| /* |
| * Copyright 2021 Google LLC |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/graphite/geom/Transform_graphite.h" |
| |
| #include "src/base/SkVx.h" |
| #include "src/core/SkMatrixPriv.h" |
| #include "src/gpu/graphite/geom/Rect.h" |
| |
| namespace skgpu::graphite { |
| |
| namespace { |
| |
| Rect map_rect(const SkM44& m, const Rect& r) { |
| // TODO: Can Rect's (l,t,-r,-b) structure be used to optimize mapRect? |
| // TODO: Can take this opportunity to implement 100% accurate perspective plane clipping since |
| // it doesn't have to match raster/ganesh rendering behavior. |
| return SkMatrixPriv::MapRect(m, r.asSkRect()); |
| } |
| |
| void map_points(const SkM44& m, const SkV4* in, SkV4* out, int count) { |
| // TODO: These maybe should go into SkM44, since bulk point mapping seems generally useful |
| auto c0 = skvx::float4::Load(SkMatrixPriv::M44ColMajor(m) + 0); |
| auto c1 = skvx::float4::Load(SkMatrixPriv::M44ColMajor(m) + 4); |
| auto c2 = skvx::float4::Load(SkMatrixPriv::M44ColMajor(m) + 8); |
| auto c3 = skvx::float4::Load(SkMatrixPriv::M44ColMajor(m) + 12); |
| |
| for (int i = 0; i < count; ++i) { |
| auto p = (c0 * in[i].x) + (c1 * in[i].y) + (c2 * in[i].z) + (c3 * in[i].w); |
| p.store(out + i); |
| } |
| } |
| |
| Transform::Type get_matrix_info(const SkM44& m, SkM44* inverse, SkV2* scale) { |
| // First compute the inverse. |
| // TODO: Alternatively we could compute type first and have type-specific inverses, but it seems |
| // useful to ensure any non-invalid matrix returns true from SkM44::invert. |
| if (!m.invert(inverse)) { |
| *scale = {1.f, 1.f}; |
| return Transform::Type::kInvalid; |
| } |
| |
| static constexpr SkV4 kNoPerspective = {0.f, 0.f, 0.f, 1.f}; |
| static constexpr SkV4 kNoZ = {0.f, 0.f, 1.f, 0.f}; |
| if (m.row(3) != kNoPerspective || m.col(2) != kNoZ || m.row(2) != kNoZ) { |
| // TODO: Use SkMatrixPriv::DifferentialAreaScale, but we need a representative point then. |
| // Or something like lengths of upper 2x2 divided by w? |
| *scale = {1.f, 1.f}; |
| return Transform::Type::kProjection; |
| } |
| |
| // [sx kx 0 tx] |
| // At this point, we know that m is of the form [ky sy 0 ty] |
| // [0 0 1 0 ] |
| // [0 0 0 1 ] |
| // Other than kIdentity, none of the types depend on (tx, ty). The remaining types are |
| // identified by considering the upper 2x2. |
| float sx = m.rc(0, 0); |
| float sy = m.rc(1, 1); |
| float kx = m.rc(0, 1); |
| float ky = m.rc(1, 0); |
| if (kx == 0.f && ky == 0.f) { |
| // 2x2 is a diagonal matrix |
| *scale = {std::abs(sx), std::abs(sy)}; |
| if (sx == 1.f && sy == 1.f && m.rc(0, 3) == 0.f && m.rc(1, 3) == 0.f) { |
| return Transform::Type::kIdentity; |
| } else if (sx > 0.f && sy > 0.f) { |
| return Transform::Type::kSimpleRectStaysRect; |
| } else { |
| // We don't need to worry about sx or sy being 0 here because that would imply the |
| // matrix wasn't invertible and that was already tested. |
| SkASSERT(sx != 0.f && sy != 0.f); |
| return Transform::Type::kRectStaysRect; |
| } |
| } else if (sx == 0.f && sy == 0.f) { |
| // 2x2 is an anti-diagonal matrix and represents a 90 or 270 degree rotation plus optional |
| // scale and translate. Similar to before, kx and ky can't be 0 or m wouldn't be invertible. |
| SkASSERT(kx != 0.f && ky != 0.f); |
| *scale = {std::abs(ky), std::abs(kx)}; |
| return Transform::Type::kRectStaysRect; |
| } else { |
| *scale = {SkV2{sx, ky}.length(), SkV2{kx, sy}.length()}; |
| return Transform::Type::kAffine; |
| } |
| } |
| |
| } // anonymous namespace |
| |
| Transform::Transform(const SkM44& m) : fM(m) { |
| fType = get_matrix_info(m, &fInvM, &fScale); |
| } |
| |
| const Transform& Transform::Identity() { |
| static const Transform kIdentity{SkM44()}; |
| return kIdentity; |
| } |
| const Transform& Transform::Invalid() { |
| static const Transform kInvalid{SkM44(SkM44::kNaN_Constructor)}; |
| return kInvalid; |
| } |
| |
| bool Transform::operator==(const Transform& t) const { |
| // Checking fM should be sufficient as all other values are computed from it. |
| SkASSERT(fM != t.fM || (fInvM == t.fInvM && fType == t.fType && fScale == t.fScale)); |
| return fM == t.fM; |
| } |
| |
| Rect Transform::mapRect(const Rect& rect) const { return map_rect(fM, rect); } |
| Rect Transform::inverseMapRect(const Rect& rect) const { return map_rect(fInvM, rect); } |
| |
| void Transform::mapPoints(const Rect& localRect, SkV4 deviceOut[4]) const { |
| SkV2 localCorners[4] = {{localRect.left(), localRect.top()}, |
| {localRect.right(), localRect.top()}, |
| {localRect.right(), localRect.bot()}, |
| {localRect.left(), localRect.bot()}}; |
| this->mapPoints(localCorners, deviceOut, 4); |
| } |
| |
| void Transform::mapPoints(const SkV2* localIn, SkV4* deviceOut, int count) const { |
| // TODO: These maybe should go into SkM44, since bulk point mapping seems generally useful |
| auto c0 = skvx::float4::Load(SkMatrixPriv::M44ColMajor(fM) + 0); |
| auto c1 = skvx::float4::Load(SkMatrixPriv::M44ColMajor(fM) + 4); |
| // skip c2 since localIn's z is assumed to be 0 |
| auto c3 = skvx::float4::Load(SkMatrixPriv::M44ColMajor(fM) + 12); |
| |
| for (int i = 0; i < count; ++i) { |
| auto p = c0 * localIn[i].x + c1 * localIn[i].y /* + c2*0.f */ + c3 /* *1.f */; |
| p.store(deviceOut + i); |
| } |
| } |
| |
| void Transform::mapPoints(const SkV4* localIn, SkV4* deviceOut, int count) const { |
| return map_points(fM, localIn, deviceOut, count); |
| } |
| |
| void Transform::inverseMapPoints(const SkV4* deviceIn, SkV4* localOut, int count) const { |
| return map_points(fInvM, deviceIn, localOut, count); |
| } |
| |
| Transform Transform::preTranslate(float x, float y) const { |
| Transform t = *this; |
| t.fM.preTranslate(x, y); |
| t.fInvM.postTranslate(-x, -y); |
| |
| // Under normal conditions, type and scale won't change, but if we've overflown the translation |
| // components, mark the matrix as invalid. |
| if (!t.fM.isFinite() || !t.fInvM.isFinite()) { |
| t.fType = Type::kInvalid; |
| } |
| return t; |
| } |
| |
| Transform Transform::postTranslate(float x, float y) const { |
| Transform t = *this; |
| t.fM.postTranslate(x, y); |
| t.fInvM.preTranslate(-x, -y); |
| if (!t.fM.isFinite() || !t.fInvM.isFinite()) { |
| t.fType = Type::kInvalid; |
| } |
| return t; |
| } |
| |
| Transform Transform::concat(const Transform& t) const { |
| Transform c = {fM * t.fM, t.fInvM * fInvM, std::max(fType, t.fType), {fScale * t.fScale}}; |
| if (!c.fM.isFinite() || !c.fInvM.isFinite()) { |
| c.fType = Type::kInvalid; |
| } |
| return c; |
| } |
| |
| Transform Transform::concatInverse(const Transform& t) const { |
| Transform c = {fM * t.fInvM, t.fM * fInvM, std::max(fType, t.fType), {fScale * (1.f/t.fScale)}}; |
| if (!c.fM.isFinite() || !c.fInvM.isFinite()) { |
| c.fType = Type::kInvalid; |
| } |
| return c; |
| } |
| |
| Transform Transform::concatInverse(const SkM44& t) const { |
| // saves a multiply compared to inverting just t and then computing fM*t^-1 and t*fInvM, if we |
| // instead start with (t*fInvM) and swap definition of computed fM and fInvM. |
| Transform inverse{t * fInvM}; |
| return {inverse.fInvM, inverse.fM, inverse.fType, 1.f / inverse.fScale}; |
| } |
| |
| } // namespace skgpu::graphite |