if (alignmentDiff != 0) {
combinedBufferSize += alignmentMask - alignmentDiff + 1;
}
individualMipOffsets.push_back(combinedBufferSize);
combinedBufferSize += trimmedSize;
}
VkBufferCreateInfo bufInfo;
memset(&bufInfo, 0, sizeof(VkBufferCreateInfo));
bufInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufInfo.flags = 0;
bufInfo.size = combinedBufferSize;
bufInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
bufInfo.queueFamilyIndexCount = 0;
bufInfo.pQueueFamilyIndices = nullptr;
err = VK_CALL(CreateBuffer(fDevice, &bufInfo, nullptr, &buffer));
if (err) {
GrVkMemory::FreeImageMemory(this, false, alloc);
VK_CALL(DestroyImage(fDevice, image, nullptr));
VK_CALL(EndCommandBuffer(cmdBuffer));
VK_CALL(FreeCommandBuffers(fDevice, fCmdPool->vkCommandPool(), 1, &cmdBuffer));
return false;
}
if (!GrVkMemory::AllocAndBindBufferMemory(this, buffer, GrVkBuffer::kCopyRead_Type, true,
&bufferAlloc)) {
GrVkMemory::FreeImageMemory(this, false, alloc);
VK_CALL(DestroyImage(fDevice, image, nullptr));
VK_CALL(DestroyBuffer(fDevice, buffer, nullptr));
VK_CALL(EndCommandBuffer(cmdBuffer));
VK_CALL(FreeCommandBuffers(fDevice, fCmdPool->vkCommandPool(), 1, &cmdBuffer));
return false;
}
currentWidth = w;
currentHeight = h;
for (uint32_t currentMipLevel = 0; currentMipLevel < mipLevels; currentMipLevel++) {
SkASSERT(0 == currentMipLevel || !srcData);
size_t bufferOffset = individualMipOffsets[currentMipLevel];
bool result;
if (GrPixelConfigIsCompressed(config)) {
size_t levelSize = GrCompressedFormatDataSize(config, currentWidth, currentHeight);
size_t currentRowBytes = levelSize / currentHeight;
result = copy_testing_data(this, srcData, bufferAlloc, bufferOffset, currentRowBytes,
currentRowBytes, currentRowBytes, currentHeight);
} else {
size_t currentRowBytes = bpp * currentWidth;
result = copy_testing_data(this, srcData, bufferAlloc, bufferOffset, srcRowBytes,
currentRowBytes, trimRowBytes, currentHeight);
}
if (!result) {
GrVkMemory::FreeImageMemory(this, false, alloc);
VK_CALL(DestroyImage(fDevice, image, nullptr));
GrVkMemory::FreeBufferMemory(this, GrVkBuffer::kCopyRead_Type, bufferAlloc);
VK_CALL(DestroyBuffer(fDevice, buffer, nullptr));
VK_CALL(EndCommandBuffer(cmdBuffer));
VK_CALL(FreeCommandBuffers(fDevice, fCmdPool->vkCommandPool(), 1, &cmdBuffer));
return false;
}
currentWidth = SkTMax(1, currentWidth / 2);
currentHeight = SkTMax(1, currentHeight / 2);
}
// Set image layout and add barrier
VkImageMemoryBarrier barrier;
memset(&barrier, 0, sizeof(VkImageMemoryBarrier));
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.pNext = nullptr;
barrier.srcAccessMask = GrVkImage::LayoutToSrcAccessMask(initialLayout);
barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barrier.oldLayout = initialLayout;
barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.image = image;
barrier.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, mipLevels, 0, 1};
VK_CALL(CmdPipelineBarrier(cmdBuffer, GrVkImage::LayoutToPipelineSrcStageFlags(initialLayout),
VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, 1,
&barrier));
initialLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
SkTArray<VkBufferImageCopy> regions(mipLevels);
currentWidth = w;
currentHeight = h;
for (uint32_t currentMipLevel = 0; currentMipLevel < mipLevels; currentMipLevel++) {
// Submit copy command
VkBufferImageCopy& region = regions.push_back();
memset(&region, 0, sizeof(VkBufferImageCopy));
region.bufferOffset = individualMipOffsets[currentMipLevel];
region.bufferRowLength = currentWidth;
region.bufferImageHeight = currentHeight;
region.imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
region.imageOffset = {0, 0, 0};
region.imageExtent = {(uint32_t)currentWidth, (uint32_t)currentHeight, 1};
currentWidth = SkTMax(1, currentWidth / 2);
currentHeight = SkTMax(1, currentHeight / 2);
}
VK_CALL(CmdCopyBufferToImage(cmdBuffer, buffer, image, initialLayout, regions.count(),
regions.begin()));
if (texturable) {
// Change Image layout to shader read since if we use this texture as a borrowed textures
// within Ganesh we require that its layout be set to that
memset(&barrier, 0, sizeof(VkImageMemoryBarrier));
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.pNext = nullptr;
barrier.srcAccessMask = GrVkImage::LayoutToSrcAccessMask(initialLayout);
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
barrier.oldLayout = initialLayout;
barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.image = image;
barrier.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, mipLevels, 0, 1};
VK_CALL(CmdPipelineBarrier(cmdBuffer,
GrVkImage::LayoutToPipelineSrcStageFlags(initialLayout),
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
0,
0, nullptr,
0, nullptr,
1, &barrier));
initialLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
}
// End CommandBuffer
err = VK_CALL(EndCommandBuffer(cmdBuffer));
SkASSERT(!err);
// Create Fence for queue
VkFence fence;
VkFenceCreateInfo fenceInfo;
memset(&fenceInfo, 0, sizeof(VkFenceCreateInfo));
fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
err = VK_CALL(CreateFence(fDevice, &fenceInfo, nullptr, &fence));
SkASSERT(!err);
VkSubmitInfo submitInfo;
memset(&submitInfo, 0, sizeof(VkSubmitInfo));
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.pNext = nullptr;
submitInfo.waitSemaphoreCount = 0;
submitInfo.pWaitSemaphores = nullptr;
submitInfo.pWaitDstStageMask = 0;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &cmdBuffer;
submitInfo.signalSemaphoreCount = 0;
submitInfo.pSignalSemaphores = nullptr;
err = VK_CALL(QueueSubmit(this->queue(), 1, &submitInfo, fence));
SkASSERT(!err);
err = VK_CALL(WaitForFences(fDevice, 1, &fence, true, UINT64_MAX));
if (VK_TIMEOUT == err) {
GrVkMemory::FreeImageMemory(this, false, alloc);
VK_CALL(DestroyImage(fDevice, image, nullptr));
GrVkMemory::FreeBufferMemory(this, GrVkBuffer::kCopyRead_Type, bufferAlloc);
VK_CALL(DestroyBuffer(fDevice, buffer, nullptr));
VK_CALL(FreeCommandBuffers(fDevice, fCmdPool->vkCommandPool(), 1, &cmdBuffer));
VK_CALL(DestroyFence(fDevice, fence, nullptr));
SkDebugf("Fence failed to signal: %d\n", err);
SK_ABORT("failing");
}
SkASSERT(!err);
// Clean up transfer resources
if (buffer != VK_NULL_HANDLE) { // workaround for an older NVidia driver crash
GrVkMemory::FreeBufferMemory(this, GrVkBuffer::kCopyRead_Type, bufferAlloc);
VK_CALL(DestroyBuffer(fDevice, buffer, nullptr));
}
VK_CALL(FreeCommandBuffers(fDevice, fCmdPool->vkCommandPool(), 1, &cmdBuffer));
VK_CALL(DestroyFence(fDevice, fence, nullptr));
info->fImage = image;
info->fAlloc = alloc;
info->fImageTiling = VK_IMAGE_TILING_OPTIMAL;
info->fImageLayout = initialLayout;
info->fFormat = pixelFormat;
info->fLevelCount = mipLevels;
return true;
}
GrBackendTexture GrVkGpu::createTestingOnlyBackendTexture(const void* srcData, int w, int h,
GrColorType colorType,
bool isRenderTarget,
GrMipMapped mipMapped, size_t rowBytes) {
this->handleDirtyContext();
if (w > this->caps()->maxTextureSize() || h > this->caps()->maxTextureSize()) {
return GrBackendTexture();
}
GrPixelConfig config = GrColorTypeToPixelConfig(colorType, GrSRGBEncoded::kNo);
if (!this->caps()->isConfigTexturable(config)) {
return GrBackendTexture();
}
GrVkImageInfo info;
if (!this->createTestingOnlyVkImage(config, w, h, true, isRenderTarget, mipMapped, srcData,
rowBytes, &info)) {
return {};
}
GrBackendTexture beTex = GrBackendTexture(w, h, info);
// Lots of tests don't go through Skia's public interface which will set the config so for
// testing we make sure we set a config here.
beTex.setPixelConfig(config);
return beTex;
}
bool GrVkGpu::isTestingOnlyBackendTexture(const GrBackendTexture& tex) const {
SkASSERT(GrBackendApi::kVulkan == tex.fBackend);
GrVkImageInfo backend;
if (!tex.getVkImageInfo(&backend)) {
return false;
}
if (backend.fImage && backend.fAlloc.fMemory) {
VkMemoryRequirements req;
memset(&req, 0, sizeof(req));
GR_VK_CALL(this->vkInterface(), GetImageMemoryRequirements(fDevice,
backend.fImage,
&req));
// TODO: find a better check
// This will probably fail with a different driver
return (req.size > 0) && (req.size <= 8192 * 8192);
}
return false;
}
void GrVkGpu::deleteTestingOnlyBackendTexture(const GrBackendTexture& tex) {
SkASSERT(GrBackendApi::kVulkan == tex.fBackend);
GrVkImageInfo info;
if (tex.getVkImageInfo(&info)) {
GrVkImage::DestroyImageInfo(this, const_cast<GrVkImageInfo*>(&info));
}
}
GrBackendRenderTarget GrVkGpu::createTestingOnlyBackendRenderTarget(int w, int h, GrColorType ct) {
if (w > this->caps()->maxRenderTargetSize() || h > this->caps()->maxRenderTargetSize()) {
return GrBackendRenderTarget();
}
this->handleDirtyContext();
GrVkImageInfo info;
auto config = GrColorTypeToPixelConfig(ct, GrSRGBEncoded::kNo);
if (kUnknown_GrPixelConfig == config) {
return {};
}
if (!this->createTestingOnlyVkImage(config, w, h, false, true, GrMipMapped::kNo, nullptr, 0,
&info)) {
return {};
}
GrBackendRenderTarget beRT = GrBackendRenderTarget(w, h, 1, 0, info);
// Lots of tests don't go through Skia's public interface which will set the config so for
// testing we make sure we set a config here.
beRT.setPixelConfig(config);
return beRT;
}
void GrVkGpu::deleteTestingOnlyBackendRenderTarget(const GrBackendRenderTarget& rt) {
SkASSERT(GrBackendApi::kVulkan == rt.fBackend);
GrVkImageInfo info;
if (rt.getVkImageInfo(&info)) {
// something in the command buffer may still be using this, so force submit
this->submitCommandBuffer(kForce_SyncQueue);
GrVkImage::DestroyImageInfo(this, const_cast<GrVkImageInfo*>(&info));
}
}
void GrVkGpu::testingOnly_flushGpuAndSync() {
this->submitCommandBuffer(kForce_SyncQueue);
}
#endif
////////////////////////////////////////////////////////////////////////////////
void GrVkGpu::addBufferMemoryBarrier(const GrVkResource* resource,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
bool byRegion,
VkBufferMemoryBarrier* barrier) const {
SkASSERT(fCurrentCmdBuffer);
SkASSERT(resource);
fCurrentCmdBuffer->pipelineBarrier(this,
resource,
srcStageMask,
dstStageMask,
byRegion,
GrVkCommandBuffer::kBufferMemory_BarrierType,
barrier);
}
void GrVkGpu::addImageMemoryBarrier(const GrVkResource* resource,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask,
bool byRegion,
VkImageMemoryBarrier* barrier) const {
SkASSERT(fCurrentCmdBuffer);
SkASSERT(resource);
fCurrentCmdBuffer->pipelineBarrier(this,
resource,
srcStageMask,
dstStageMask,
byRegion,
GrVkCommandBuffer::kImageMemory_BarrierType,
barrier);
}
void GrVkGpu::onFinishFlush(GrSurfaceProxy* proxy, SkSurface::BackendSurfaceAccess access,
GrFlushFlags flags, bool insertedSemaphore,
GrGpuFinishedProc finishedProc, GrGpuFinishedContext finishedContext) {
// Submit the current command buffer to the Queue. Whether we inserted semaphores or not does
// not effect what we do here.
if (proxy && access == SkSurface::BackendSurfaceAccess::kPresent) {
GrVkImage* image;
SkASSERT(proxy->isInstantiated());
if (GrTexture* tex = proxy->peekTexture()) {
image = static_cast<GrVkTexture*>(tex);
} else {
GrRenderTarget* rt = proxy->peekRenderTarget();
SkASSERT(rt);
image = static_cast<GrVkRenderTarget*>(rt);
}
image->prepareForPresent(this);
}
if (flags & kSyncCpu_GrFlushFlag) {
this->submitCommandBuffer(kForce_SyncQueue, finishedProc, finishedContext);
} else {
this->submitCommandBuffer(kSkip_SyncQueue, finishedProc, finishedContext);
}
}
static int get_surface_sample_cnt(GrSurface* surf) {
if (const GrRenderTarget* rt = surf->asRenderTarget()) {
return rt->numColorSamples();
}
return 0;
}
void GrVkGpu::copySurfaceAsCopyImage(GrSurface* dst, GrSurfaceOrigin dstOrigin,
GrSurface* src, GrSurfaceOrigin srcOrigin,
GrVkImage* dstImage,
GrVkImage* srcImage,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
#ifdef SK_DEBUG
int dstSampleCnt = get_surface_sample_cnt(dst);
int srcSampleCnt = get_surface_sample_cnt(src);
bool dstHasYcbcr = dstImage->ycbcrConversionInfo().isValid();
bool srcHasYcbcr = srcImage->ycbcrConversionInfo().isValid();
SkASSERT(this->vkCaps().canCopyImage(dst->config(), dstSampleCnt, dstOrigin, dstHasYcbcr,
src->config(), srcSampleCnt, srcOrigin, srcHasYcbcr));
#endif
// These flags are for flushing/invalidating caches and for the dst image it doesn't matter if
// the cache is flushed since it is only being written to.
dstImage->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
srcImage->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_ACCESS_TRANSFER_READ_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
// Flip rect if necessary
SkIRect srcVkRect = srcRect;
int32_t dstY = dstPoint.fY;
if (kBottomLeft_GrSurfaceOrigin == srcOrigin) {
SkASSERT(kBottomLeft_GrSurfaceOrigin == dstOrigin);
srcVkRect.fTop = src->height() - srcRect.fBottom;
srcVkRect.fBottom = src->height() - srcRect.fTop;
dstY = dst->height() - dstPoint.fY - srcVkRect.height();
}
VkImageCopy copyRegion;
memset(&copyRegion, 0, sizeof(VkImageCopy));
copyRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
copyRegion.srcOffset = { srcVkRect.fLeft, srcVkRect.fTop, 0 };
copyRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
copyRegion.dstOffset = { dstPoint.fX, dstY, 0 };
copyRegion.extent = { (uint32_t)srcVkRect.width(), (uint32_t)srcVkRect.height(), 1 };
fCurrentCmdBuffer->copyImage(this,
srcImage,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
dstImage,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&copyRegion);
SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY,
srcRect.width(), srcRect.height());
this->didWriteToSurface(dst, dstOrigin, &dstRect);
}
void GrVkGpu::copySurfaceAsBlit(GrSurface* dst, GrSurfaceOrigin dstOrigin,
GrSurface* src, GrSurfaceOrigin srcOrigin,
GrVkImage* dstImage,
GrVkImage* srcImage,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
#ifdef SK_DEBUG
int dstSampleCnt = get_surface_sample_cnt(dst);
int srcSampleCnt = get_surface_sample_cnt(src);
bool dstHasYcbcr = dstImage->ycbcrConversionInfo().isValid();
bool srcHasYcbcr = srcImage->ycbcrConversionInfo().isValid();
SkASSERT(this->vkCaps().canCopyAsBlit(dst->config(), dstSampleCnt, dstImage->isLinearTiled(),
dstHasYcbcr, src->config(), srcSampleCnt,
srcImage->isLinearTiled(), srcHasYcbcr));
#endif
dstImage->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
srcImage->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_ACCESS_TRANSFER_READ_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
// Flip rect if necessary
SkIRect srcVkRect;
srcVkRect.fLeft = srcRect.fLeft;
srcVkRect.fRight = srcRect.fRight;
SkIRect dstRect;
dstRect.fLeft = dstPoint.fX;
dstRect.fRight = dstPoint.fX + srcRect.width();
if (kBottomLeft_GrSurfaceOrigin == srcOrigin) {
srcVkRect.fTop = src->height() - srcRect.fBottom;
srcVkRect.fBottom = src->height() - srcRect.fTop;
} else {
srcVkRect.fTop = srcRect.fTop;
srcVkRect.fBottom = srcRect.fBottom;
}
if (kBottomLeft_GrSurfaceOrigin == dstOrigin) {
dstRect.fTop = dst->height() - dstPoint.fY - srcVkRect.height();
} else {
dstRect.fTop = dstPoint.fY;
}
dstRect.fBottom = dstRect.fTop + srcVkRect.height();
// If we have different origins, we need to flip the top and bottom of the dst rect so that we
// get the correct origintation of the copied data.
if (srcOrigin != dstOrigin) {
using std::swap;
swap(dstRect.fTop, dstRect.fBottom);
}
VkImageBlit blitRegion;
memset(&blitRegion, 0, sizeof(VkImageBlit));
blitRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
blitRegion.srcOffsets[0] = { srcVkRect.fLeft, srcVkRect.fTop, 0 };
blitRegion.srcOffsets[1] = { srcVkRect.fRight, srcVkRect.fBottom, 1 };
blitRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
blitRegion.dstOffsets[0] = { dstRect.fLeft, dstRect.fTop, 0 };
blitRegion.dstOffsets[1] = { dstRect.fRight, dstRect.fBottom, 1 };
fCurrentCmdBuffer->blitImage(this,
*srcImage,
*dstImage,
1,
&blitRegion,
VK_FILTER_NEAREST); // We never scale so any filter works here
dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, srcRect.width(), srcRect.height());
this->didWriteToSurface(dst, dstOrigin, &dstRect);
}
void GrVkGpu::copySurfaceAsResolve(GrSurface* dst, GrSurfaceOrigin dstOrigin, GrSurface* src,
GrSurfaceOrigin srcOrigin, const SkIRect& origSrcRect,
const SkIPoint& origDstPoint) {
GrVkRenderTarget* srcRT = static_cast<GrVkRenderTarget*>(src->asRenderTarget());
SkIRect srcRect = origSrcRect;
SkIPoint dstPoint = origDstPoint;
if (kBottomLeft_GrSurfaceOrigin == srcOrigin) {
SkASSERT(kBottomLeft_GrSurfaceOrigin == dstOrigin);
srcRect = {origSrcRect.fLeft, src->height() - origSrcRect.fBottom,
origSrcRect.fRight, src->height() - origSrcRect.fTop};
dstPoint.fY = dst->height() - dstPoint.fY - srcRect.height();
}
this->resolveImage(dst, srcRT, srcRect, dstPoint);
SkIRect dstRect = SkIRect::MakeXYWH(origDstPoint.fX, origDstPoint.fY,
srcRect.width(), srcRect.height());
this->didWriteToSurface(dst, dstOrigin, &dstRect);
}
bool GrVkGpu::onCopySurface(GrSurface* dst, GrSurfaceOrigin dstOrigin,
GrSurface* src, GrSurfaceOrigin srcOrigin,
const SkIRect& srcRect, const SkIPoint& dstPoint,
bool canDiscardOutsideDstRect) {
#ifdef SK_DEBUG
if (GrVkRenderTarget* srcRT = static_cast<GrVkRenderTarget*>(src->asRenderTarget())) {
SkASSERT(!srcRT->wrapsSecondaryCommandBuffer());
}
if (GrVkRenderTarget* dstRT = static_cast<GrVkRenderTarget*>(dst->asRenderTarget())) {
SkASSERT(!dstRT->wrapsSecondaryCommandBuffer());
}
#endif
GrPixelConfig dstConfig = dst->config();
GrPixelConfig srcConfig = src->config();
int dstSampleCnt = get_surface_sample_cnt(dst);
int srcSampleCnt = get_surface_sample_cnt(src);
GrVkImage* dstImage;
GrVkImage* srcImage;
GrRenderTarget* dstRT = dst->asRenderTarget();
if (dstRT) {
GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(dstRT);
if (vkRT->wrapsSecondaryCommandBuffer()) {
return false;
}
dstImage = vkRT->numColorSamples() > 1 ? vkRT->msaaImage() : vkRT;
} else {
SkASSERT(dst->asTexture());
dstImage = static_cast<GrVkTexture*>(dst->asTexture());
}
GrRenderTarget* srcRT = src->asRenderTarget();
if (srcRT) {
GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(srcRT);
srcImage = vkRT->numColorSamples() > 1 ? vkRT->msaaImage() : vkRT;
} else {
SkASSERT(src->asTexture());
srcImage = static_cast<GrVkTexture*>(src->asTexture());
}
bool dstHasYcbcr = dstImage->ycbcrConversionInfo().isValid();
bool srcHasYcbcr = srcImage->ycbcrConversionInfo().isValid();
if (this->vkCaps().canCopyAsResolve(dstConfig, dstSampleCnt, dstOrigin, dstHasYcbcr,
srcConfig, srcSampleCnt, srcOrigin, srcHasYcbcr)) {
this->copySurfaceAsResolve(dst, dstOrigin, src, srcOrigin, srcRect, dstPoint);
return true;
}
if (this->vkCaps().canCopyAsDraw(dstConfig, SkToBool(dst->asRenderTarget()), dstHasYcbcr,
srcConfig, SkToBool(src->asTexture()), srcHasYcbcr)) {
SkAssertResult(fCopyManager.copySurfaceAsDraw(this, dst, dstOrigin, src, srcOrigin, srcRect,
dstPoint, canDiscardOutsideDstRect));
auto dstRect = srcRect.makeOffset(dstPoint.fX, dstPoint.fY);
this->didWriteToSurface(dst, dstOrigin, &dstRect);
return true;
}
if (this->vkCaps().canCopyImage(dstConfig, dstSampleCnt, dstOrigin, dstHasYcbcr,
srcConfig, srcSampleCnt, srcOrigin, srcHasYcbcr)) {
this->copySurfaceAsCopyImage(dst, dstOrigin, src, srcOrigin, dstImage, srcImage,
srcRect, dstPoint);
return true;
}
if (this->vkCaps().canCopyAsBlit(dstConfig, dstSampleCnt, dstImage->isLinearTiled(),
dstHasYcbcr, srcConfig, srcSampleCnt,
srcImage->isLinearTiled(), srcHasYcbcr)) {
this->copySurfaceAsBlit(dst, dstOrigin, src, srcOrigin, dstImage, srcImage,
srcRect, dstPoint);
return true;
}
return false;
}
bool GrVkGpu::onReadPixels(GrSurface* surface, int left, int top, int width, int height,
GrColorType dstColorType, void* buffer, size_t rowBytes) {
if (GrPixelConfigToColorType(surface->config()) != dstColorType) {
return false;
}
GrVkImage* image = nullptr;
GrVkRenderTarget* rt = static_cast<GrVkRenderTarget*>(surface->asRenderTarget());
if (rt) {
// Reading from render targets that wrap a secondary command buffer is not allowed since
// it would require us to know the VkImage, which we don't have, as well as need us to
// stop and start the VkRenderPass which we don't have access to.
if (rt->wrapsSecondaryCommandBuffer()) {
return false;
}
// resolve the render target if necessary
switch (rt->getResolveType()) {
case GrVkRenderTarget::kCantResolve_ResolveType:
return false;
case GrVkRenderTarget::kAutoResolves_ResolveType:
break;
case GrVkRenderTarget::kCanResolve_ResolveType:
this->resolveRenderTargetNoFlush(rt);
break;
default:
SK_ABORT("Unknown resolve type");
}
image = rt;
} else {
image = static_cast<GrVkTexture*>(surface->asTexture());
}
if (!image) {
return false;
}
// Skia's RGB_888x color type, which we map to the vulkan R8G8B8_UNORM, expects the data to be
// 32 bits, but the Vulkan format is only 24. So we first copy the surface into an R8G8B8A8
// image and then do the read pixels from that.
sk_sp<GrVkTextureRenderTarget> copySurface;
if (dstColorType == GrColorType::kRGB_888x && image->imageFormat() == VK_FORMAT_R8G8B8_UNORM) {
SkASSERT(surface->config() == kRGB_888_GrPixelConfig);
// Make a new surface that is RGBA to copy the RGB surface into.
GrSurfaceDesc surfDesc;
surfDesc.fFlags = kRenderTarget_GrSurfaceFlag;
surfDesc.fWidth = width;
surfDesc.fHeight = height;
surfDesc.fConfig = kRGBA_8888_GrPixelConfig;
surfDesc.fSampleCnt = 1;
VkImageUsageFlags usageFlags = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_TRANSFER_DST_BIT;
GrVkImage::ImageDesc imageDesc;
imageDesc.fImageType = VK_IMAGE_TYPE_2D;
imageDesc.fFormat = VK_FORMAT_R8G8B8A8_UNORM;
imageDesc.fWidth = width;
imageDesc.fHeight = height;
imageDesc.fLevels = 1;
imageDesc.fSamples = 1;
imageDesc.fImageTiling = VK_IMAGE_TILING_OPTIMAL;
imageDesc.fUsageFlags = usageFlags;
imageDesc.fMemProps = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
copySurface = GrVkTextureRenderTarget::MakeNewTextureRenderTarget(
this, SkBudgeted::kYes, surfDesc, imageDesc, GrMipMapsStatus::kNotAllocated);
if (!copySurface) {
return false;
}
int srcSampleCount = 0;
if (rt) {
srcSampleCount = rt->numColorSamples();
}
bool srcHasYcbcr = image->ycbcrConversionInfo().isValid();
static const GrSurfaceOrigin kOrigin = kTopLeft_GrSurfaceOrigin;
if (!this->vkCaps().canCopyAsBlit(copySurface->config(), 1, kOrigin, false,
surface->config(), srcSampleCount, kOrigin,
srcHasYcbcr) &&
!this->vkCaps().canCopyAsDraw(copySurface->config(), false, false,
surface->config(), SkToBool(surface->asTexture()),
srcHasYcbcr)) {
return false;
}
SkIRect srcRect = SkIRect::MakeXYWH(left, top, width, height);
if (!this->copySurface(copySurface.get(), kOrigin, surface, kOrigin,
srcRect, SkIPoint::Make(0,0))) {
return false;
}
top = 0;
left = 0;
dstColorType = GrColorType::kRGBA_8888;
image = copySurface.get();
}
// Change layout of our target so it can be used as copy
image->setImageLayout(this,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_ACCESS_TRANSFER_READ_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
false);
int bpp = GrColorTypeBytesPerPixel(dstColorType);
size_t tightRowBytes = bpp * width;
VkBufferImageCopy region;
memset(&region, 0, sizeof(VkBufferImageCopy));
bool copyFromOrigin = this->vkCaps().mustDoCopiesFromOrigin();
if (copyFromOrigin) {
region.imageOffset = { 0, 0, 0 };
region.imageExtent = { (uint32_t)(left + width), (uint32_t)(top + height), 1 };
} else {
VkOffset3D offset = { left, top, 0 };
region.imageOffset = offset;
region.imageExtent = { (uint32_t)width, (uint32_t)height, 1 };
}
size_t transBufferRowBytes = bpp * region.imageExtent.width;
size_t imageRows = region.imageExtent.height;
auto transferBuffer = sk_sp<GrVkTransferBuffer>(
static_cast<GrVkTransferBuffer*>(this->createBuffer(transBufferRowBytes * imageRows,
GrGpuBufferType::kXferGpuToCpu,
kStream_GrAccessPattern)
.release()));
// Copy the image to a buffer so we can map it to cpu memory
region.bufferOffset = transferBuffer->offset();
region.bufferRowLength = 0; // Forces RowLength to be width. We handle the rowBytes below.
region.bufferImageHeight = 0; // Forces height to be tightly packed. Only useful for 3d images.
region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 };
fCurrentCmdBuffer->copyImageToBuffer(this,
image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
transferBuffer.get(),
1,
&region);
// make sure the copy to buffer has finished
transferBuffer->addMemoryBarrier(this,
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_ACCESS_HOST_READ_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_HOST_BIT,
false);
// We need to submit the current command buffer to the Queue and make sure it finishes before
// we can copy the data out of the buffer.
this->submitCommandBuffer(kForce_SyncQueue);
void* mappedMemory = transferBuffer->map();
const GrVkAlloc& transAlloc = transferBuffer->alloc();
GrVkMemory::InvalidateMappedAlloc(this, transAlloc, 0, transAlloc.fSize);
if (copyFromOrigin) {
uint32_t skipRows = region.imageExtent.height - height;
mappedMemory = (char*)mappedMemory + transBufferRowBytes * skipRows + bpp * left;
}
SkRectMemcpy(buffer, rowBytes, mappedMemory, transBufferRowBytes, tightRowBytes, height);
transferBuffer->unmap();
return true;
}
// The RenderArea bounds we pass into BeginRenderPass must have a start x value that is a multiple
// of the granularity. The width must also be a multiple of the granularity or eaqual to the width
// the the entire attachment. Similar requirements for the y and height components.
void adjust_bounds_to_granularity(SkIRect* dstBounds, const SkIRect& srcBounds,
const VkExtent2D& granularity, int maxWidth, int maxHeight) {
// Adjust Width
if ((0 != granularity.width && 1 != granularity.width)) {
// Start with the right side of rect so we know if we end up going pass the maxWidth.
int rightAdj = srcBounds.fRight % granularity.width;
if (rightAdj != 0) {
rightAdj = granularity.width - rightAdj;
}
dstBounds->fRight = srcBounds.fRight + rightAdj;
if (dstBounds->fRight > maxWidth) {
dstBounds->fRight = maxWidth;
dstBounds->fLeft = 0;
} else {
dstBounds->fLeft = srcBounds.fLeft - srcBounds.fLeft % granularity.width;
}
} else {
dstBounds->fLeft = srcBounds.fLeft;
dstBounds->fRight = srcBounds.fRight;
}
// Adjust height
if ((0 != granularity.height && 1 != granularity.height)) {
// Start with the bottom side of rect so we know if we end up going pass the maxHeight.
int bottomAdj = srcBounds.fBottom % granularity.height;
if (bottomAdj != 0) {
bottomAdj = granularity.height - bottomAdj;
}
dstBounds->fBottom = srcBounds.fBottom + bottomAdj;
if (dstBounds->fBottom > maxHeight) {
dstBounds->fBottom = maxHeight;
dstBounds->fTop = 0;
} else {
dstBounds->fTop = srcBounds.fTop - srcBounds.fTop % granularity.height;
}
} else {
dstBounds->fTop = srcBounds.fTop;
dstBounds->fBottom = srcBounds.fBottom;
}
}
void GrVkGpu::submitSecondaryCommandBuffer(const SkTArray<GrVkSecondaryCommandBuffer*>& buffers,
const GrVkRenderPass* renderPass,
const VkClearValue* colorClear,
GrVkRenderTarget* target, GrSurfaceOrigin origin,
const SkIRect& bounds) {
SkASSERT (!target->wrapsSecondaryCommandBuffer());
const SkIRect* pBounds = &bounds;
SkIRect flippedBounds;
if (kBottomLeft_GrSurfaceOrigin == origin) {
flippedBounds = bounds;
flippedBounds.fTop = target->height() - bounds.fBottom;
flippedBounds.fBottom = target->height() - bounds.fTop;
pBounds = &flippedBounds;
}
// The bounds we use for the render pass should be of the granularity supported
// by the device.
const VkExtent2D& granularity = renderPass->granularity();
SkIRect adjustedBounds;
if ((0 != granularity.width && 1 != granularity.width) ||
(0 != granularity.height && 1 != granularity.height)) {
adjust_bounds_to_granularity(&adjustedBounds, *pBounds, granularity,
target->width(), target->height());
pBounds = &adjustedBounds;
}
#ifdef SK_DEBUG
uint32_t index;
bool result = renderPass->colorAttachmentIndex(&index);
SkASSERT(result && 0 == index);
result = renderPass->stencilAttachmentIndex(&index);
if (result) {
SkASSERT(1 == index);
}
#endif
VkClearValue clears[2];
clears[0].color = colorClear->color;
clears[1].depthStencil.depth = 0.0f;
clears[1].depthStencil.stencil = 0;
fCurrentCmdBuffer->beginRenderPass(this, renderPass, clears, *target, *pBounds, true);
for (int i = 0; i < buffers.count(); ++i) {
fCurrentCmdBuffer->executeCommands(this, buffers[i]);
}
fCurrentCmdBuffer->endRenderPass(this);
this->didWriteToSurface(target, origin, &bounds);
}
void GrVkGpu::submit(GrGpuCommandBuffer* buffer) {
if (buffer->asRTCommandBuffer()) {
SkASSERT(fCachedRTCommandBuffer.get() == buffer);
fCachedRTCommandBuffer->submit();
fCachedRTCommandBuffer->reset();
} else {
SkASSERT(fCachedTexCommandBuffer.get() == buffer);
fCachedTexCommandBuffer->submit();
fCachedTexCommandBuffer->reset();
}
}
GrFence SK_WARN_UNUSED_RESULT GrVkGpu::insertFence() {
VkFenceCreateInfo createInfo;
memset(&createInfo, 0, sizeof(VkFenceCreateInfo));
createInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
createInfo.pNext = nullptr;
createInfo.flags = 0;
VkFence fence = VK_NULL_HANDLE;
VK_CALL_ERRCHECK(CreateFence(this->device(), &createInfo, nullptr, &fence));
VK_CALL(QueueSubmit(this->queue(), 0, nullptr, fence));
GR_STATIC_ASSERT(sizeof(GrFence) >= sizeof(VkFence));
return (GrFence)fence;
}
bool GrVkGpu::waitFence(GrFence fence, uint64_t timeout) {
SkASSERT(VK_NULL_HANDLE != (VkFence)fence);
VkResult result = VK_CALL(WaitForFences(this->device(), 1, (VkFence*)&fence, VK_TRUE, timeout));
return (VK_SUCCESS == result);
}
void GrVkGpu::deleteFence(GrFence fence) const {
VK_CALL(DestroyFence(this->device(), (VkFence)fence, nullptr));
}
sk_sp<GrSemaphore> SK_WARN_UNUSED_RESULT GrVkGpu::makeSemaphore(bool isOwned) {
return GrVkSemaphore::Make(this, isOwned);
}
sk_sp<GrSemaphore> GrVkGpu::wrapBackendSemaphore(const GrBackendSemaphore& semaphore,
GrResourceProvider::SemaphoreWrapType wrapType,
GrWrapOwnership ownership) {
return GrVkSemaphore::MakeWrapped(this, semaphore.vkSemaphore(), wrapType, ownership);
}
void GrVkGpu::insertSemaphore(sk_sp<GrSemaphore> semaphore) {
GrVkSemaphore* vkSem = static_cast<GrVkSemaphore*>(semaphore.get());
GrVkSemaphore::Resource* resource = vkSem->getResource();
if (resource->shouldSignal()) {
resource->ref();
fSemaphoresToSignal.push_back(resource);
}
}
void GrVkGpu::waitSemaphore(sk_sp<GrSemaphore> semaphore) {
GrVkSemaphore* vkSem = static_cast<GrVkSemaphore*>(semaphore.get());
GrVkSemaphore::Resource* resource = vkSem->getResource();
if (resource->shouldWait()) {
resource->ref();
fSemaphoresToWaitOn.push_back(resource);
}
}
sk_sp<GrSemaphore> GrVkGpu::prepareTextureForCrossContextUsage(GrTexture* texture) {
SkASSERT(texture);
GrVkTexture* vkTexture = static_cast<GrVkTexture*>(texture);
vkTexture->setImageLayout(this,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_ACCESS_SHADER_READ_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
false);
this->submitCommandBuffer(kSkip_SyncQueue);
// The image layout change serves as a barrier, so no semaphore is needed
return nullptr;
}
void GrVkGpu::addDrawable(std::unique_ptr<SkDrawable::GpuDrawHandler> drawable) {
fDrawables.emplace_back(std::move(drawable));
}
uint32_t GrVkGpu::getExtraSamplerKeyForProgram(const GrSamplerState& samplerState,
const GrBackendFormat& format) {
const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
SkASSERT(ycbcrInfo);
if (!ycbcrInfo->isValid()) {
return 0;
}
const GrVkSampler* sampler = this->resourceProvider().findOrCreateCompatibleSampler(
samplerState, *ycbcrInfo);
return sampler->uniqueID();
}
void GrVkGpu::storeVkPipelineCacheData() {
if (this->getContext()->priv().getPersistentCache()) {
this->resourceProvider().storePipelineCacheData();
}
}