blob: 0148dbda9bc2cac3a86743d8673bea2df5fea579 [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/core/SkDevice.h"
#include "include/core/SkAlphaType.h"
#include "include/core/SkColorPriv.h"
#include "include/core/SkColorSpace.h"
#include "include/core/SkColorType.h"
#include "include/core/SkDrawable.h"
#include "include/core/SkImage.h"
#include "include/core/SkPaint.h"
#include "include/core/SkPath.h"
#include "include/core/SkPathTypes.h"
#include "include/core/SkPixmap.h"
#include "include/core/SkRRect.h"
#include "include/core/SkRSXform.h"
#include "include/core/SkScalar.h"
#include "include/core/SkShader.h"
#include "include/core/SkSpan.h"
#include "include/core/SkSurface.h"
#include "include/core/SkTypes.h"
#include "include/core/SkVertices.h"
#include "include/private/base/SkFloatingPoint.h"
#include "include/private/chromium/Slug.h" // IWYU pragma: keep
#include "src/core/SkEnumerate.h"
#include "src/core/SkImageFilterTypes.h"
#include "src/core/SkImageFilter_Base.h"
#include "src/core/SkLatticeIter.h"
#include "src/core/SkMatrixPriv.h"
#include "src/core/SkMemset.h"
#include "src/core/SkPathPriv.h"
#include "src/core/SkRectPriv.h"
#include "src/core/SkScalerContext.h"
#include "src/core/SkSpecialImage.h"
#include "src/text/GlyphRun.h"
#include "src/utils/SkPatchUtils.h"
#include <cstdint>
SkDevice::SkDevice(const SkImageInfo& info, const SkSurfaceProps& surfaceProps)
: fInfo(info)
, fSurfaceProps(surfaceProps) {
fDeviceToGlobal.setIdentity();
fGlobalToDevice.setIdentity();
}
void SkDevice::setDeviceCoordinateSystem(const SkM44& deviceToGlobal,
const SkM44& globalToDevice,
const SkM44& localToDevice,
int bufferOriginX,
int bufferOriginY) {
fDeviceToGlobal = deviceToGlobal;
fDeviceToGlobal.normalizePerspective();
fGlobalToDevice = globalToDevice;
fGlobalToDevice.normalizePerspective();
fLocalToDevice = localToDevice;
fLocalToDevice.normalizePerspective();
if (bufferOriginX | bufferOriginY) {
fDeviceToGlobal.preTranslate(bufferOriginX, bufferOriginY);
fGlobalToDevice.postTranslate(-bufferOriginX, -bufferOriginY);
fLocalToDevice.postTranslate(-bufferOriginX, -bufferOriginY);
}
fLocalToDevice33 = fLocalToDevice.asM33();
fLocalToDeviceDirty = true;
}
void SkDevice::setGlobalCTM(const SkM44& ctm) {
fLocalToDevice = ctm;
fLocalToDevice.normalizePerspective();
// Map from the global CTM state to this device's coordinate system.
fLocalToDevice.postConcat(fGlobalToDevice);
fLocalToDevice33 = fLocalToDevice.asM33();
fLocalToDeviceDirty = true;
}
bool SkDevice::isPixelAlignedToGlobal() const {
// pixelAligned is set to the identity + integer translation of the device-to-global matrix.
// If they are equal then the device is by definition pixel aligned.
SkM44 pixelAligned = SkM44();
pixelAligned.setRC(0, 3, SkScalarFloorToScalar(fDeviceToGlobal.rc(0, 3)));
pixelAligned.setRC(1, 3, SkScalarFloorToScalar(fDeviceToGlobal.rc(1, 3)));
return pixelAligned == fDeviceToGlobal;
}
SkIPoint SkDevice::getOrigin() const {
// getOrigin() is deprecated, the old origin has been moved into the fDeviceToGlobal matrix.
// This extracts the origin from the matrix, but asserts that a more complicated coordinate
// space hasn't been set of the device. This function can be removed once existing use cases
// have been updated to use the device-to-global matrix instead or have themselves been removed
// (e.g. Android's device-space clip regions are going away, and are not compatible with the
// generalized device coordinate system).
SkASSERT(this->isPixelAlignedToGlobal());
return SkIPoint::Make(SkScalarFloorToInt(fDeviceToGlobal.rc(0, 3)),
SkScalarFloorToInt(fDeviceToGlobal.rc(1, 3)));
}
SkMatrix SkDevice::getRelativeTransform(const SkDevice& dstDevice) const {
// To get the transform from this space to the other device's, transform from our space to
// global and then from global to the other device.
return (dstDevice.fGlobalToDevice * fDeviceToGlobal).asM33();
}
static inline bool is_int(float x) {
return x == (float) sk_float_round2int(x);
}
void SkDevice::drawRegion(const SkRegion& region, const SkPaint& paint) {
const SkMatrix& localToDevice = this->localToDevice();
bool isNonTranslate = localToDevice.getType() & ~(SkMatrix::kTranslate_Mask);
bool complexPaint = paint.getStyle() != SkPaint::kFill_Style || paint.getMaskFilter() ||
paint.getPathEffect();
bool antiAlias = paint.isAntiAlias() && (!is_int(localToDevice.getTranslateX()) ||
!is_int(localToDevice.getTranslateY()));
if (isNonTranslate || complexPaint || antiAlias) {
SkPath path;
region.getBoundaryPath(&path);
path.setIsVolatile(true);
return this->drawPath(path, paint, true);
}
SkRegion::Iterator it(region);
while (!it.done()) {
this->drawRect(SkRect::Make(it.rect()), paint);
it.next();
}
}
void SkDevice::drawArc(const SkArc& arc, const SkPaint& paint) {
SkPath path;
bool isFillNoPathEffect = SkPaint::kFill_Style == paint.getStyle() && !paint.getPathEffect();
SkPathPriv::CreateDrawArcPath(&path, arc, isFillNoPathEffect);
this->drawPath(path, paint);
}
void SkDevice::drawDRRect(const SkRRect& outer,
const SkRRect& inner, const SkPaint& paint) {
SkPath path;
path.addRRect(outer);
path.addRRect(inner);
path.setFillType(SkPathFillType::kEvenOdd);
path.setIsVolatile(true);
this->drawPath(path, paint, true);
}
void SkDevice::drawPatch(const SkPoint cubics[12], const SkColor colors[4],
const SkPoint texCoords[4], sk_sp<SkBlender> blender,
const SkPaint& paint) {
SkISize lod = SkPatchUtils::GetLevelOfDetail(cubics, &this->localToDevice());
auto vertices = SkPatchUtils::MakeVertices(cubics, colors, texCoords, lod.width(), lod.height(),
this->imageInfo().colorSpace());
if (vertices) {
this->drawVertices(vertices.get(), std::move(blender), paint);
}
}
void SkDevice::drawImageLattice(const SkImage* image, const SkCanvas::Lattice& lattice,
const SkRect& dst, SkFilterMode filter, const SkPaint& paint) {
SkLatticeIter iter(lattice, dst);
SkRect srcR, dstR;
SkColor c;
bool isFixedColor = false;
const SkImageInfo info = SkImageInfo::Make(1, 1, kBGRA_8888_SkColorType, kUnpremul_SkAlphaType);
while (iter.next(&srcR, &dstR, &isFixedColor, &c)) {
// TODO: support this fast-path for GPU images
if (isFixedColor || (srcR.width() <= 1.0f && srcR.height() <= 1.0f &&
image->readPixels(nullptr, info, &c, 4, srcR.fLeft, srcR.fTop))) {
// Fast draw with drawRect, if this is a patch containing a single color
// or if this is a patch containing a single pixel.
if (0 != c || !paint.isSrcOver()) {
SkPaint paintCopy(paint);
int alpha = SkAlphaMul(SkColorGetA(c), SkAlpha255To256(paint.getAlpha()));
paintCopy.setColor(SkColorSetA(c, alpha));
this->drawRect(dstR, paintCopy);
}
} else {
this->drawImageRect(image, &srcR, dstR, SkSamplingOptions(filter), paint,
SkCanvas::kStrict_SrcRectConstraint);
}
}
}
static SkPoint* quad_to_tris(SkPoint tris[6], const SkPoint quad[4]) {
tris[0] = quad[0];
tris[1] = quad[1];
tris[2] = quad[2];
tris[3] = quad[0];
tris[4] = quad[2];
tris[5] = quad[3];
return tris + 6;
}
void SkDevice::drawAtlas(const SkRSXform xform[],
const SkRect tex[],
const SkColor colors[],
int quadCount,
sk_sp<SkBlender> blender,
const SkPaint& paint) {
const int triCount = quadCount << 1;
const int vertexCount = triCount * 3;
uint32_t flags = SkVertices::kHasTexCoords_BuilderFlag;
if (colors) {
flags |= SkVertices::kHasColors_BuilderFlag;
}
SkVertices::Builder builder(SkVertices::kTriangles_VertexMode, vertexCount, 0, flags);
SkPoint* vPos = builder.positions();
SkPoint* vTex = builder.texCoords();
SkColor* vCol = builder.colors();
for (int i = 0; i < quadCount; ++i) {
SkPoint tmp[4];
xform[i].toQuad(tex[i].width(), tex[i].height(), tmp);
vPos = quad_to_tris(vPos, tmp);
tex[i].toQuad(tmp);
vTex = quad_to_tris(vTex, tmp);
if (colors) {
SkOpts::memset32(vCol, colors[i], 6);
vCol += 6;
}
}
this->drawVertices(builder.detach().get(), std::move(blender), paint);
}
void SkDevice::drawEdgeAAQuad(const SkRect& r, const SkPoint clip[4], SkCanvas::QuadAAFlags aa,
const SkColor4f& color, SkBlendMode mode) {
SkPaint paint;
paint.setColor4f(color);
paint.setBlendMode(mode);
paint.setAntiAlias(aa == SkCanvas::kAll_QuadAAFlags);
if (clip) {
// Draw the clip directly as a quad since it's a filled color with no local coords
SkPath clipPath;
clipPath.addPoly(clip, 4, true);
this->drawPath(clipPath, paint);
} else {
this->drawRect(r, paint);
}
}
void SkDevice::drawEdgeAAImageSet(const SkCanvas::ImageSetEntry images[], int count,
const SkPoint dstClips[], const SkMatrix preViewMatrices[],
const SkSamplingOptions& sampling, const SkPaint& paint,
SkCanvas::SrcRectConstraint constraint) {
SkASSERT(paint.getStyle() == SkPaint::kFill_Style);
SkASSERT(!paint.getPathEffect());
SkPaint entryPaint = paint;
const SkM44 baseLocalToDevice = this->localToDevice44();
int clipIndex = 0;
for (int i = 0; i < count; ++i) {
// TODO: Handle per-edge AA. Right now this mirrors the SkiaRenderer component of Chrome
// which turns off antialiasing unless all four edges should be antialiased. This avoids
// seaming in tiled composited layers.
entryPaint.setAntiAlias(images[i].fAAFlags == SkCanvas::kAll_QuadAAFlags);
entryPaint.setAlphaf(paint.getAlphaf() * images[i].fAlpha);
SkASSERT(images[i].fMatrixIndex < 0 || preViewMatrices);
if (images[i].fMatrixIndex >= 0) {
this->setLocalToDevice(baseLocalToDevice *
SkM44(preViewMatrices[images[i].fMatrixIndex]));
}
SkASSERT(!images[i].fHasClip || dstClips);
if (images[i].fHasClip) {
// Since drawImageRect requires a srcRect, the dst clip is implemented as a true clip
this->pushClipStack();
SkPath clipPath;
clipPath.addPoly(dstClips + clipIndex, 4, true);
this->clipPath(clipPath, SkClipOp::kIntersect, entryPaint.isAntiAlias());
clipIndex += 4;
}
this->drawImageRect(images[i].fImage.get(), &images[i].fSrcRect, images[i].fDstRect,
sampling, entryPaint, constraint);
if (images[i].fHasClip) {
this->popClipStack();
}
if (images[i].fMatrixIndex >= 0) {
this->setLocalToDevice(baseLocalToDevice);
}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
void SkDevice::drawDrawable(SkCanvas* canvas, SkDrawable* drawable, const SkMatrix* matrix) {
drawable->draw(canvas, matrix);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
void SkDevice::drawSpecial(SkSpecialImage*, const SkMatrix&, const SkSamplingOptions&,
const SkPaint&, SkCanvas::SrcRectConstraint) {}
void SkDevice::drawCoverageMask(const SkSpecialImage*, const SkMatrix& maskToDevice,
const SkSamplingOptions&, const SkPaint&) {
// This shouldn't be reached; SkCanvas will only call this if
// useDrawCoverageMaskForMaskFilters() is overridden to return true.
SK_ABORT("Must override if useDrawCoverageMaskForMaskFilters() is true");
}
sk_sp<SkSpecialImage> SkDevice::makeSpecial(const SkBitmap&) { return nullptr; }
sk_sp<SkSpecialImage> SkDevice::makeSpecial(const SkImage*) { return nullptr; }
sk_sp<SkSpecialImage> SkDevice::snapSpecial(const SkIRect&, bool forceCopy) { return nullptr; }
sk_sp<SkSpecialImage> SkDevice::snapSpecialScaled(const SkIRect& subset,
const SkISize& dstDims) {
return nullptr;
}
sk_sp<SkSpecialImage> SkDevice::snapSpecial() {
return this->snapSpecial(SkIRect::MakeWH(this->width(), this->height()));
}
sk_sp<skif::Backend> SkDevice::createImageFilteringBackend(const SkSurfaceProps& surfaceProps,
SkColorType colorType) const {
return skif::MakeRasterBackend(surfaceProps, colorType);
}
void SkDevice::drawDevice(SkDevice* device,
const SkSamplingOptions& sampling,
const SkPaint& paint) {
sk_sp<SkSpecialImage> deviceImage = device->snapSpecial();
if (deviceImage) {
// SkCanvas only calls drawDevice() when there are no filters (so the transform is pixel
// aligned). As such it can be drawn without clamping.
SkMatrix relativeTransform = device->getRelativeTransform(*this);
const bool strict = sampling != SkFilterMode::kNearest ||
!relativeTransform.isTranslate() ||
!SkScalarIsInt(relativeTransform.getTranslateX()) ||
!SkScalarIsInt(relativeTransform.getTranslateY());
this->drawSpecial(deviceImage.get(), relativeTransform, sampling, paint,
strict ? SkCanvas::kStrict_SrcRectConstraint
: SkCanvas::kFast_SrcRectConstraint);
}
}
void SkDevice::drawFilteredImage(const skif::Mapping& mapping,
SkSpecialImage* src,
SkColorType colorType,
const SkImageFilter* filter,
const SkSamplingOptions& sampling,
const SkPaint& paint) {
SkASSERT(!paint.getImageFilter() && !paint.getMaskFilter());
skif::LayerSpace<SkIRect> targetOutput = mapping.deviceToLayer(
skif::DeviceSpace<SkIRect>(this->devClipBounds()));
if (colorType == kUnknown_SkColorType) {
colorType = kRGBA_8888_SkColorType;
}
skif::Stats stats;
skif::Context ctx{this->createImageFilteringBackend(src ? src->props() : this->surfaceProps(),
colorType),
mapping,
targetOutput,
skif::FilterResult(sk_ref_sp(src)),
this->imageInfo().colorSpace(),
&stats};
SkIPoint offset;
sk_sp<SkSpecialImage> result = as_IFB(filter)->filterImage(ctx).imageAndOffset(ctx, &offset);
stats.reportStats();
if (result) {
SkMatrix deviceMatrixWithOffset = mapping.layerToDevice();
deviceMatrixWithOffset.preTranslate(offset.fX, offset.fY);
this->drawSpecial(result.get(), deviceMatrixWithOffset, sampling, paint);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
bool SkDevice::accessPixels(SkPixmap* pmap) {
SkPixmap tempStorage;
if (nullptr == pmap) {
pmap = &tempStorage;
}
return this->onAccessPixels(pmap);
}
bool SkDevice::peekPixels(SkPixmap* pmap) {
SkPixmap tempStorage;
if (nullptr == pmap) {
pmap = &tempStorage;
}
return this->onPeekPixels(pmap);
}
//////////////////////////////////////////////////////////////////////////////////////////
static sk_sp<SkShader> make_post_inverse_lm(const SkShader* shader, const SkMatrix& lm) {
SkMatrix inverse_lm;
if (!shader || !lm.invert(&inverse_lm)) {
return nullptr;
}
#if defined(SK_BUILD_FOR_ANDROID_FRAMEWORK) // b/256873449
// Legacy impl for old concat order. This does not work for arbitrary shader DAGs (when there is
// no single leaf local matrix).
// LMs pre-compose. In order to push a post local matrix, we peel off any existing local matrix
// and set a new local matrix of inverse_lm * prev_local_matrix.
SkMatrix prev_local_matrix;
const auto nested_shader = as_SB(shader)->makeAsALocalMatrixShader(&prev_local_matrix);
if (nested_shader) {
// unfurl the shader
shader = nested_shader.get();
}
return shader->makeWithLocalMatrix(inverse_lm * prev_local_matrix);
#endif
return shader->makeWithLocalMatrix(inverse_lm);
}
void SkDevice::drawGlyphRunList(SkCanvas* canvas,
const sktext::GlyphRunList& glyphRunList,
const SkPaint& paint) {
if (!this->localToDevice().isFinite()) {
return;
}
if (!glyphRunList.hasRSXForm()) {
this->onDrawGlyphRunList(canvas, glyphRunList, paint);
} else {
this->simplifyGlyphRunRSXFormAndRedraw(canvas, glyphRunList, paint);
}
}
void SkDevice::simplifyGlyphRunRSXFormAndRedraw(SkCanvas* canvas,
const sktext::GlyphRunList& glyphRunList,
const SkPaint& paint) {
for (const sktext::GlyphRun& run : glyphRunList) {
if (run.scaledRotations().empty()) {
auto subList = glyphRunList.builder()->makeGlyphRunList(run, paint, {0, 0});
this->drawGlyphRunList(canvas, subList, paint);
} else {
SkPoint origin = glyphRunList.origin();
SkPoint sharedPos{0, 0}; // we're at the origin
SkGlyphID sharedGlyphID;
sktext::GlyphRun glyphRun {
run.font(),
SkSpan<const SkPoint>{&sharedPos, 1},
SkSpan<const SkGlyphID>{&sharedGlyphID, 1},
SkSpan<const char>{},
SkSpan<const uint32_t>{},
SkSpan<const SkVector>{}
};
for (auto [i, glyphID, pos] : SkMakeEnumerate(run.source())) {
sharedGlyphID = glyphID;
auto [scos, ssin] = run.scaledRotations()[i];
SkRSXform rsxForm = SkRSXform::Make(scos, ssin, pos.x(), pos.y());
SkMatrix glyphToLocal;
glyphToLocal.setRSXform(rsxForm).postTranslate(origin.x(), origin.y());
// We want to rotate each glyph by the rsxform, but we don't want to rotate "space"
// (i.e. the shader that cares about the ctm) so we have to undo our little ctm
// trick with a localmatrixshader so that the shader draws as if there was no
// change to the ctm.
SkPaint invertingPaint{paint};
invertingPaint.setShader(make_post_inverse_lm(paint.getShader(), glyphToLocal));
SkAutoCanvasRestore acr(canvas, true);
canvas->concat(SkM44(glyphToLocal));
sktext::GlyphRunList subList =
glyphRunList.builder()->makeGlyphRunList(glyphRun, paint, {0, 0});
this->drawGlyphRunList(canvas, subList, invertingPaint);
}
}
}
}
sk_sp<sktext::gpu::Slug> SkDevice::convertGlyphRunListToSlug(
const sktext::GlyphRunList& glyphRunList, const SkPaint& paint) {
return nullptr;
}
void SkDevice::drawSlug(SkCanvas*, const sktext::gpu::Slug*, const SkPaint&) {
SK_ABORT("Slug drawing not supported.");
}
//////////////////////////////////////////////////////////////////////////////////////////
sk_sp<SkSurface> SkDevice::makeSurface(SkImageInfo const&, SkSurfaceProps const&) {
return nullptr;
}
SkScalerContextFlags SkDevice::scalerContextFlags() const {
// If we're doing linear blending, then we can disable the gamma hacks.
// Otherwise, leave them on. In either case, we still want the contrast boost:
// TODO: Can we be even smarter about mask gamma based on the dest transfer function?
const SkColorSpace* const cs = fInfo.colorSpace();
if (cs && cs->gammaIsLinear()) {
return SkScalerContextFlags::kBoostContrast;
} else {
return SkScalerContextFlags::kFakeGammaAndBoostContrast;
}
}
//////////////////////////////////////////////////////////////////////////////////////////
SkNoPixelsDevice::SkNoPixelsDevice(const SkIRect& bounds, const SkSurfaceProps& props)
: SkNoPixelsDevice(bounds, props, nullptr) {}
SkNoPixelsDevice::SkNoPixelsDevice(const SkIRect& bounds, const SkSurfaceProps& props,
sk_sp<SkColorSpace> colorSpace)
: SkDevice(SkImageInfo::Make(bounds.size(), kUnknown_SkColorType, kUnknown_SkAlphaType,
std::move(colorSpace)), props) {
// this fails if we enable this assert: DiscardableImageMapTest.GetDiscardableImagesInRectMaxImage
//SkASSERT(bounds.width() >= 0 && bounds.height() >= 0);
this->setOrigin(SkM44(), bounds.left(), bounds.top());
fClipStack.emplace_back(this->bounds(), /*isAA=*/false, /*isRect=*/true);
}
bool SkNoPixelsDevice::resetForNextPicture(const SkIRect& bounds) {
// Resetting should only happen on the root SkNoPixelsDevice, so its device-to-global
// transform should be pixel aligned.
SkASSERT(this->isPixelAlignedToGlobal());
// We can only reset the device as long as its dimensions are not changing.
if (bounds.width() != this->width() || bounds.height() != this->height()) {
return false;
}
// And the canvas should have restored back to the original save count.
SkASSERT(fClipStack.size() == 1 && fClipStack[0].fDeferredSaveCount == 0);
// But in the event that the clip was modified w/o a save(), reset the tracking state
fClipStack[0].fClipBounds = this->bounds();
fClipStack[0].fIsAA = false;
fClipStack[0].fIsRect = true;
this->setOrigin(SkM44(), bounds.left(), bounds.top());
return true;
}
void SkNoPixelsDevice::pushClipStack() {
SkASSERT(!fClipStack.empty());
fClipStack.back().fDeferredSaveCount++;
}
void SkNoPixelsDevice::popClipStack() {
SkASSERT(!fClipStack.empty());
if (fClipStack.back().fDeferredSaveCount > 0) {
fClipStack.back().fDeferredSaveCount--;
} else {
fClipStack.pop_back();
SkASSERT(!fClipStack.empty());
}
}
SkNoPixelsDevice::ClipState& SkNoPixelsDevice::writableClip() {
SkASSERT(!fClipStack.empty());
ClipState& current = fClipStack.back();
if (current.fDeferredSaveCount > 0) {
current.fDeferredSaveCount--;
// Stash current state in case 'current' moves during a resize
SkIRect bounds = current.fClipBounds;
bool aa = current.fIsAA;
bool rect = current.fIsRect;
return fClipStack.emplace_back(bounds, aa, rect);
} else {
return current;
}
}
void SkNoPixelsDevice::clipRect(const SkRect& rect, SkClipOp op, bool aa) {
this->writableClip().op(op, this->localToDevice44(), rect,
aa, /*fillsBounds=*/true);
}
void SkNoPixelsDevice::clipRRect(const SkRRect& rrect, SkClipOp op, bool aa) {
this->writableClip().op(op, this->localToDevice44(), rrect.getBounds(),
aa, /*fillsBounds=*/rrect.isRect());
}
void SkNoPixelsDevice::clipPath(const SkPath& path, SkClipOp op, bool aa) {
// Toggle op if the path is inverse filled
if (path.isInverseFillType()) {
op = (op == SkClipOp::kDifference ? SkClipOp::kIntersect : SkClipOp::kDifference);
}
this->writableClip().op(op, this->localToDevice44(), path.getBounds(),
aa, /*fillsBounds=*/false);
}
void SkNoPixelsDevice::clipRegion(const SkRegion& globalRgn, SkClipOp op) {
this->writableClip().op(op, this->globalToDevice(), SkRect::Make(globalRgn.getBounds()),
/*isAA=*/false, /*fillsBounds=*/globalRgn.isRect());
}
void SkNoPixelsDevice::onClipShader(sk_sp<SkShader> shader) {
this->writableClip().fIsRect = false;
}
void SkNoPixelsDevice::replaceClip(const SkIRect& rect) {
SkIRect deviceRect = SkMatrixPriv::MapRect(this->globalToDevice(), SkRect::Make(rect)).round();
if (!deviceRect.intersect(this->bounds())) {
deviceRect.setEmpty();
}
auto& clip = this->writableClip();
clip.fClipBounds = deviceRect;
clip.fIsRect = true;
clip.fIsAA = false;
}
void SkNoPixelsDevice::ClipState::op(SkClipOp op, const SkM44& transform, const SkRect& bounds,
bool isAA, bool fillsBounds) {
const bool isRect = fillsBounds && SkMatrixPriv::IsScaleTranslateAsM33(transform);
fIsAA |= isAA;
SkRect devBounds = bounds.isEmpty() ? SkRect::MakeEmpty()
: SkMatrixPriv::MapRect(transform, bounds);
if (op == SkClipOp::kIntersect) {
if (!fClipBounds.intersect(isAA ? devBounds.roundOut() : devBounds.round())) {
fClipBounds.setEmpty();
}
// A rectangular clip remains rectangular if the intersection is a rect
fIsRect &= isRect;
} else if (isRect) {
// Conservatively, we can leave the clip bounds unchanged and respect the difference op.
// But, if we're subtracting out an axis-aligned rectangle that fully spans our existing
// clip on an axis, we can shrink the clip bounds.
SkASSERT(op == SkClipOp::kDifference);
SkIRect difference;
if (SkRectPriv::Subtract(fClipBounds, isAA ? devBounds.roundIn() : devBounds.round(),
&difference)) {
fClipBounds = difference;
} else {
// The difference couldn't be represented as a rect
fIsRect = false;
}
} else {
// A non-rect shape was applied
fIsRect = false;
}
}