| /* |
| * Copyright 2017 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkShaderBase_DEFINED |
| #define SkShaderBase_DEFINED |
| |
| #include "include/core/SkColor.h" |
| #include "include/core/SkFlattenable.h" |
| #include "include/core/SkMatrix.h" |
| #include "include/core/SkPoint.h" |
| #include "include/core/SkRefCnt.h" |
| #include "include/core/SkScalar.h" |
| #include "include/core/SkShader.h" |
| #include "include/core/SkSurfaceProps.h" |
| #include "include/core/SkTypes.h" |
| #include "include/private/base/SkNoncopyable.h" |
| |
| #include <cstddef> |
| #include <cstdint> |
| #include <optional> |
| #include <tuple> |
| |
| class SkArenaAlloc; |
| class SkColorSpace; |
| class SkImage; |
| class SkRuntimeEffect; |
| class SkWriteBuffer; |
| enum SkColorType : int; |
| enum class SkTileMode; |
| struct SkDeserialProcs; |
| struct SkStageRec; |
| |
| namespace SkShaders { |
| /** |
| * This is used to accumulate matrices, starting with the CTM, when building up |
| * SkRasterPipeline or GrFragmentProcessor by walking the SkShader tree. It avoids |
| * adding a matrix multiply for each individual matrix. It also handles the reverse matrix |
| * concatenation order required by Android Framework, see b/256873449. |
| * |
| * This also tracks the dubious concept of a "total matrix", in the legacy Context/shadeSpan system. |
| * That includes all the matrices encountered during traversal to the current shader, including ones |
| * that have already been applied. The total matrix represents the transformation from the current |
| * shader's coordinate space to device space. It is dubious because it doesn't account for SkShaders |
| * that manipulate the coordinates passed to their children, which may not even be representable by |
| * a matrix. |
| * |
| * The total matrix is used for mipmap level selection and a filter downgrade optimizations in |
| * SkImageShader and sizing of the SkImage created by SkPictureShader. If we can remove usages |
| * of the "total matrix" and if Android Framework could be updated to not use backwards local |
| * matrix concatenation this could just be replaced by a simple SkMatrix or SkM44 passed down |
| * during traversal. |
| */ |
| class MatrixRec { |
| public: |
| MatrixRec() = default; |
| |
| explicit MatrixRec(const SkMatrix& ctm); |
| |
| /** |
| * Returns a new MatrixRec that represents the existing total and pending matrix |
| * pre-concat'ed with m. |
| */ |
| [[nodiscard]] MatrixRec concat(const SkMatrix& m) const; |
| |
| /** |
| * Appends a mul by the inverse of the pending local matrix to the pipeline. 'postInv' is an |
| * additional matrix to post-apply to the inverted pending matrix. If the pending matrix is |
| * not invertible the std::optional result won't have a value and the pipeline will be |
| * unmodified. |
| */ |
| [[nodiscard]] std::optional<MatrixRec> apply(const SkStageRec& rec, |
| const SkMatrix& postInv = {}) const; |
| |
| /** |
| * FP matrices work differently than SkRasterPipeline. The starting coordinates provided to the |
| * root SkShader's FP are already in local space. So we never apply the inverse CTM. This |
| * returns the inverted pending local matrix with the provided postInv matrix applied after it. |
| * If the pending local matrix cannot be inverted, the boolean is false. |
| */ |
| std::tuple<SkMatrix, bool> applyForFragmentProcessor(const SkMatrix& postInv) const; |
| |
| /** |
| * A parent FP may need to create a FP for its child by calling |
| * SkShaderBase::asFragmentProcessor() and then pass the result to the apply() above. |
| * This comes up when the parent needs to ensure pending matrices are applied before the |
| * child because the parent is going to manipulate the coordinates *after* any pending |
| * matrix and pass the resulting coords to the child. This function gets a MatrixRec that |
| * reflects the state after this MatrixRec has bee applied but it does not apply it! |
| * Example: |
| * auto childFP = fChild->asFragmentProcessor(args, mrec.applied()); |
| * childFP = MakeAWrappingFPThatModifiesChildsCoords(std::move(childFP)); |
| * auto [success, parentFP] = mrec.apply(std::move(childFP)); |
| */ |
| MatrixRec applied() const; |
| |
| /** Call to indicate that the mapping from shader to device space is not known. */ |
| void markTotalMatrixInvalid() { fTotalMatrixIsValid = false; } |
| |
| /** Marks the CTM as already applied; can avoid re-seeding the shader unnecessarily. */ |
| void markCTMApplied() { fCTMApplied = true; } |
| |
| /** |
| * Indicates whether the total matrix of a MatrixRec passed to a SkShader actually |
| * represents the full transform between that shader's coordinate space and device space. |
| */ |
| bool totalMatrixIsValid() const { return fTotalMatrixIsValid; } |
| |
| /** |
| * Gets the total transform from the current shader's space to device space. This may or |
| * may not be valid. Shaders should avoid making decisions based on this matrix if |
| * totalMatrixIsValid() is false. |
| */ |
| SkMatrix totalMatrix() const { return SkMatrix::Concat(fCTM, fTotalLocalMatrix); } |
| |
| /** Gets the inverse of totalMatrix(), if invertible. */ |
| [[nodiscard]] bool totalInverse(SkMatrix* out) const { |
| return this->totalMatrix().invert(out); |
| } |
| |
| /** Is there a transform that has not yet been applied by a parent shader? */ |
| bool hasPendingMatrix() const { |
| return (!fCTMApplied && !fCTM.isIdentity()) || !fPendingLocalMatrix.isIdentity(); |
| } |
| |
| /** When generating raster pipeline, have the device coordinates been seeded? */ |
| bool rasterPipelineCoordsAreSeeded() const { return fCTMApplied; } |
| |
| private: |
| MatrixRec(const SkMatrix& ctm, |
| const SkMatrix& totalLocalMatrix, |
| const SkMatrix& pendingLocalMatrix, |
| bool totalIsValid, |
| bool ctmApplied) |
| : fCTM(ctm) |
| , fTotalLocalMatrix(totalLocalMatrix) |
| , fPendingLocalMatrix(pendingLocalMatrix) |
| , fTotalMatrixIsValid(totalIsValid) |
| , fCTMApplied(ctmApplied) {} |
| |
| const SkMatrix fCTM; |
| |
| // Concatenation of all local matrices, including those already applied. |
| const SkMatrix fTotalLocalMatrix; |
| |
| // The accumulated local matrices from walking down the shader hierarchy that have NOT yet |
| // been incorporated into the SkRasterPipeline. |
| const SkMatrix fPendingLocalMatrix; |
| |
| bool fTotalMatrixIsValid = true; |
| |
| // Tracks whether the CTM has already been applied (and in raster pipeline whether the |
| // device coords have been seeded.) |
| bool fCTMApplied = false; |
| }; |
| |
| } // namespace SkShaders |
| |
| #define SK_ALL_SHADERS(M) \ |
| M(Blend) \ |
| M(CTM) \ |
| M(Color) \ |
| M(Color4) \ |
| M(ColorFilter) \ |
| M(CoordClamp) \ |
| M(Empty) \ |
| M(GradientBase) \ |
| M(Image) \ |
| M(LocalMatrix) \ |
| M(PerlinNoise) \ |
| M(Picture) \ |
| M(Runtime) \ |
| M(Transform) \ |
| M(TriColor) \ |
| M(WorkingColorSpace) |
| |
| #define SK_ALL_GRADIENTS(M) \ |
| M(Conical) \ |
| M(Linear) \ |
| M(Radial) \ |
| M(Sweep) |
| |
| class SkShaderBase : public SkShader { |
| public: |
| ~SkShaderBase() override; |
| |
| sk_sp<SkShader> makeInvertAlpha() const; |
| sk_sp<SkShader> makeWithCTM(const SkMatrix&) const; // owns its own ctm |
| |
| /** |
| * Returns true if the shader is guaranteed to produce only a single color. |
| * Subclasses can override this to allow loop-hoisting optimization. |
| */ |
| virtual bool isConstant() const { return false; } |
| |
| enum class ShaderType { |
| #define M(type) k##type, |
| SK_ALL_SHADERS(M) |
| #undef M |
| }; |
| |
| virtual ShaderType type() const = 0; |
| |
| enum class GradientType { |
| kNone, |
| #define M(type) k##type, |
| SK_ALL_GRADIENTS(M) |
| #undef M |
| }; |
| |
| /** |
| * If the shader subclass can be represented as a gradient, asGradient |
| * returns the matching GradientType enum (or GradientType::kNone if it |
| * cannot). Also, if info is not null, asGradient populates info with |
| * the relevant (see below) parameters for the gradient. fColorCount |
| * is both an input and output parameter. On input, it indicates how |
| * many entries in fColors and fColorOffsets can be used, if they are |
| * non-NULL. After asGradient has run, fColorCount indicates how |
| * many color-offset pairs there are in the gradient. If there is |
| * insufficient space to store all of the color-offset pairs, fColors |
| * and fColorOffsets will not be altered. fColorOffsets specifies |
| * where on the range of 0 to 1 to transition to the given color. |
| * The meaning of fPoint and fRadius is dependent on the type of gradient. |
| * |
| * None: |
| * info is ignored. |
| * Color: |
| * fColorOffsets[0] is meaningless. |
| * Linear: |
| * fPoint[0] and fPoint[1] are the end-points of the gradient |
| * Radial: |
| * fPoint[0] and fRadius[0] are the center and radius |
| * Conical: |
| * fPoint[0] and fRadius[0] are the center and radius of the 1st circle |
| * fPoint[1] and fRadius[1] are the center and radius of the 2nd circle |
| * Sweep: |
| * fPoint[0] is the center of the sweep. |
| */ |
| struct GradientInfo { |
| int fColorCount = 0; //!< In-out parameter, specifies passed size |
| // of fColors/fColorOffsets on input, and |
| // actual number of colors/offsets on |
| // output. |
| SkColor* fColors = nullptr; //!< The colors in the gradient. |
| SkScalar* fColorOffsets = nullptr; //!< The unit offset for color transitions. |
| SkPoint fPoint[2]; //!< Type specific, see above. |
| SkScalar fRadius[2]; //!< Type specific, see above. |
| SkTileMode fTileMode; |
| uint32_t fGradientFlags = 0; //!< see SkGradientShader::Flags |
| }; |
| |
| virtual GradientType asGradient(GradientInfo* info = nullptr, |
| SkMatrix* localMatrix = nullptr) const { |
| return GradientType::kNone; |
| } |
| |
| enum Flags { |
| //!< set if all of the colors will be opaque |
| kOpaqueAlpha_Flag = 1 << 0, |
| }; |
| |
| /** |
| * ContextRec acts as a parameter bundle for creating Contexts. |
| */ |
| struct ContextRec { |
| ContextRec(SkAlpha paintAlpha, |
| const SkShaders::MatrixRec& matrixRec, |
| SkColorType dstColorType, |
| SkColorSpace* dstColorSpace, |
| const SkSurfaceProps& props) |
| : fMatrixRec(matrixRec) |
| , fDstColorType(dstColorType) |
| , fDstColorSpace(dstColorSpace) |
| , fProps(props) |
| , fPaintAlpha(paintAlpha) {} |
| |
| static ContextRec Concat(const ContextRec& parentRec, const SkMatrix& localM) { |
| return {parentRec.fPaintAlpha, |
| parentRec.fMatrixRec.concat(localM), |
| parentRec.fDstColorType, |
| parentRec.fDstColorSpace, |
| parentRec.fProps}; |
| } |
| |
| const SkShaders::MatrixRec fMatrixRec; |
| SkColorType fDstColorType; // the color type of the dest surface |
| SkColorSpace* fDstColorSpace; // the color space of the dest surface (if any) |
| SkSurfaceProps fProps; // props of the dest surface |
| SkAlpha fPaintAlpha; |
| |
| bool isLegacyCompatible(SkColorSpace* shadersColorSpace) const; |
| }; |
| |
| class Context : public ::SkNoncopyable { |
| public: |
| Context(const SkShaderBase& shader, const ContextRec&); |
| |
| virtual ~Context(); |
| |
| /** |
| * Called sometimes before drawing with this shader. Return the type of |
| * alpha your shader will return. The default implementation returns 0. |
| * Your subclass should override if it can (even sometimes) report a |
| * non-zero value, since that will enable various blitters to perform |
| * faster. |
| */ |
| virtual uint32_t getFlags() const { return 0; } |
| |
| /** |
| * Called for each span of the object being drawn. Your subclass should |
| * set the appropriate colors (with premultiplied alpha) that correspond |
| * to the specified device coordinates. |
| */ |
| virtual void shadeSpan(int x, int y, SkPMColor[], int count) = 0; |
| |
| protected: |
| // Reference to shader, so we don't have to dupe information. |
| const SkShaderBase& fShader; |
| |
| uint8_t getPaintAlpha() const { return fPaintAlpha; } |
| const SkMatrix& getTotalInverse() const { return fTotalInverse; } |
| |
| private: |
| SkMatrix fTotalInverse; |
| uint8_t fPaintAlpha; |
| }; |
| |
| /** |
| * Make a context using the memory provided by the arena. |
| * |
| * @return pointer to context or nullptr if can't be created |
| */ |
| Context* makeContext(const ContextRec&, SkArenaAlloc*) const; |
| |
| /** |
| * If the shader can represent its "average" luminance in a single color, return true and |
| * if color is not NULL, return that color. If it cannot, return false and ignore the color |
| * parameter. |
| * |
| * Note: if this returns true, the returned color will always be opaque, as only the RGB |
| * components are used to compute luminance. |
| */ |
| bool asLuminanceColor(SkColor4f*) const; |
| |
| /** |
| * If this returns false, then we draw nothing (do not fall back to shader context). This should |
| * only be called on a root-level effect. It assumes that the initial device coordinates have |
| * not yet been seeded. |
| */ |
| [[nodiscard]] bool appendRootStages(const SkStageRec& rec, const SkMatrix& ctm) const; |
| |
| /** |
| * Adds stages to implement this shader. To ensure that the correct input coords are present |
| * in r,g MatrixRec::apply() must be called (unless the shader doesn't require it's input |
| * coords). The default impl creates shadercontext and calls that (not very efficient). |
| */ |
| virtual bool appendStages(const SkStageRec&, const SkShaders::MatrixRec&) const = 0; |
| |
| virtual SkImage* onIsAImage(SkMatrix*, SkTileMode[2]) const { |
| return nullptr; |
| } |
| |
| virtual SkRuntimeEffect* asRuntimeEffect() const { return nullptr; } |
| |
| static Type GetFlattenableType() { return kSkShader_Type; } |
| Type getFlattenableType() const override { return GetFlattenableType(); } |
| |
| static sk_sp<SkShaderBase> Deserialize(const void* data, size_t size, |
| const SkDeserialProcs* procs = nullptr) { |
| return sk_sp<SkShaderBase>(static_cast<SkShaderBase*>( |
| SkFlattenable::Deserialize(GetFlattenableType(), data, size, procs).release())); |
| } |
| static void RegisterFlattenables(); |
| |
| /** DEPRECATED. skbug.com/8941 |
| * If this shader can be represented by another shader + a localMatrix, return that shader and |
| * the localMatrix. If not, return nullptr and ignore the localMatrix parameter. |
| */ |
| virtual sk_sp<SkShader> makeAsALocalMatrixShader(SkMatrix* localMatrix) const; |
| |
| static SkMatrix ConcatLocalMatrices(const SkMatrix& parentLM, const SkMatrix& childLM) { |
| #if defined(SK_BUILD_FOR_ANDROID_FRAMEWORK) // b/256873449 |
| return SkMatrix::Concat(childLM, parentLM); |
| #endif |
| return SkMatrix::Concat(parentLM, childLM); |
| } |
| |
| protected: |
| SkShaderBase(); |
| |
| void flatten(SkWriteBuffer&) const override; |
| |
| #ifdef SK_ENABLE_LEGACY_SHADERCONTEXT |
| /** |
| * Specialize creating a SkShader context using the supplied allocator. |
| * @return pointer to context owned by the arena allocator. |
| */ |
| virtual Context* onMakeContext(const ContextRec&, SkArenaAlloc*) const { |
| return nullptr; |
| } |
| #endif |
| |
| virtual bool onAsLuminanceColor(SkColor4f*) const { |
| return false; |
| } |
| |
| friend class SkShaders::MatrixRec; |
| }; |
| inline SkShaderBase* as_SB(SkShader* shader) { |
| return static_cast<SkShaderBase*>(shader); |
| } |
| |
| inline const SkShaderBase* as_SB(const SkShader* shader) { |
| return static_cast<const SkShaderBase*>(shader); |
| } |
| |
| inline const SkShaderBase* as_SB(const sk_sp<SkShader>& shader) { |
| return static_cast<SkShaderBase*>(shader.get()); |
| } |
| |
| void SkRegisterBlendShaderFlattenable(); |
| void SkRegisterColor4ShaderFlattenable(); |
| void SkRegisterColorShaderFlattenable(); |
| void SkRegisterCoordClampShaderFlattenable(); |
| void SkRegisterEmptyShaderFlattenable(); |
| void SkRegisterPerlinNoiseShaderFlattenable(); |
| void SkRegisterWorkingColorSpaceShaderFlattenable(); |
| |
| #endif // SkShaderBase_DEFINED |