blob: d815fdefee1614ceaf50d690aae1e3dec1aec5da [file] [log] [blame]
/*
* Copyright 2012 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/base/SkBezierCurves.h"
#include "include/private/base/SkAssert.h"
#include "include/private/base/SkFloatingPoint.h"
#include "include/private/base/SkPoint_impl.h"
#include "src/base/SkCubics.h"
#include "src/base/SkQuads.h"
#include <cstddef>
static inline double interpolate(double A, double B, double t) {
return A + (B - A) * t;
}
std::array<double, 2> SkBezierCubic::EvalAt(const double curve[8], double t) {
const auto in_X = [&curve](size_t n) { return curve[2*n]; };
const auto in_Y = [&curve](size_t n) { return curve[2*n + 1]; };
// Two semi-common fast paths
if (t == 0) {
return {in_X(0), in_Y(0)};
}
if (t == 1) {
return {in_X(3), in_Y(3)};
}
// X(t) = X_0*(1-t)^3 + 3*X_1*t(1-t)^2 + 3*X_2*t^2(1-t) + X_3*t^3
// Y(t) = Y_0*(1-t)^3 + 3*Y_1*t(1-t)^2 + 3*Y_2*t^2(1-t) + Y_3*t^3
// Some compilers are smart enough and have sufficient registers/intrinsics to write optimal
// code from
// double one_minus_t = 1 - t;
// double a = one_minus_t * one_minus_t * one_minus_t;
// double b = 3 * one_minus_t * one_minus_t * t;
// double c = 3 * one_minus_t * t * t;
// double d = t * t * t;
// However, some (e.g. when compiling for ARM) fail to do so, so we use this form
// to help more compilers generate smaller/faster ASM. https://godbolt.org/z/M6jG9x45c
double one_minus_t = 1 - t;
double one_minus_t_squared = one_minus_t * one_minus_t;
double a = (one_minus_t_squared * one_minus_t);
double b = 3 * one_minus_t_squared * t;
double t_squared = t * t;
double c = 3 * one_minus_t * t_squared;
double d = t_squared * t;
return {a * in_X(0) + b * in_X(1) + c * in_X(2) + d * in_X(3),
a * in_Y(0) + b * in_Y(1) + c * in_Y(2) + d * in_Y(3)};
}
// Perform subdivision using De Casteljau's algorithm, that is, repeated linear
// interpolation between adjacent points.
void SkBezierCubic::Subdivide(const double curve[8], double t,
double twoCurves[14]) {
SkASSERT(0.0 <= t && t <= 1.0);
// We split the curve "in" into two curves "alpha" and "beta"
const auto in_X = [&curve](size_t n) { return curve[2*n]; };
const auto in_Y = [&curve](size_t n) { return curve[2*n + 1]; };
const auto alpha_X = [&twoCurves](size_t n) -> double& { return twoCurves[2*n]; };
const auto alpha_Y = [&twoCurves](size_t n) -> double& { return twoCurves[2*n + 1]; };
const auto beta_X = [&twoCurves](size_t n) -> double& { return twoCurves[2*n + 6]; };
const auto beta_Y = [&twoCurves](size_t n) -> double& { return twoCurves[2*n + 7]; };
alpha_X(0) = in_X(0);
alpha_Y(0) = in_Y(0);
beta_X(3) = in_X(3);
beta_Y(3) = in_Y(3);
double x01 = interpolate(in_X(0), in_X(1), t);
double y01 = interpolate(in_Y(0), in_Y(1), t);
double x12 = interpolate(in_X(1), in_X(2), t);
double y12 = interpolate(in_Y(1), in_Y(2), t);
double x23 = interpolate(in_X(2), in_X(3), t);
double y23 = interpolate(in_Y(2), in_Y(3), t);
alpha_X(1) = x01;
alpha_Y(1) = y01;
beta_X(2) = x23;
beta_Y(2) = y23;
alpha_X(2) = interpolate(x01, x12, t);
alpha_Y(2) = interpolate(y01, y12, t);
beta_X(1) = interpolate(x12, x23, t);
beta_Y(1) = interpolate(y12, y23, t);
alpha_X(3) /*= beta_X(0) */ = interpolate(alpha_X(2), beta_X(1), t);
alpha_Y(3) /*= beta_Y(0) */ = interpolate(alpha_Y(2), beta_Y(1), t);
}
std::array<double, 4> SkBezierCubic::ConvertToPolynomial(const double curve[8], bool yValues) {
const double* offset_curve = yValues ? curve + 1 : curve;
const auto P = [&offset_curve](size_t n) { return offset_curve[2*n]; };
// A cubic Bézier curve is interpolated as follows:
// c(t) = (1 - t)^3 P_0 + 3t(1 - t)^2 P_1 + 3t^2 (1 - t) P_2 + t^3 P_3
// = (-P_0 + 3P_1 + -3P_2 + P_3) t^3 + (3P_0 - 6P_1 + 3P_2) t^2 +
// (-3P_0 + 3P_1) t + P_0
// Where P_N is the Nth point. The second step expands the polynomial and groups
// by powers of t. The desired output is a cubic formula, so we just need to
// combine the appropriate points to make the coefficients.
std::array<double, 4> results;
results[0] = -P(0) + 3*P(1) - 3*P(2) + P(3);
results[1] = 3*P(0) - 6*P(1) + 3*P(2);
results[2] = -3*P(0) + 3*P(1);
results[3] = P(0);
return results;
}
namespace {
struct DPoint {
DPoint(double x_, double y_) : x{x_}, y{y_} {}
DPoint(SkPoint p) : x{p.fX}, y{p.fY} {}
double x, y;
};
DPoint operator- (DPoint a) {
return {-a.x, -a.y};
}
DPoint operator+ (DPoint a, DPoint b) {
return {a.x + b.x, a.y + b.y};
}
DPoint operator- (DPoint a, DPoint b) {
return {a.x - b.x, a.y - b.y};
}
DPoint operator* (double s, DPoint a) {
return {s * a.x, s * a.y};
}
// Pin to 0 or 1 if within half a float ulp of 0 or 1.
double pinTRange(double t) {
// The ULPs around 0 are tiny compared to the ULPs around 1. Shift to 1 to use the same
// size ULPs.
if (sk_double_to_float(t + 1.0) == 1.0f) {
return 0.0;
} else if (sk_double_to_float(t) == 1.0f) {
return 1.0;
}
return t;
}
} // namespace
SkSpan<const float>
SkBezierCubic::IntersectWithHorizontalLine(
SkSpan<const SkPoint> controlPoints, float yIntercept, float* intersectionStorage) {
SkASSERT(controlPoints.size() >= 4);
const DPoint P0 = controlPoints[0],
P1 = controlPoints[1],
P2 = controlPoints[2],
P3 = controlPoints[3];
const DPoint A = -P0 + 3*P1 - 3*P2 + P3,
B = 3*P0 - 6*P1 + 3*P2,
C = -3*P0 + 3*P1,
D = P0;
return Intersect(A.x, B.x, C.x, D.x, A.y, B.y, C.y, D.y, yIntercept, intersectionStorage);
}
SkSpan<const float>
SkBezierCubic::Intersect(double AX, double BX, double CX, double DX,
double AY, double BY, double CY, double DY,
float toIntersect, float intersectionsStorage[3]) {
double roots[3];
SkSpan<double> ts = SkSpan(roots,
SkCubics::RootsReal(AY, BY, CY, DY - toIntersect, roots));
int intersectionCount = 0;
for (double t : ts) {
const double pinnedT = pinTRange(t);
if (0 <= pinnedT && pinnedT <= 1) {
intersectionsStorage[intersectionCount++] = SkCubics::EvalAt(AX, BX, CX, DX, pinnedT);
}
}
return {intersectionsStorage, intersectionCount};
}
SkSpan<const float>
SkBezierQuad::IntersectWithHorizontalLine(SkSpan<const SkPoint> controlPoints, float yIntercept,
float intersectionStorage[2]) {
SkASSERT(controlPoints.size() >= 3);
const DPoint p0 = controlPoints[0],
p1 = controlPoints[1],
p2 = controlPoints[2];
// Calculate A, B, C using doubles to reduce round-off error.
const DPoint A = p0 - 2 * p1 + p2,
// Remember we are generating the polynomial in the form A*t^2 -2*B*t + C, so the factor
// of 2 is not needed and the term is negated. This term for a Bézier curve is usually
// 2(p1-p0).
B = p0 - p1,
C = p0;
return Intersect(A.x, B.x, C.x, A.y, B.y, C.y, yIntercept, intersectionStorage);
}
SkSpan<const float> SkBezierQuad::Intersect(
double AX, double BX, double CX, double AY, double BY, double CY,
double yIntercept, float intersectionStorage[2]) {
auto [discriminant, r0, r1] = SkQuads::Roots(AY, BY, CY - yIntercept);
int intersectionCount = 0;
// Round the roots to the nearest float to generate the values t. Valid t's are on the
// domain [0, 1].
const double t0 = pinTRange(r0);
if (0 <= t0 && t0 <= 1) {
intersectionStorage[intersectionCount++] = SkQuads::EvalAt(AX, -2 * BX, CX, t0);
}
const double t1 = pinTRange(r1);
if (0 <= t1 && t1 <= 1 && t1 != t0) {
intersectionStorage[intersectionCount++] = SkQuads::EvalAt(AX, -2 * BX, CX, t1);
}
return SkSpan{intersectionStorage, intersectionCount};
}