blob: e5a9ac2685870e7396c620e2747ee4cd1289575d [file] [log] [blame]
/*
* Copyright 2023 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/private/base/SkFloatingPoint.h"
#include <algorithm>
#include <cmath>
#include <cstring>
#include <limits>
// Return the positive magnitude of a double.
// * normalized - given 1.bbb...bbb x 2^e return 2^e.
// * subnormal - return 0.
// * nan & infinity - return infinity
static double magnitude(double a) {
static constexpr int64_t extractMagnitude =
0b0'11111111111'0000000000000000000000000000000000000000000000000000;
int64_t bits;
memcpy(&bits, &a, sizeof(bits));
bits &= extractMagnitude;
double out;
memcpy(&out, &bits, sizeof(out));
return out;
}
bool sk_doubles_nearly_equal_ulps(double a, double b, uint8_t maxUlpsDiff) {
// The maximum magnitude to construct the ulp tolerance. The proper magnitude for
// subnormal numbers is minMagnitude, which is 2^-1021, so if a and b are subnormal (having a
// magnitude of 0) use minMagnitude. If a or b are infinity or nan, then maxMagnitude will be
// +infinity. This means the tolerance will also be infinity, but the expression b - a below
// will either be NaN or infinity, so a tolerance of infinity doesn't matter.
static constexpr double minMagnitude = std::numeric_limits<double>::min();
const double maxMagnitude = std::max(std::max(magnitude(a), minMagnitude), magnitude(b));
// Given a magnitude, this is the factor that generates the ulp for that magnitude.
// In numbers, 2 ^ (-precision + 1) = 2 ^ -52.
static constexpr double ulpFactor = std::numeric_limits<double>::epsilon();
// The tolerance in ULPs given the maxMagnitude. Because the return statement must use <
// for comparison instead of <= to correctly handle infinities, bump maxUlpsDiff up to get
// the full maxUlpsDiff range.
const double tolerance = maxMagnitude * (ulpFactor * (maxUlpsDiff + 1));
// The expression a == b is mainly for handling infinities, but it also catches the exact
// equals.
return a == b || std::abs(b - a) < tolerance;
}
bool sk_double_nearly_zero(double a) {
return a == 0 || fabs(a) < std::numeric_limits<float>::epsilon();
}