blob: 5b612beaa1e9939ae1edb4d4f890c212a22b0647 [file] [log] [blame]
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrCCPerFlushResources.h"
#include "GrClip.h"
#include "GrMemoryPool.h"
#include "GrOnFlushResourceProvider.h"
#include "GrRecordingContext.h"
#include "GrRecordingContextPriv.h"
#include "GrRenderTargetContext.h"
#include "GrShape.h"
#include "GrSurfaceContextPriv.h"
#include "SkMakeUnique.h"
#include "ccpr/GrCCPathCache.h"
#include "ccpr/GrGSCoverageProcessor.h"
#include "ccpr/GrVSCoverageProcessor.h"
using FillBatchID = GrCCFiller::BatchID;
using StrokeBatchID = GrCCStroker::BatchID;
using PathInstance = GrCCPathProcessor::Instance;
static constexpr int kFillIdx = GrCCPerFlushResourceSpecs::kFillIdx;
static constexpr int kStrokeIdx = GrCCPerFlushResourceSpecs::kStrokeIdx;
namespace {
// Base class for an Op that renders a CCPR atlas.
class AtlasOp : public GrDrawOp {
public:
FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; }
GrProcessorSet::Analysis finalize(
const GrCaps&, const GrAppliedClip*, GrFSAAType, GrClampType) override {
return GrProcessorSet::EmptySetAnalysis();
}
CombineResult onCombineIfPossible(GrOp* other, const GrCaps&) override {
// We will only make multiple copy ops if they have different source proxies.
// TODO: make use of texture chaining.
return CombineResult::kCannotCombine;
}
void onPrepare(GrOpFlushState*) override {}
protected:
AtlasOp(uint32_t classID, sk_sp<const GrCCPerFlushResources> resources,
const SkISize& drawBounds)
: GrDrawOp(classID)
, fResources(std::move(resources)) {
this->setBounds(SkRect::MakeIWH(drawBounds.width(), drawBounds.height()),
GrOp::HasAABloat::kNo, GrOp::IsZeroArea::kNo);
}
const sk_sp<const GrCCPerFlushResources> fResources;
};
// Copies paths from a cached coverage count atlas into an 8-bit literal-coverage atlas.
class CopyAtlasOp : public AtlasOp {
public:
DEFINE_OP_CLASS_ID
static std::unique_ptr<GrDrawOp> Make(GrRecordingContext* context,
sk_sp<const GrCCPerFlushResources> resources,
sk_sp<GrTextureProxy> copyProxy, int baseInstance,
int endInstance, const SkISize& drawBounds) {
GrOpMemoryPool* pool = context->priv().opMemoryPool();
return pool->allocate<CopyAtlasOp>(std::move(resources), std::move(copyProxy),
baseInstance, endInstance, drawBounds);
}
const char* name() const override { return "CopyAtlasOp (CCPR)"; }
void visitProxies(const VisitProxyFunc& fn, VisitorType) const override { fn(fSrcProxy.get()); }
void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override {
SkASSERT(fSrcProxy);
GrPipeline::FixedDynamicState dynamicState;
auto srcProxy = fSrcProxy.get();
dynamicState.fPrimitiveProcessorTextures = &srcProxy;
GrPipeline pipeline(GrScissorTest::kDisabled, SkBlendMode::kSrc);
GrCCPathProcessor pathProc(srcProxy);
pathProc.drawPaths(flushState, pipeline, &dynamicState, *fResources, fBaseInstance,
fEndInstance, this->bounds());
}
private:
friend class ::GrOpMemoryPool; // for ctor
CopyAtlasOp(sk_sp<const GrCCPerFlushResources> resources, sk_sp<GrTextureProxy> srcProxy,
int baseInstance, int endInstance, const SkISize& drawBounds)
: AtlasOp(ClassID(), std::move(resources), drawBounds)
, fSrcProxy(srcProxy)
, fBaseInstance(baseInstance)
, fEndInstance(endInstance) {
}
sk_sp<GrTextureProxy> fSrcProxy;
const int fBaseInstance;
const int fEndInstance;
};
// Renders coverage counts to a CCPR atlas using the resources' pre-filled GrCCPathParser.
template<typename ProcessorType> class RenderAtlasOp : public AtlasOp {
public:
DEFINE_OP_CLASS_ID
static std::unique_ptr<GrDrawOp> Make(GrRecordingContext* context,
sk_sp<const GrCCPerFlushResources> resources,
FillBatchID fillBatchID, StrokeBatchID strokeBatchID,
const SkISize& drawBounds) {
GrOpMemoryPool* pool = context->priv().opMemoryPool();
return pool->allocate<RenderAtlasOp>(std::move(resources), fillBatchID, strokeBatchID,
drawBounds);
}
// GrDrawOp interface.
const char* name() const override { return "RenderAtlasOp (CCPR)"; }
void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override {
ProcessorType proc;
fResources->filler().drawFills(flushState, &proc, fFillBatchID, fDrawBounds);
fResources->stroker().drawStrokes(flushState, &proc, fStrokeBatchID, fDrawBounds);
}
private:
friend class ::GrOpMemoryPool; // for ctor
RenderAtlasOp(sk_sp<const GrCCPerFlushResources> resources, FillBatchID fillBatchID,
StrokeBatchID strokeBatchID, const SkISize& drawBounds)
: AtlasOp(ClassID(), std::move(resources), drawBounds)
, fFillBatchID(fillBatchID)
, fStrokeBatchID(strokeBatchID)
, fDrawBounds(SkIRect::MakeWH(drawBounds.width(), drawBounds.height())) {
}
const FillBatchID fFillBatchID;
const StrokeBatchID fStrokeBatchID;
const SkIRect fDrawBounds;
};
}
static int inst_buffer_count(const GrCCPerFlushResourceSpecs& specs) {
return specs.fNumCachedPaths +
// Copies get two instances per draw: 1 copy + 1 draw.
(specs.fNumCopiedPaths[kFillIdx] + specs.fNumCopiedPaths[kStrokeIdx]) * 2 +
specs.fNumRenderedPaths[kFillIdx] + specs.fNumRenderedPaths[kStrokeIdx];
// No clips in instance buffers.
}
GrCCPerFlushResources::GrCCPerFlushResources(GrOnFlushResourceProvider* onFlushRP,
const GrCCPerFlushResourceSpecs& specs)
// Overallocate by one point so we can call Sk4f::Store at the final SkPoint in the array.
// (See transform_path_pts below.)
// FIXME: instead use built-in instructions to write only the first two lanes of an Sk4f.
: fLocalDevPtsBuffer(SkTMax(specs.fRenderedPathStats[kFillIdx].fMaxPointsPerPath,
specs.fRenderedPathStats[kStrokeIdx].fMaxPointsPerPath) + 1)
, fFiller(specs.fNumRenderedPaths[kFillIdx] + specs.fNumClipPaths,
specs.fRenderedPathStats[kFillIdx].fNumTotalSkPoints,
specs.fRenderedPathStats[kFillIdx].fNumTotalSkVerbs,
specs.fRenderedPathStats[kFillIdx].fNumTotalConicWeights)
, fStroker(specs.fNumRenderedPaths[kStrokeIdx],
specs.fRenderedPathStats[kStrokeIdx].fNumTotalSkPoints,
specs.fRenderedPathStats[kStrokeIdx].fNumTotalSkVerbs)
, fCopyAtlasStack(GrCCAtlas::CoverageType::kA8_LiteralCoverage, specs.fCopyAtlasSpecs,
onFlushRP->caps())
, fRenderedAtlasStack(GrCCAtlas::CoverageType::kFP16_CoverageCount,
specs.fRenderedAtlasSpecs, onFlushRP->caps())
, fIndexBuffer(GrCCPathProcessor::FindIndexBuffer(onFlushRP))
, fVertexBuffer(GrCCPathProcessor::FindVertexBuffer(onFlushRP))
, fInstanceBuffer(onFlushRP->makeBuffer(GrGpuBufferType::kVertex,
inst_buffer_count(specs) * sizeof(PathInstance)))
, fNextCopyInstanceIdx(0)
, fNextPathInstanceIdx(specs.fNumCopiedPaths[kFillIdx] +
specs.fNumCopiedPaths[kStrokeIdx]) {
if (!fIndexBuffer) {
SkDebugf("WARNING: failed to allocate CCPR index buffer. No paths will be drawn.\n");
return;
}
if (!fVertexBuffer) {
SkDebugf("WARNING: failed to allocate CCPR vertex buffer. No paths will be drawn.\n");
return;
}
if (!fInstanceBuffer) {
SkDebugf("WARNING: failed to allocate CCPR instance buffer. No paths will be drawn.\n");
return;
}
fPathInstanceData = static_cast<PathInstance*>(fInstanceBuffer->map());
SkASSERT(fPathInstanceData);
SkDEBUGCODE(fEndCopyInstance =
specs.fNumCopiedPaths[kFillIdx] + specs.fNumCopiedPaths[kStrokeIdx]);
SkDEBUGCODE(fEndPathInstance = inst_buffer_count(specs));
}
void GrCCPerFlushResources::upgradeEntryToLiteralCoverageAtlas(
GrCCPathCache* pathCache, GrOnFlushResourceProvider* onFlushRP, GrCCPathCacheEntry* entry,
GrCCPathProcessor::DoEvenOddFill evenOdd) {
using ReleaseAtlasResult = GrCCPathCacheEntry::ReleaseAtlasResult;
SkASSERT(this->isMapped());
SkASSERT(fNextCopyInstanceIdx < fEndCopyInstance);
const GrCCCachedAtlas* cachedAtlas = entry->cachedAtlas();
SkASSERT(cachedAtlas);
SkASSERT(cachedAtlas->getOnFlushProxy());
if (GrCCAtlas::CoverageType::kA8_LiteralCoverage == cachedAtlas->coverageType()) {
// This entry has already been upgraded to literal coverage. The path must have been drawn
// multiple times during the flush.
SkDEBUGCODE(--fEndCopyInstance);
return;
}
SkIVector newAtlasOffset;
if (GrCCAtlas* retiredAtlas = fCopyAtlasStack.addRect(entry->devIBounds(), &newAtlasOffset)) {
// We did not fit in the previous copy atlas and it was retired. We will render the ranges
// up until fCopyPathRanges.count() into the retired atlas during finalize().
retiredAtlas->setFillBatchID(fCopyPathRanges.count());
fCurrCopyAtlasRangesIdx = fCopyPathRanges.count();
}
this->recordCopyPathInstance(*entry, newAtlasOffset, evenOdd,
sk_ref_sp(cachedAtlas->getOnFlushProxy()));
sk_sp<GrTexture> previousAtlasTexture =
sk_ref_sp(cachedAtlas->getOnFlushProxy()->peekTexture());
GrCCAtlas* newAtlas = &fCopyAtlasStack.current();
if (ReleaseAtlasResult::kDidInvalidateFromCache ==
entry->upgradeToLiteralCoverageAtlas(pathCache, onFlushRP, newAtlas, newAtlasOffset)) {
// This texture just got booted out of the cache. Keep it around, in case we might be able
// to recycle it for a new atlas. We can recycle it because copying happens before rendering
// new paths, and every path from the atlas that we're planning to use this flush will be
// copied to a new atlas. We'll never copy some and leave others.
fRecyclableAtlasTextures.push_back(std::move(previousAtlasTexture));
}
}
template<typename T, typename... Args>
static void emplace_at_memcpy(SkTArray<T>* array, int idx, Args&&... args) {
if (int moveCount = array->count() - idx) {
array->push_back();
T* location = array->begin() + idx;
memcpy(location+1, location, moveCount * sizeof(T));
new (location) T(std::forward<Args>(args)...);
} else {
array->emplace_back(std::forward<Args>(args)...);
}
}
void GrCCPerFlushResources::recordCopyPathInstance(const GrCCPathCacheEntry& entry,
const SkIVector& newAtlasOffset,
GrCCPathProcessor::DoEvenOddFill evenOdd,
sk_sp<GrTextureProxy> srcProxy) {
SkASSERT(fNextCopyInstanceIdx < fEndCopyInstance);
// Write the instance at the back of the array.
int currentInstanceIdx = fNextCopyInstanceIdx++;
constexpr uint64_t kWhite = (((uint64_t) SK_Half1) << 0) |
(((uint64_t) SK_Half1) << 16) |
(((uint64_t) SK_Half1) << 32) |
(((uint64_t) SK_Half1) << 48);
fPathInstanceData[currentInstanceIdx].set(entry, newAtlasOffset, kWhite, evenOdd);
// Percolate the instance forward until it's contiguous with other instances that share the same
// proxy.
for (int i = fCopyPathRanges.count() - 1; i >= fCurrCopyAtlasRangesIdx; --i) {
if (fCopyPathRanges[i].fSrcProxy == srcProxy) {
++fCopyPathRanges[i].fCount;
return;
}
int rangeFirstInstanceIdx = currentInstanceIdx - fCopyPathRanges[i].fCount;
std::swap(fPathInstanceData[rangeFirstInstanceIdx], fPathInstanceData[currentInstanceIdx]);
currentInstanceIdx = rangeFirstInstanceIdx;
}
// An instance with this particular proxy did not yet exist in the array. Add a range for it.
emplace_at_memcpy(&fCopyPathRanges, fCurrCopyAtlasRangesIdx, std::move(srcProxy), 1);
}
static bool transform_path_pts(const SkMatrix& m, const SkPath& path,
const SkAutoSTArray<32, SkPoint>& outDevPts, SkRect* devBounds,
SkRect* devBounds45) {
const SkPoint* pts = SkPathPriv::PointData(path);
int numPts = path.countPoints();
SkASSERT(numPts + 1 <= outDevPts.count());
SkASSERT(numPts);
// m45 transforms path points into "45 degree" device space. A bounding box in this space gives
// the circumscribing octagon's diagonals. We could use SK_ScalarRoot2Over2, but an orthonormal
// transform is not necessary as long as the shader uses the correct inverse.
SkMatrix m45;
m45.setSinCos(1, 1);
m45.preConcat(m);
// X,Y,T are two parallel view matrices that accumulate two bounding boxes as they map points:
// device-space bounds and "45 degree" device-space bounds (| 1 -1 | * devCoords).
// | 1 1 |
Sk4f X = Sk4f(m.getScaleX(), m.getSkewY(), m45.getScaleX(), m45.getSkewY());
Sk4f Y = Sk4f(m.getSkewX(), m.getScaleY(), m45.getSkewX(), m45.getScaleY());
Sk4f T = Sk4f(m.getTranslateX(), m.getTranslateY(), m45.getTranslateX(), m45.getTranslateY());
// Map the path's points to device space and accumulate bounding boxes.
Sk4f devPt = SkNx_fma(Y, Sk4f(pts[0].y()), T);
devPt = SkNx_fma(X, Sk4f(pts[0].x()), devPt);
Sk4f topLeft = devPt;
Sk4f bottomRight = devPt;
// Store all 4 values [dev.x, dev.y, dev45.x, dev45.y]. We are only interested in the first two,
// and will overwrite [dev45.x, dev45.y] with the next point. This is why the dst buffer must
// be at least one larger than the number of points.
devPt.store(&outDevPts[0]);
for (int i = 1; i < numPts; ++i) {
devPt = SkNx_fma(Y, Sk4f(pts[i].y()), T);
devPt = SkNx_fma(X, Sk4f(pts[i].x()), devPt);
topLeft = Sk4f::Min(topLeft, devPt);
bottomRight = Sk4f::Max(bottomRight, devPt);
devPt.store(&outDevPts[i]);
}
if (!(Sk4f(0) == topLeft*0).allTrue() || !(Sk4f(0) == bottomRight*0).allTrue()) {
// The bounds are infinite or NaN.
return false;
}
SkPoint topLeftPts[2], bottomRightPts[2];
topLeft.store(topLeftPts);
bottomRight.store(bottomRightPts);
devBounds->setLTRB(topLeftPts[0].x(), topLeftPts[0].y(), bottomRightPts[0].x(),
bottomRightPts[0].y());
devBounds45->setLTRB(topLeftPts[1].x(), topLeftPts[1].y(), bottomRightPts[1].x(),
bottomRightPts[1].y());
return true;
}
GrCCAtlas* GrCCPerFlushResources::renderShapeInAtlas(
const SkIRect& clipIBounds, const SkMatrix& m, const GrShape& shape, float strokeDevWidth,
SkRect* devBounds, SkRect* devBounds45, SkIRect* devIBounds, SkIVector* devToAtlasOffset) {
SkASSERT(this->isMapped());
SkASSERT(fNextPathInstanceIdx < fEndPathInstance);
SkPath path;
shape.asPath(&path);
if (path.isEmpty()) {
SkDEBUGCODE(--fEndPathInstance);
return nullptr;
}
if (!transform_path_pts(m, path, fLocalDevPtsBuffer, devBounds, devBounds45)) {
// The transformed path had infinite or NaN bounds.
SkDEBUGCODE(--fEndPathInstance);
return nullptr;
}
const SkStrokeRec& stroke = shape.style().strokeRec();
if (!stroke.isFillStyle()) {
float r = SkStrokeRec::GetInflationRadius(stroke.getJoin(), stroke.getMiter(),
stroke.getCap(), strokeDevWidth);
devBounds->outset(r, r);
// devBounds45 is in (| 1 -1 | * devCoords) space.
// | 1 1 |
devBounds45->outset(r*SK_ScalarSqrt2, r*SK_ScalarSqrt2);
}
devBounds->roundOut(devIBounds);
GrScissorTest scissorTest;
SkIRect clippedPathIBounds;
if (!this->placeRenderedPathInAtlas(clipIBounds, *devIBounds, &scissorTest, &clippedPathIBounds,
devToAtlasOffset)) {
SkDEBUGCODE(--fEndPathInstance);
return nullptr; // Path was degenerate or clipped away.
}
if (stroke.isFillStyle()) {
SkASSERT(0 == strokeDevWidth);
fFiller.parseDeviceSpaceFill(path, fLocalDevPtsBuffer.begin(), scissorTest,
clippedPathIBounds, *devToAtlasOffset);
} else {
// Stroke-and-fill is not yet supported.
SkASSERT(SkStrokeRec::kStroke_Style == stroke.getStyle() || stroke.isHairlineStyle());
SkASSERT(!stroke.isHairlineStyle() || 1 == strokeDevWidth);
fStroker.parseDeviceSpaceStroke(path, fLocalDevPtsBuffer.begin(), stroke, strokeDevWidth,
scissorTest, clippedPathIBounds, *devToAtlasOffset);
}
return &fRenderedAtlasStack.current();
}
const GrCCAtlas* GrCCPerFlushResources::renderDeviceSpacePathInAtlas(
const SkIRect& clipIBounds, const SkPath& devPath, const SkIRect& devPathIBounds,
SkIVector* devToAtlasOffset) {
SkASSERT(this->isMapped());
if (devPath.isEmpty()) {
return nullptr;
}
GrScissorTest scissorTest;
SkIRect clippedPathIBounds;
if (!this->placeRenderedPathInAtlas(clipIBounds, devPathIBounds, &scissorTest,
&clippedPathIBounds, devToAtlasOffset)) {
return nullptr;
}
fFiller.parseDeviceSpaceFill(devPath, SkPathPriv::PointData(devPath), scissorTest,
clippedPathIBounds, *devToAtlasOffset);
return &fRenderedAtlasStack.current();
}
bool GrCCPerFlushResources::placeRenderedPathInAtlas(const SkIRect& clipIBounds,
const SkIRect& pathIBounds,
GrScissorTest* scissorTest,
SkIRect* clippedPathIBounds,
SkIVector* devToAtlasOffset) {
if (clipIBounds.contains(pathIBounds)) {
*clippedPathIBounds = pathIBounds;
*scissorTest = GrScissorTest::kDisabled;
} else if (clippedPathIBounds->intersect(clipIBounds, pathIBounds)) {
*scissorTest = GrScissorTest::kEnabled;
} else {
return false;
}
if (GrCCAtlas* retiredAtlas =
fRenderedAtlasStack.addRect(*clippedPathIBounds, devToAtlasOffset)) {
// We did not fit in the previous coverage count atlas and it was retired. Close the path
// parser's current batch (which does not yet include the path we just parsed). We will
// render this batch into the retired atlas during finalize().
retiredAtlas->setFillBatchID(fFiller.closeCurrentBatch());
retiredAtlas->setStrokeBatchID(fStroker.closeCurrentBatch());
}
return true;
}
bool GrCCPerFlushResources::finalize(GrOnFlushResourceProvider* onFlushRP,
SkTArray<sk_sp<GrRenderTargetContext>>* out) {
SkASSERT(this->isMapped());
SkASSERT(fNextPathInstanceIdx == fEndPathInstance);
SkASSERT(fNextCopyInstanceIdx == fEndCopyInstance);
fInstanceBuffer->unmap();
fPathInstanceData = nullptr;
if (!fCopyAtlasStack.empty()) {
fCopyAtlasStack.current().setFillBatchID(fCopyPathRanges.count());
fCurrCopyAtlasRangesIdx = fCopyPathRanges.count();
}
if (!fRenderedAtlasStack.empty()) {
fRenderedAtlasStack.current().setFillBatchID(fFiller.closeCurrentBatch());
fRenderedAtlasStack.current().setStrokeBatchID(fStroker.closeCurrentBatch());
}
// Build the GPU buffers to render path coverage counts. (This must not happen until after the
// final calls to fFiller/fStroker.closeCurrentBatch().)
if (!fFiller.prepareToDraw(onFlushRP)) {
return false;
}
if (!fStroker.prepareToDraw(onFlushRP)) {
return false;
}
// Draw the copies from 16-bit literal coverage atlas(es) into 8-bit cached atlas(es).
int copyRangeIdx = 0;
int baseCopyInstance = 0;
for (GrCCAtlasStack::Iter atlas(fCopyAtlasStack); atlas.next();) {
int endCopyRange = atlas->getFillBatchID();
SkASSERT(endCopyRange > copyRangeIdx);
sk_sp<GrRenderTargetContext> rtc = atlas->makeRenderTargetContext(onFlushRP);
for (; copyRangeIdx < endCopyRange; ++copyRangeIdx) {
const CopyPathRange& copyRange = fCopyPathRanges[copyRangeIdx];
int endCopyInstance = baseCopyInstance + copyRange.fCount;
if (rtc) {
auto op = CopyAtlasOp::Make(rtc->surfPriv().getContext(), sk_ref_sp(this),
copyRange.fSrcProxy, baseCopyInstance, endCopyInstance,
atlas->drawBounds());
rtc->addDrawOp(GrNoClip(), std::move(op));
}
baseCopyInstance = endCopyInstance;
}
out->push_back(std::move(rtc));
}
SkASSERT(fCopyPathRanges.count() == copyRangeIdx);
SkASSERT(fNextCopyInstanceIdx == baseCopyInstance);
SkASSERT(baseCopyInstance == fEndCopyInstance);
// Render the coverage count atlas(es).
for (GrCCAtlasStack::Iter atlas(fRenderedAtlasStack); atlas.next();) {
// Copies will be finished by the time we get to rendering new atlases. See if we can
// recycle any previous invalidated atlas textures instead of creating new ones.
sk_sp<GrTexture> backingTexture;
for (sk_sp<GrTexture>& texture : fRecyclableAtlasTextures) {
if (texture && atlas->currentHeight() == texture->height() &&
atlas->currentWidth() == texture->width()) {
backingTexture = skstd::exchange(texture, nullptr);
break;
}
}
if (auto rtc = atlas->makeRenderTargetContext(onFlushRP, std::move(backingTexture))) {
std::unique_ptr<GrDrawOp> op;
if (onFlushRP->caps()->shaderCaps()->geometryShaderSupport()) {
op = RenderAtlasOp<GrGSCoverageProcessor>::Make(
rtc->surfPriv().getContext(), sk_ref_sp(this), atlas->getFillBatchID(),
atlas->getStrokeBatchID(), atlas->drawBounds());
} else {
op = RenderAtlasOp<GrVSCoverageProcessor>::Make(
rtc->surfPriv().getContext(), sk_ref_sp(this), atlas->getFillBatchID(),
atlas->getStrokeBatchID(), atlas->drawBounds());
}
rtc->addDrawOp(GrNoClip(), std::move(op));
out->push_back(std::move(rtc));
}
}
return true;
}
void GrCCPerFlushResourceSpecs::cancelCopies() {
// Convert copies to cached draws.
fNumCachedPaths += fNumCopiedPaths[kFillIdx] + fNumCopiedPaths[kStrokeIdx];
fNumCopiedPaths[kFillIdx] = fNumCopiedPaths[kStrokeIdx] = 0;
fCopyPathStats[kFillIdx] = fCopyPathStats[kStrokeIdx] = GrCCRenderedPathStats();
fCopyAtlasSpecs = GrCCAtlas::Specs();
}