| // Intrinsics that are available to public SkSL (SkRuntimeEffect) |
| |
| // See "The OpenGL ES Shading Language, Section 8" |
| |
| // 8.1 : Angle and Trigonometry Functions |
| $pure $genType radians($genType degrees); |
| $pure $genHType radians($genHType degrees); |
| $pure $genType degrees($genType radians); |
| $pure $genHType degrees($genHType radians); |
| |
| $pure $genType sin($genType angle); |
| $pure $genHType sin($genHType angle); |
| $pure $genType cos($genType angle); |
| $pure $genHType cos($genHType angle); |
| $pure $genType tan($genType angle); |
| $pure $genHType tan($genHType angle); |
| |
| $pure $genType asin($genType x); |
| $pure $genHType asin($genHType x); |
| $pure $genType acos($genType x); |
| $pure $genHType acos($genHType x); |
| $pure $genType atan($genType y, $genType x); |
| $pure $genHType atan($genHType y, $genHType x); |
| $pure $genType atan($genType y_over_x); |
| $pure $genHType atan($genHType y_over_x); |
| |
| // 8.1 : Angle and Trigonometry Functions (GLSL ES 3.0) |
| $pure $es3 $genType sinh($genType x); |
| $pure $es3 $genHType sinh($genHType x); |
| $pure $es3 $genType cosh($genType x); |
| $pure $es3 $genHType cosh($genHType x); |
| $pure $es3 $genType tanh($genType x); |
| $pure $es3 $genHType tanh($genHType x); |
| $pure $es3 $genType asinh($genType x); |
| $pure $es3 $genHType asinh($genHType x); |
| $pure $es3 $genType acosh($genType x); |
| $pure $es3 $genHType acosh($genHType x); |
| $pure $es3 $genType atanh($genType x); |
| $pure $es3 $genHType atanh($genHType x); |
| |
| // 8.2 : Exponential Functions |
| $pure $genType pow($genType x, $genType y); |
| $pure $genHType pow($genHType x, $genHType y); |
| $pure $genType exp($genType x); |
| $pure $genHType exp($genHType x); |
| $pure $genType log($genType x); |
| $pure $genHType log($genHType x); |
| $pure $genType exp2($genType x); |
| $pure $genHType exp2($genHType x); |
| $pure $genType log2($genType x); |
| $pure $genHType log2($genHType x); |
| |
| $pure $genType sqrt($genType x); |
| $pure $genHType sqrt($genHType x); |
| $pure $genType inversesqrt($genType x); |
| $pure $genHType inversesqrt($genHType x); |
| |
| // 8.3 : Common Functions |
| $pure $genType abs($genType x); |
| $pure $genHType abs($genHType x); |
| $pure $genType sign($genType x); |
| $pure $genHType sign($genHType x); |
| $pure $genType floor($genType x); |
| $pure $genHType floor($genHType x); |
| $pure $genType ceil($genType x); |
| $pure $genHType ceil($genHType x); |
| $pure $genType fract($genType x); |
| $pure $genHType fract($genHType x); |
| $pure $genType mod($genType x, float y); |
| $pure $genType mod($genType x, $genType y); |
| $pure $genHType mod($genHType x, half y); |
| $pure $genHType mod($genHType x, $genHType y); |
| |
| $pure $genType min($genType x, $genType y); |
| $pure $genType min($genType x, float y); |
| $pure $genHType min($genHType x, $genHType y); |
| $pure $genHType min($genHType x, half y); |
| $pure $genType max($genType x, $genType y); |
| $pure $genType max($genType x, float y); |
| $pure $genHType max($genHType x, $genHType y); |
| $pure $genHType max($genHType x, half y); |
| $pure $genType clamp($genType x, $genType minVal, $genType maxVal); |
| $pure $genType clamp($genType x, float minVal, float maxVal); |
| $pure $genHType clamp($genHType x, $genHType minVal, $genHType maxVal); |
| $pure $genHType clamp($genHType x, half minVal, half maxVal); |
| $pure $genType saturate($genType x); // SkSL extension |
| $pure $genHType saturate($genHType x); // SkSL extension |
| $pure $genType mix($genType x, $genType y, $genType a); |
| $pure $genType mix($genType x, $genType y, float a); |
| $pure $genHType mix($genHType x, $genHType y, $genHType a); |
| $pure $genHType mix($genHType x, $genHType y, half a); |
| $pure $genType step($genType edge, $genType x); |
| $pure $genType step(float edge, $genType x); |
| $pure $genHType step($genHType edge, $genHType x); |
| $pure $genHType step(half edge, $genHType x); |
| $pure $genType smoothstep($genType edge0, $genType edge1, $genType x); |
| $pure $genType smoothstep(float edge0, float edge1, $genType x); |
| $pure $genHType smoothstep($genHType edge0, $genHType edge1, $genHType x); |
| $pure $genHType smoothstep(half edge0, half edge1, $genHType x); |
| |
| // 8.3 : Common Functions (GLSL ES 3.0) |
| $pure $es3 $genIType abs($genIType x); |
| $pure $es3 $genIType sign($genIType x); |
| $pure $es3 $genIType floatBitsToInt ($genType value); |
| $pure $es3 $genUType floatBitsToUint($genType value); |
| $pure $es3 $genType intBitsToFloat ($genIType value); |
| $pure $es3 $genType uintBitsToFloat($genUType value); |
| $pure $es3 $genType trunc($genType x); |
| $pure $es3 $genHType trunc($genHType x); |
| $pure $es3 $genType round($genType x); |
| $pure $es3 $genHType round($genHType x); |
| $pure $es3 $genType roundEven($genType x); |
| $pure $es3 $genHType roundEven($genHType x); |
| $pure $es3 $genIType min($genIType x, $genIType y); |
| $pure $es3 $genIType min($genIType x, int y); |
| $pure $es3 $genUType min($genUType x, $genUType y); |
| $pure $es3 $genUType min($genUType x, uint y); |
| $pure $es3 $genIType max($genIType x, $genIType y); |
| $pure $es3 $genIType max($genIType x, int y); |
| $pure $es3 $genUType max($genUType x, $genUType y); |
| $pure $es3 $genUType max($genUType x, uint y); |
| $pure $es3 $genIType clamp($genIType x, $genIType minVal, $genIType maxVal); |
| $pure $es3 $genIType clamp($genIType x, int minVal, int maxVal); |
| $pure $es3 $genUType clamp($genUType x, $genUType minVal, $genUType maxVal); |
| $pure $es3 $genUType clamp($genUType x, uint minVal, uint maxVal); |
| $pure $es3 $genType mix($genType x, $genType y, $genBType a); |
| $pure $es3 $genHType mix($genHType x, $genHType y, $genBType a); |
| |
| // 8.3 : Common Functions (GLSL ES 3.0) -- cannot be used in constant-expressions |
| $pure $es3 $genBType isnan($genType x); |
| $pure $es3 $genBType isnan($genHType x); |
| $pure $es3 $genBType isinf($genType x); |
| $pure $es3 $genBType isinf($genHType x); |
| $es3 $genType modf($genType x, out $genType i); |
| $es3 $genHType modf($genHType x, out $genHType i); |
| |
| // 8.4 : Floating-Point Pack and Unpack Functions (GLSL ES 3.0) |
| $pure $es3 uint packUnorm2x16(float2 v); |
| $pure $es3 float2 unpackUnorm2x16(uint p); |
| |
| // 8.5 : Geometric Functions |
| $pure float length($genType x); |
| $pure half length($genHType x); |
| $pure float distance($genType p0, $genType p1); |
| $pure half distance($genHType p0, $genHType p1); |
| $pure float dot($genType x, $genType y); |
| $pure half dot($genHType x, $genHType y); |
| $pure float3 cross(float3 x, float3 y); |
| $pure half3 cross(half3 x, half3 y); |
| $pure $genType normalize($genType x); |
| $pure $genHType normalize($genHType x); |
| $pure $genType faceforward($genType N, $genType I, $genType Nref); |
| $pure $genHType faceforward($genHType N, $genHType I, $genHType Nref); |
| $pure $genType reflect($genType I, $genType N); |
| $pure $genHType reflect($genHType I, $genHType N); |
| $pure $genType refract($genType I, $genType N, float eta); |
| $pure $genHType refract($genHType I, $genHType N, half eta); |
| |
| // 8.6 : Matrix Functions |
| $pure $squareMat matrixCompMult($squareMat x, $squareMat y); |
| $pure $squareHMat matrixCompMult($squareHMat x, $squareHMat y); |
| $pure $es3 $mat matrixCompMult($mat x, $mat y); |
| $pure $es3 $hmat matrixCompMult($hmat x, $hmat y); |
| |
| // 8.6 : Matrix Functions (GLSL 1.4, poly-filled by SkSL as needed) |
| $pure $squareMat inverse($squareMat m); |
| $pure $squareHMat inverse($squareHMat m); |
| |
| // 8.6 : Matrix Functions (GLSL ES 3.0) |
| $pure $es3 float determinant($squareMat m); |
| $pure $es3 half determinant($squareHMat m); |
| $pure $es3 $squareMat transpose($squareMat m); |
| $pure $es3 $squareHMat transpose($squareHMat m); |
| $pure $es3 float2x3 transpose(float3x2 m); |
| $pure $es3 half2x3 transpose(half3x2 m); |
| $pure $es3 float2x4 transpose(float4x2 m); |
| $pure $es3 half2x4 transpose(half4x2 m); |
| $pure $es3 float3x2 transpose(float2x3 m); |
| $pure $es3 half3x2 transpose(half2x3 m); |
| $pure $es3 float3x4 transpose(float4x3 m); |
| $pure $es3 half3x4 transpose(half4x3 m); |
| $pure $es3 float4x2 transpose(float2x4 m); |
| $pure $es3 half4x2 transpose(half2x4 m); |
| $pure $es3 float4x3 transpose(float3x4 m); |
| $pure $es3 half4x3 transpose(half3x4 m); |
| $pure $es3 $squareMat outerProduct($vec c, $vec r); |
| $pure $es3 $squareHMat outerProduct($hvec c, $hvec r); |
| $pure $es3 float2x3 outerProduct(float3 c, float2 r); |
| $pure $es3 half2x3 outerProduct(half3 c, half2 r); |
| $pure $es3 float3x2 outerProduct(float2 c, float3 r); |
| $pure $es3 half3x2 outerProduct(half2 c, half3 r); |
| $pure $es3 float2x4 outerProduct(float4 c, float2 r); |
| $pure $es3 half2x4 outerProduct(half4 c, half2 r); |
| $pure $es3 float4x2 outerProduct(float2 c, float4 r); |
| $pure $es3 half4x2 outerProduct(half2 c, half4 r); |
| $pure $es3 float3x4 outerProduct(float4 c, float3 r); |
| $pure $es3 half3x4 outerProduct(half4 c, half3 r); |
| $pure $es3 float4x3 outerProduct(float3 c, float4 r); |
| $pure $es3 half4x3 outerProduct(half3 c, half4 r); |
| |
| // 8.7 : Vector Relational Functions |
| $pure $bvec lessThan($vec x, $vec y); |
| $pure $bvec lessThan($hvec x, $hvec y); |
| $pure $bvec lessThan($ivec x, $ivec y); |
| $pure $bvec lessThan($svec x, $svec y); |
| $pure $bvec lessThanEqual($vec x, $vec y); |
| $pure $bvec lessThanEqual($hvec x, $hvec y); |
| $pure $bvec lessThanEqual($ivec x, $ivec y); |
| $pure $bvec lessThanEqual($svec x, $svec y); |
| $pure $bvec greaterThan($vec x, $vec y); |
| $pure $bvec greaterThan($hvec x, $hvec y); |
| $pure $bvec greaterThan($ivec x, $ivec y); |
| $pure $bvec greaterThan($svec x, $svec y); |
| $pure $bvec greaterThanEqual($vec x, $vec y); |
| $pure $bvec greaterThanEqual($hvec x, $hvec y); |
| $pure $bvec greaterThanEqual($ivec x, $ivec y); |
| $pure $bvec greaterThanEqual($svec x, $svec y); |
| $pure $bvec equal($vec x, $vec y); |
| $pure $bvec equal($hvec x, $hvec y); |
| $pure $bvec equal($ivec x, $ivec y); |
| $pure $bvec equal($svec x, $svec y); |
| $pure $bvec equal($bvec x, $bvec y); |
| $pure $bvec notEqual($vec x, $vec y); |
| $pure $bvec notEqual($hvec x, $hvec y); |
| $pure $bvec notEqual($ivec x, $ivec y); |
| $pure $bvec notEqual($svec x, $svec y); |
| $pure $bvec notEqual($bvec x, $bvec y); |
| |
| $pure $es3 $bvec lessThan($usvec x, $usvec y); |
| $pure $es3 $bvec lessThan($uvec x, $uvec y); |
| $pure $es3 $bvec lessThanEqual($uvec x, $uvec y); |
| $pure $es3 $bvec lessThanEqual($usvec x, $usvec y); |
| $pure $es3 $bvec greaterThan($uvec x, $uvec y); |
| $pure $es3 $bvec greaterThan($usvec x, $usvec y); |
| $pure $es3 $bvec greaterThanEqual($uvec x, $uvec y); |
| $pure $es3 $bvec greaterThanEqual($usvec x, $usvec y); |
| $pure $es3 $bvec equal($uvec x, $uvec y); |
| $pure $es3 $bvec equal($usvec x, $usvec y); |
| $pure $es3 $bvec notEqual($uvec x, $uvec y); |
| $pure $es3 $bvec notEqual($usvec x, $usvec y); |
| |
| $pure bool any($bvec x); |
| $pure bool all($bvec x); |
| $pure $bvec not($bvec x); |
| |
| // 8.9 : Fragment Processing Functions (GLSL ES 3.0) |
| $pure $es3 $genType dFdx($genType p); |
| $pure $es3 $genType dFdy($genType p); |
| $pure $es3 $genHType dFdx($genHType p); |
| $pure $es3 $genHType dFdy($genHType p); |
| $pure $es3 $genType fwidth($genType p); |
| $pure $es3 $genHType fwidth($genHType p); |
| |
| |
| // SkSL utility functions |
| |
| // The max() guards against division by zero when the incoming color is transparent black |
| $pure half4 unpremul(half4 color) { return half4 (color.rgb / max(color.a, 0.0001), color.a); } |
| $pure float4 unpremul(float4 color) { return float4(color.rgb / max(color.a, 0.0001), color.a); } |
| |
| // Similar, but used for polar-space CSS colors |
| $export $pure half4 $unpremul_polar(half4 color) { |
| return half4(color.r, color.gb / max(color.a, 0.0001), color.a); |
| } |
| |
| // Convert RGBA -> HSLA (including unpremul). |
| // |
| // Based on work by Sam Hocevar, Emil Persson, and Ian Taylor [1][2][3]. High-level ideas: |
| // |
| // - minimize the number of branches by sorting and computing the hue phase in parallel (vec4s) |
| // |
| // - trade the third sorting branch for a potentially faster std::min and leaving 2nd/3rd |
| // channels unsorted (based on the observation that swapping both the channels and the bias sign |
| // has no effect under abs) |
| // |
| // - use epsilon offsets for denominators, to avoid explicit zero-checks |
| // |
| // An additional trick we employ is deferring premul->unpremul conversion until the very end: the |
| // alpha factor gets naturally simplified for H and S, and only L requires a dedicated unpremul |
| // division (so we trade three divs for one). |
| // |
| // [1] http://lolengine.net/blog/2013/01/13/fast-rgb-to-hsv |
| // [2] http://lolengine.net/blog/2013/07/27/rgb-to-hsv-in-glsl |
| // [3] http://www.chilliant.com/rgb2hsv.html |
| |
| $export $pure half4 $rgb_to_hsl(half3 c, half a) { |
| half4 p = (c.g < c.b) ? half4(c.bg, -1, 2/3.0) |
| : half4(c.gb, 0, -1/3.0); |
| half4 q = (c.r < p.x) ? half4(p.x, c.r, p.yw) |
| : half4(c.r, p.x, p.yz); |
| |
| // q.x -> max channel value |
| // q.yz -> 2nd/3rd channel values (unsorted) |
| // q.w -> bias value dependent on max channel selection |
| |
| const half kEps = 0.0001; |
| half pmV = q.x; |
| half pmC = pmV - min(q.y, q.z); |
| half pmL = pmV - pmC * 0.5; |
| half H = abs(q.w + (q.y - q.z) / (pmC * 6 + kEps)); |
| half S = pmC / (a + kEps - abs(pmL * 2 - a)); |
| half L = pmL / (a + kEps); |
| |
| return half4(H, S, L, a); |
| } |
| |
| // Convert HSLA -> RGBA (including clamp and premul). |
| // |
| // Based on work by Sam Hocevar, Emil Persson, and Ian Taylor [1][2][3]. |
| // |
| // [1] http://lolengine.net/blog/2013/01/13/fast-rgb-to-hsv |
| // [2] http://lolengine.net/blog/2013/07/27/rgb-to-hsv-in-glsl |
| // [3] http://www.chilliant.com/rgb2hsv.html |
| |
| $export $pure half3 $hsl_to_rgb(half3 hsl) { |
| half C = (1 - abs(2 * hsl.z - 1)) * hsl.y; |
| half3 p = hsl.xxx + half3(0, 2/3.0, 1/3.0); |
| half3 q = saturate(abs(fract(p) * 6 - 3) - 1); |
| |
| return (q - 0.5) * C + hsl.z; |
| } |
| |
| $export $pure half4 $hsl_to_rgb(half3 hsl, half a) { |
| return saturate(half4($hsl_to_rgb(hsl) * a, a)); |
| } |
| |
| // Color conversion functions used in gradient interpolation, based on |
| // https://www.w3.org/TR/css-color-4/#color-conversion-code |
| // TODO(skia:13108): For all of these, we can eliminate any linear math at the beginning |
| // (by removing the corresponding linear math at the end of the CPU code). |
| $export $pure half3 $css_lab_to_xyz(half3 lab) { |
| const half k = 24389 / 27.0; |
| const half e = 216 / 24389.0; |
| |
| half3 f; |
| f[1] = (lab[0] + 16) / 116; |
| f[0] = (lab[1] / 500) + f[1]; |
| f[2] = f[1] - (lab[2] / 200); |
| |
| half3 f_cubed = pow(f, half3(3)); |
| |
| half3 xyz = half3( |
| f_cubed[0] > e ? f_cubed[0] : (116 * f[0] - 16) / k, |
| lab[0] > k * e ? f_cubed[1] : lab[0] / k, |
| f_cubed[2] > e ? f_cubed[2] : (116 * f[2] - 16) / k |
| ); |
| |
| const half3 D50 = half3(0.3457 / 0.3585, 1.0, (1.0 - 0.3457 - 0.3585) / 0.3585); |
| return xyz * D50; |
| } |
| |
| // Skia stores all polar colors with hue in the first component, so this "LCH -> Lab" transform |
| // actually takes "HCL". This is also used to do the same polar transform for OkHCL to OkLAB. |
| // See similar comments & logic in SkGradientShaderBase.cpp. |
| $pure half3 $css_hcl_to_lab(half3 hcl) { |
| return half3( |
| hcl[2], |
| hcl[1] * cos(radians(hcl[0])), |
| hcl[1] * sin(radians(hcl[0])) |
| ); |
| } |
| |
| $export $pure half3 $css_hcl_to_xyz(half3 hcl) { |
| return $css_lab_to_xyz($css_hcl_to_lab(hcl)); |
| } |
| |
| $export $pure half3 $css_oklab_to_linear_srgb(half3 oklab) { |
| half l_ = oklab.x + 0.3963377774 * oklab.y + 0.2158037573 * oklab.z, |
| m_ = oklab.x - 0.1055613458 * oklab.y - 0.0638541728 * oklab.z, |
| s_ = oklab.x - 0.0894841775 * oklab.y - 1.2914855480 * oklab.z; |
| |
| half l = l_*l_*l_, |
| m = m_*m_*m_, |
| s = s_*s_*s_; |
| |
| return half3( |
| +4.0767416621 * l - 3.3077115913 * m + 0.2309699292 * s, |
| -1.2684380046 * l + 2.6097574011 * m - 0.3413193965 * s, |
| -0.0041960863 * l - 0.7034186147 * m + 1.7076147010 * s |
| ); |
| } |
| |
| $export $pure half3 $css_okhcl_to_linear_srgb(half3 okhcl) { |
| return $css_oklab_to_linear_srgb($css_hcl_to_lab(okhcl)); |
| } |
| |
| $export $pure half3 $css_oklab_gamut_map_to_linear_srgb(half3 oklab) { |
| // Constants for the normal vector of the plane formed by white, black, and |
| // the specified vertex of the gamut. |
| const half2 normal_R = half2(0.409702, -0.912219); |
| const half2 normal_M = half2(-0.397919, -0.917421); |
| const half2 normal_B = half2(-0.906800, 0.421562); |
| const half2 normal_C = half2(-0.171122, 0.985250); |
| const half2 normal_G = half2(0.460276, 0.887776); |
| const half2 normal_Y = half2(0.947925, 0.318495); |
| |
| // For the triangles formed by white (W) or black (K) with the vertices |
| // of Yellow and Red (YR), Red and Magenta (RM), etc, the constants to be |
| // used to compute the intersection of a line of constant hue and luminance |
| // with that plane. |
| const half c0_YR = 0.091132; |
| const half2 cW_YR = half2(0.070370, 0.034139); |
| const half2 cK_YR = half2(0.018170, 0.378550); |
| const half c0_RM = 0.113902; |
| const half2 cW_RM = half2(0.090836, 0.036251); |
| const half2 cK_RM = half2(0.226781, 0.018764); |
| const half c0_MB = 0.161739; |
| const half2 cW_MB = half2(-0.008202, -0.264819); |
| const half2 cK_MB = half2( 0.187156, -0.284304); |
| const half c0_BC = 0.102047; |
| const half2 cW_BC = half2(-0.014804, -0.162608); |
| const half2 cK_BC = half2(-0.276786, 0.004193); |
| const half c0_CG = 0.092029; |
| const half2 cW_CG = half2(-0.038533, -0.001650); |
| const half2 cK_CG = half2(-0.232572, -0.094331); |
| const half c0_GY = 0.081709; |
| const half2 cW_GY = half2(-0.034601, -0.002215); |
| const half2 cK_GY = half2( 0.012185, 0.338031); |
| |
| half2 ab = oklab.yz; |
| |
| // Find the planes to intersect with and set the constants based on those |
| // planes. |
| half c0; |
| half2 cW; |
| half2 cK; |
| if (dot(ab, normal_R) < 0.0) { |
| if (dot(ab, normal_G) < 0.0) { |
| if (dot(ab, normal_C) < 0.0) { |
| c0 = c0_BC; cW = cW_BC; cK = cK_BC; |
| } else { |
| c0 = c0_CG; cW = cW_CG; cK = cK_CG; |
| } |
| } else { |
| if (dot(ab, normal_Y) < 0.0) { |
| c0 = c0_GY; cW = cW_GY; cK = cK_GY; |
| } else { |
| c0 = c0_YR; cW = cW_YR; cK = cK_YR; |
| } |
| } |
| } else { |
| if (dot(ab, normal_B) < 0.0) { |
| if (dot(ab, normal_M) < 0.0) { |
| c0 = c0_RM; cW = cW_RM; cK = cK_RM; |
| } else { |
| c0 = c0_MB; cW = cW_MB; cK = cK_MB; |
| } |
| } else { |
| c0 = c0_BC; cW = cW_BC; cK = cK_BC; |
| } |
| } |
| |
| // Perform the intersection. |
| half alpha = 1.0; |
| |
| // Intersect with the plane with white. |
| half w_denom = dot(cW, ab); |
| if (w_denom > 0.0) { |
| half one_minus_L = 1.0 - oklab.r; |
| half w_num = c0*one_minus_L; |
| if (w_num < w_denom) { |
| alpha = min(alpha, w_num / w_denom); |
| } |
| } |
| |
| // Intersect with the plane with black. |
| half k_denom = dot(cK, ab); |
| if (k_denom > 0.0) { |
| half L = oklab.r; |
| half k_num = c0*L; |
| if (k_num < k_denom) { |
| alpha = min(alpha, k_num / k_denom); |
| } |
| } |
| |
| // Attenuate the ab coordinate by alpha. |
| oklab.yz *= alpha; |
| |
| return $css_oklab_to_linear_srgb(oklab); |
| } |
| |
| $export $pure half3 $css_okhcl_gamut_map_to_linear_srgb(half3 okhcl) { |
| return $css_oklab_gamut_map_to_linear_srgb($css_hcl_to_lab(okhcl)); |
| } |
| |
| // TODO(skia:13108): Use our optimized version (though it has different range) |
| // Doing so might require fixing (re-deriving?) the math for the HWB version below |
| $export $pure half3 $css_hsl_to_srgb(half3 hsl) { |
| hsl.x = mod(hsl.x, 360); |
| if (hsl.x < 0) { |
| hsl.x += 360; |
| } |
| |
| hsl.yz /= 100; |
| |
| half3 k = mod(half3(0, 8, 4) + hsl.x/30, 12); |
| half a = hsl.y * min(hsl.z, 1 - hsl.z); |
| return hsl.z - a * clamp(min(k - 3, 9 - k), -1, 1); |
| } |
| |
| $export $pure half3 $css_hwb_to_srgb(half3 hwb) { |
| hwb.yz /= 100; |
| if (hwb.y + hwb.z >= 1) { |
| half gray = hwb.y / (hwb.y + hwb.z); |
| return half3(gray); |
| } |
| half3 rgb = $css_hsl_to_srgb(half3(hwb.x, 100, 50)); |
| rgb *= (1 - hwb.y - hwb.z); |
| rgb += hwb.y; |
| return rgb; |
| } |
| |
| /* |
| * The actual output color space of this function depends on the input color space |
| * (it might be sRGB, linear sRGB, or linear XYZ). The actual space is what's stored |
| * in the gradient/SkColor4fXformer's fIntermediateColorSpace. |
| */ |
| $export $pure half4 $interpolated_to_rgb_unpremul(half4 color, int colorSpace, int doUnpremul) { |
| const int kDestination = 0; |
| const int kSRGBLinear = 1; |
| const int kLab = 2; |
| const int kOKLab = 3; |
| const int kOKLabGamutMap = 4; |
| const int kLCH = 5; |
| const int kOKLCH = 6; |
| const int kOKLCHGamutMap = 7; |
| const int kSRGB = 8; |
| const int kHSL = 9; |
| const int kHWB = 10; |
| |
| if (bool(doUnpremul)) { |
| switch (colorSpace) { |
| case kLab: |
| case kOKLab: |
| case kOKLabGamutMap: color = unpremul(color); break; |
| case kLCH: |
| case kOKLCH: |
| case kOKLCHGamutMap: |
| case kHSL: |
| case kHWB: color = $unpremul_polar(color); break; |
| } |
| } |
| switch (colorSpace) { |
| case kLab: color.rgb = $css_lab_to_xyz(color.rgb); break; |
| case kOKLab: color.rgb = $css_oklab_to_linear_srgb(color.rgb); break; |
| case kOKLabGamutMap: color.rgb = $css_oklab_gamut_map_to_linear_srgb(color.rgb); break; |
| case kLCH: color.rgb = $css_hcl_to_xyz(color.rgb); break; |
| case kOKLCH: color.rgb = $css_okhcl_to_linear_srgb(color.rgb); break; |
| case kOKLCHGamutMap: color.rgb = $css_okhcl_gamut_map_to_linear_srgb(color.rgb); break; |
| case kHSL: color.rgb = $css_hsl_to_srgb(color.rgb); break; |
| case kHWB: color.rgb = $css_hwb_to_srgb(color.rgb); break; |
| } |
| return color; |
| } |