blob: bf60730c1df95cba2a6c052f8240fb21830648b6 [file] [log] [blame]
/*
* Copyright 2022 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/graphite/ShaderCodeDictionary.h"
#include "include/core/SkSamplingOptions.h"
#include "include/core/SkTileMode.h"
#include "include/effects/SkRuntimeEffect.h"
#include "include/gpu/graphite/Context.h"
#include "include/private/SkOpts_spi.h"
#include "include/private/SkSLString.h"
#include "src/core/SkColorSpacePriv.h"
#include "src/core/SkColorSpaceXformSteps.h"
#include "src/core/SkRuntimeEffectPriv.h"
#include "src/core/SkSLTypeShared.h"
#include "src/gpu/graphite/Caps.h"
#include "src/gpu/graphite/ContextUtils.h"
#include "src/gpu/graphite/Renderer.h"
#include "src/gpu/graphite/RuntimeEffectDictionary.h"
#include "src/sksl/codegen/SkSLPipelineStageCodeGenerator.h"
#include "src/sksl/ir/SkSLVarDeclarations.h"
#include <new>
namespace {
std::string get_mangled_name(const std::string& baseName, int manglingSuffix) {
return baseName + "_" + std::to_string(manglingSuffix);
}
} // anonymous namespace
namespace skgpu::graphite {
using DataPayloadField = PaintParamsKey::DataPayloadField;
using DataPayloadType = PaintParamsKey::DataPayloadType;
std::string ShaderSnippet::getMangledUniformName(const ShaderInfo& shaderInfo,
int uniformIdx,
int mangleId) const {
std::string result;
result = fUniforms[uniformIdx].name() + std::string("_") + std::to_string(mangleId);
if (shaderInfo.ssboIndex()) {
result = EmitStorageBufferAccess("fs", shaderInfo.ssboIndex(), result.c_str());
}
return result;
}
std::string ShaderSnippet::getMangledSamplerName(int samplerIdx, int mangleId) const {
std::string result;
result = fTexturesAndSamplers[samplerIdx].name() + std::string("_") + std::to_string(mangleId);
return result;
}
// Returns an expression to invoke this entry.
static std::string emit_expression_for_entry(const ShaderInfo& shaderInfo,
int entryIndex,
ShaderSnippet::Args args) {
const PaintParamsKey::BlockReader& reader = shaderInfo.blockReader(entryIndex);
const ShaderSnippet* entry = reader.entry();
return entry->fExpressionGenerator(shaderInfo, entryIndex, reader, args);
}
// Emit the glue code needed to invoke a single static helper isolated within its own scope.
// Glue code will assign the resulting color into a variable `half4 outColor%d`, where the %d is
// filled in with 'entryIndex'.
static std::string emit_glue_code_for_entry(const ShaderInfo& shaderInfo,
int entryIndex,
const ShaderSnippet::Args& args,
std::string* funcBody) {
const ShaderSnippet* entry = shaderInfo.blockReader(entryIndex).entry();
std::string expr = emit_expression_for_entry(shaderInfo, entryIndex, args);
std::string outputVar = get_mangled_name("outColor", entryIndex);
SkSL::String::appendf(funcBody,
"// %s\n"
"half4 %s = %s;",
entry->fName,
outputVar.c_str(),
expr.c_str());
return outputVar;
}
static void emit_preamble_for_entry(const ShaderInfo& shaderInfo,
int* entryIndex,
std::string* preamble) {
const PaintParamsKey::BlockReader& reader = shaderInfo.blockReader(*entryIndex);
[[maybe_unused]] int startingEntryIndex = *entryIndex;
reader.entry()->fPreambleGenerator(shaderInfo, entryIndex, reader, preamble);
// Preamble generators are responsible for increasing the entry index as entries are consumed.
SkASSERT(*entryIndex > startingEntryIndex);
}
// The current, incomplete, model for shader construction is:
// - Static code snippets (which can have an arbitrary signature) live in the Graphite
// pre-compiled module, which is located at `src/sksl/sksl_graphite_frag.sksl`.
// - Glue code is generated in a `main` method which calls these static code snippets.
// The glue code is responsible for:
// 1) gathering the correct (mangled) uniforms
// 2) passing the uniforms and any other parameters to the helper method
// - The result of the final code snippet is then copied into "sk_FragColor".
// Note: each entry's 'fStaticFunctionName' field is expected to match the name of a function
// in the Graphite pre-compiled module.
std::string ShaderInfo::toSkSL(const ResourceBindingRequirements& bindingReqs,
const RenderStep* step,
const bool useStorageBuffers,
const bool defineLocalCoordsVarying,
int* numTexturesAndSamplersUsed) const {
std::string preamble = EmitVaryings(step,
/*direction=*/"in",
/*emitShadingSsboIndexVarying=*/useStorageBuffers,
defineLocalCoordsVarying);
// The uniforms are mangled by having their index in 'fEntries' as a suffix (i.e., "_%d")
// TODO: replace hard-coded bufferIDs with the backend's step and paint uniform-buffer indices.
// TODO: The use of these indices is Metal-specific. We should replace these functions with
// API-independent ones.
if (step->numUniforms() > 0) {
preamble += EmitRenderStepUniforms(
/*bufferID=*/1, "Step", bindingReqs.fUniformBufferLayout, step->uniforms());
}
if (this->ssboIndex()) {
preamble += EmitPaintParamsStorageBuffer(/*bufferID=*/2, "FS", "fs", fBlockReaders);
} else {
preamble += EmitPaintParamsUniforms(
/*bufferID=*/2,
"FS",
useStorageBuffers ? bindingReqs.fStorageBufferLayout
: bindingReqs.fUniformBufferLayout,
fBlockReaders);
}
{
int binding = 0;
preamble += EmitTexturesAndSamplers(bindingReqs, fBlockReaders, &binding);
if (step->hasTextures()) {
preamble += step->texturesAndSamplersSkSL(bindingReqs, &binding);
}
// Report back to the caller how many textures and samplers are used.
if (numTexturesAndSamplersUsed) {
*numTexturesAndSamplersUsed = binding;
}
}
std::string mainBody = "void main() {";
// Set initial color. This will typically be optimized out by SkSL in favor of the paint
// specifying a color with a solid color shader.
std::string lastOutputVar = "initialColor";
mainBody += "half4 initialColor = half4(0);";
if (step->emitsPrimitiveColor()) {
mainBody += "half4 primitiveColor;";
mainBody += step->fragmentColorSkSL();
}
for (int entryIndex = 0; entryIndex < (int)fBlockReaders.size();) {
// Emit shader main body code. This never alters the preamble or increases the entry index.
static constexpr char kUnusedDestColor[] = "half4(1)";
static constexpr char kUnusedLocalCoordinates[] = "float2(0)";
const std::string localCoordinates = this->needsLocalCoords() ? "localCoordsVar"
: kUnusedLocalCoordinates;
lastOutputVar = emit_glue_code_for_entry(*this, entryIndex, {lastOutputVar,
kUnusedDestColor, localCoordinates},
&mainBody);
// Emit preamble code. This iterates over all the children as well, and increases the entry
// index as we go.
emit_preamble_for_entry(*this, &entryIndex, &preamble);
}
if (step->emitsCoverage()) {
mainBody += "half4 outputCoverage;";
mainBody += step->fragmentCoverageSkSL();
SkSL::String::appendf(&mainBody, "sk_FragColor = %s * outputCoverage;",
lastOutputVar.c_str());
} else {
SkSL::String::appendf(&mainBody, "sk_FragColor = %s;", lastOutputVar.c_str());
}
mainBody += "}\n";
return preamble + "\n" + mainBody;
}
ShaderCodeDictionary::Entry* ShaderCodeDictionary::makeEntry(const PaintParamsKey& key,
const skgpu::BlendInfo& blendInfo) {
uint8_t* newKeyData = fArena.makeArray<uint8_t>(key.sizeInBytes());
memcpy(newKeyData, key.data(), key.sizeInBytes());
SkSpan<const uint8_t> newKeyAsSpan = SkSpan(newKeyData, key.sizeInBytes());
return fArena.make([&](void *ptr) { return new(ptr) Entry(newKeyAsSpan, blendInfo); });
}
size_t ShaderCodeDictionary::PaintParamsKeyPtr::Hash::operator()(PaintParamsKeyPtr p) const {
return SkOpts::hash_fn(p.fKey->data(), p.fKey->sizeInBytes(), 0);
}
size_t ShaderCodeDictionary::RuntimeEffectKey::Hash::operator()(RuntimeEffectKey k) const {
return SkOpts::hash_fn(&k, sizeof(k), 0);
}
const ShaderCodeDictionary::Entry* ShaderCodeDictionary::findOrCreate(
PaintParamsKeyBuilder* builder) {
PaintParamsKey key = builder->lockAsKey();
SkAutoSpinlock lock{fSpinLock};
Entry** existingEntry = fHash.find(PaintParamsKeyPtr{&key});
if (existingEntry) {
SkASSERT(fEntryVector[(*existingEntry)->uniqueID().asUInt()] == *existingEntry);
return *existingEntry;
}
Entry* newEntry = this->makeEntry(key, builder->blendInfo());
newEntry->setUniqueID(fEntryVector.size());
fHash.set(PaintParamsKeyPtr{&newEntry->paintParamsKey()}, newEntry);
fEntryVector.push_back(newEntry);
return newEntry;
}
const ShaderCodeDictionary::Entry* ShaderCodeDictionary::lookup(
UniquePaintParamsID codeID) const {
if (!codeID.isValid()) {
return nullptr;
}
SkAutoSpinlock lock{fSpinLock};
SkASSERT(codeID.asUInt() < fEntryVector.size());
return fEntryVector[codeID.asUInt()];
}
SkSpan<const Uniform> ShaderCodeDictionary::getUniforms(BuiltInCodeSnippetID id) const {
return fBuiltInCodeSnippets[(int) id].fUniforms;
}
SkSpan<const DataPayloadField> ShaderCodeDictionary::dataPayloadExpectations(
int codeSnippetID) const {
// All callers of this entry point should already have ensured that 'codeSnippetID' is valid
return this->getEntry(codeSnippetID)->fDataPayloadExpectations;
}
const ShaderSnippet* ShaderCodeDictionary::getEntry(int codeSnippetID) const {
if (codeSnippetID < 0) {
return nullptr;
}
if (codeSnippetID < kBuiltInCodeSnippetIDCount) {
return &fBuiltInCodeSnippets[codeSnippetID];
}
int userDefinedCodeSnippetID = codeSnippetID - kBuiltInCodeSnippetIDCount;
if (userDefinedCodeSnippetID < SkTo<int>(fUserDefinedCodeSnippets.size())) {
return fUserDefinedCodeSnippets[userDefinedCodeSnippetID].get();
}
return nullptr;
}
void ShaderCodeDictionary::getShaderInfo(UniquePaintParamsID uniqueID,
ShaderInfo* info) const {
auto entry = this->lookup(uniqueID);
entry->paintParamsKey().toShaderInfo(this, info);
info->setBlendInfo(entry->blendInfo());
}
//--------------------------------------------------------------------------------------------------
namespace {
static std::string append_default_snippet_arguments(const ShaderInfo& shaderInfo,
const ShaderSnippet* entry,
int entryIndex,
const ShaderSnippet::Args& args,
SkSpan<const std::string> childOutputs) {
std::string code = "(";
const char* separator = "";
// Append prior-stage output color.
if (entry->needsPriorStageOutput()) {
code += args.fPriorStageOutput;
separator = ", ";
}
// Append destination color.
if (entry->needsDestColor()) {
code += separator;
code += args.fDestColor;
separator = ", ";
}
// Append fragment coordinates.
if (entry->needsLocalCoords()) {
code += separator;
code += args.fFragCoord;
separator = ", ";
}
// Append uniform names.
for (size_t i = 0; i < entry->fUniforms.size(); ++i) {
code += separator;
separator = ", ";
code += entry->getMangledUniformName(shaderInfo, i, entryIndex);
}
// Append samplers.
for (size_t i = 0; i < entry->fTexturesAndSamplers.size(); ++i) {
code += separator;
code += entry->getMangledSamplerName(i, entryIndex);
separator = ", ";
}
// Append child output names.
for (const std::string& childOutputVar : childOutputs) {
code += separator;
separator = ", ";
code += childOutputVar;
}
code.push_back(')');
return code;
}
static void emit_helper_function(const ShaderInfo& shaderInfo,
int* entryIndex,
std::string* preamble) {
const PaintParamsKey::BlockReader& reader = shaderInfo.blockReader(*entryIndex);
const ShaderSnippet* entry = reader.entry();
const int numChildren = reader.numChildren();
SkASSERT(numChildren == entry->fNumChildren);
// Advance over the parent entry.
int curEntryIndex = *entryIndex;
*entryIndex += 1;
// Create a helper function that invokes each of the children, then calls the entry's snippet
// and passes all the child outputs along as arguments.
std::string helperFnName = get_mangled_name(entry->fStaticFunctionName, curEntryIndex);
std::string helperFn = SkSL::String::printf(
"half4 %s(half4 inColor, half4 destColor, float2 pos) {",
helperFnName.c_str());
std::vector<std::string> childOutputVarNames;
const ShaderSnippet::Args args = {"inColor", "destColor", "pos"};
for (int j = 0; j < numChildren; ++j) {
// Emit glue code into our helper function body.
std::string childOutputVar = emit_glue_code_for_entry(shaderInfo, *entryIndex, args,
&helperFn);
childOutputVarNames.push_back(std::move(childOutputVar));
// If this entry itself requires a preamble, handle that here. This will advance the
// entry index forward as required.
emit_preamble_for_entry(shaderInfo, entryIndex, preamble);
}
// Finally, invoke the snippet from the helper function, passing uniforms and child outputs.
std::string snippetArgList = append_default_snippet_arguments(shaderInfo, entry, curEntryIndex,
args, childOutputVarNames);
SkSL::String::appendf(&helperFn,
"return %s%s;"
"}",
entry->fStaticFunctionName, snippetArgList.c_str());
// Add our new helper function to the bottom of the preamble.
*preamble += helperFn;
}
// If we have no children, the default expression just calls a built-in snippet with the signature:
// half4 BuiltinFunctionName(/* default snippet arguments */);
//
// If we do have children, we will have created a glue function in the preamble and that is called
// instead. Its signature looks like this:
// half4 BuiltinFunctionName_N(half4 inColor, half4 destColor, float2 pos);
std::string GenerateDefaultExpression(const ShaderInfo& shaderInfo,
int entryIndex,
const PaintParamsKey::BlockReader& reader,
const ShaderSnippet::Args& args) {
const ShaderSnippet* entry = reader.entry();
if (entry->fNumChildren == 0) {
// We don't have any children; return an expression which invokes the snippet directly.
return entry->fStaticFunctionName + append_default_snippet_arguments(shaderInfo,
entry,
entryIndex,
args,
/*childOutputs=*/{});
} else {
// Return an expression which invokes the helper function from the preamble.
std::string helperFnName = get_mangled_name(entry->fStaticFunctionName, entryIndex);
return SkSL::String::printf("%s(%.*s, %.*s, %.*s)",
helperFnName.c_str(),
(int)args.fPriorStageOutput.size(), args.fPriorStageOutput.data(),
(int)args.fDestColor.size(), args.fDestColor.data(),
(int)args.fFragCoord.size(), args.fFragCoord.data());
}
}
// If we have no children, we don't need to add anything into the preamble.
// If we have child entries, we create a function in the preamble with a signature of:
// half4 BuiltinFunctionName_N(half4 inColor, half4 destColor, float2 pos) { ... }
// This function invokes each child in sequence, and then calls the built-in function, passing all
// uniforms and child outputs along:
// half4 BuiltinFunctionName(/* all uniforms as parameters */,
// /* all child output variable names as parameters */);
void GenerateDefaultPreamble(const ShaderInfo& shaderInfo,
int* entryIndex,
const PaintParamsKey::BlockReader& reader,
std::string* preamble) {
const ShaderSnippet* entry = reader.entry();
if (entry->fNumChildren > 0) {
// Create a helper function which invokes all the child snippets.
emit_helper_function(shaderInfo, entryIndex, preamble);
} else {
// We don't need a helper function; just advance over this entry.
SkASSERT(reader.numChildren() == 0);
*entryIndex += 1;
}
}
//--------------------------------------------------------------------------------------------------
static constexpr int kFourStopGradient = 4;
static constexpr int kEightStopGradient = 8;
static constexpr Uniform kLinearGradientUniforms4[] = {
{ "colors", SkSLType::kFloat4, kFourStopGradient },
{ "offsets", SkSLType::kFloat, kFourStopGradient },
{ "point0", SkSLType::kFloat2 },
{ "point1", SkSLType::kFloat2 },
{ "tilemode", SkSLType::kInt },
};
static constexpr Uniform kLinearGradientUniforms8[] = {
{ "colors", SkSLType::kFloat4, kEightStopGradient },
{ "offsets", SkSLType::kFloat, kEightStopGradient },
{ "point0", SkSLType::kFloat2 },
{ "point1", SkSLType::kFloat2 },
{ "tilemode", SkSLType::kInt },
};
static constexpr Uniform kRadialGradientUniforms4[] = {
{ "colors", SkSLType::kFloat4, kFourStopGradient },
{ "offsets", SkSLType::kFloat, kFourStopGradient },
{ "center", SkSLType::kFloat2 },
{ "radius", SkSLType::kFloat },
{ "tilemode", SkSLType::kInt },
};
static constexpr Uniform kRadialGradientUniforms8[] = {
{ "colors", SkSLType::kFloat4, kEightStopGradient },
{ "offsets", SkSLType::kFloat, kEightStopGradient },
{ "center", SkSLType::kFloat2 },
{ "radius", SkSLType::kFloat },
{ "tilemode", SkSLType::kInt },
};
static constexpr Uniform kSweepGradientUniforms4[] = {
{ "colors", SkSLType::kFloat4, kFourStopGradient },
{ "offsets", SkSLType::kFloat, kFourStopGradient },
{ "center", SkSLType::kFloat2 },
{ "bias", SkSLType::kFloat },
{ "scale", SkSLType::kFloat },
{ "tilemode", SkSLType::kInt },
};
static constexpr Uniform kSweepGradientUniforms8[] = {
{ "colors", SkSLType::kFloat4, kEightStopGradient },
{ "offsets", SkSLType::kFloat, kEightStopGradient },
{ "center", SkSLType::kFloat2 },
{ "bias", SkSLType::kFloat },
{ "scale", SkSLType::kFloat },
{ "tilemode", SkSLType::kInt },
};
static constexpr Uniform kConicalGradientUniforms4[] = {
{ "colors", SkSLType::kFloat4, kFourStopGradient },
{ "offsets", SkSLType::kFloat, kFourStopGradient },
{ "point0", SkSLType::kFloat2 },
{ "point1", SkSLType::kFloat2 },
{ "radius0", SkSLType::kFloat },
{ "radius1", SkSLType::kFloat },
{ "tilemode", SkSLType::kInt },
};
static constexpr Uniform kConicalGradientUniforms8[] = {
{ "colors", SkSLType::kFloat4, kEightStopGradient },
{ "offsets", SkSLType::kFloat, kEightStopGradient },
{ "point0", SkSLType::kFloat2 },
{ "point1", SkSLType::kFloat2 },
{ "radius0", SkSLType::kFloat },
{ "radius1", SkSLType::kFloat },
{ "tilemode", SkSLType::kInt },
};
static constexpr char kLinearGradient4Name[] = "sk_linear_grad_4_shader";
static constexpr char kLinearGradient8Name[] = "sk_linear_grad_8_shader";
static constexpr char kRadialGradient4Name[] = "sk_radial_grad_4_shader";
static constexpr char kRadialGradient8Name[] = "sk_radial_grad_8_shader";
static constexpr char kSweepGradient4Name[] = "sk_sweep_grad_4_shader";
static constexpr char kSweepGradient8Name[] = "sk_sweep_grad_8_shader";
static constexpr char kConicalGradient4Name[] = "sk_conical_grad_4_shader";
static constexpr char kConicalGradient8Name[] = "sk_conical_grad_8_shader";
//--------------------------------------------------------------------------------------------------
static constexpr Uniform kSolidShaderUniforms[] = {
{ "color", SkSLType::kFloat4 }
};
static constexpr char kSolidShaderName[] = "sk_solid_shader";
//--------------------------------------------------------------------------------------------------
static constexpr Uniform kLocalMatrixShaderUniforms[] = {
{ "localMatrix", SkSLType::kFloat4x4 },
};
static constexpr int kNumLocalMatrixShaderChildren = 1;
static constexpr char kLocalMatrixShaderName[] = "LocalMatrix";
void GenerateLocalMatrixPreamble(const ShaderInfo& shaderInfo,
int* entryIndex,
const PaintParamsKey::BlockReader& reader,
std::string* preamble) {
const ShaderSnippet* entry = reader.entry();
SkASSERT(entry->fNumChildren == kNumLocalMatrixShaderChildren);
// Advance over the parent entry.
int curEntryIndex = *entryIndex;
*entryIndex += 1;
// Get the child's evaluation expression.
static constexpr char kUnusedDestColor[] = "half4(1)";
std::string childExpr = emit_expression_for_entry(shaderInfo, *entryIndex,
{"inColor", kUnusedDestColor, "coords"});
// Emit preamble code for child.
emit_preamble_for_entry(shaderInfo, entryIndex, preamble);
std::string localMatrixUni = reader.entry()->getMangledUniformName(shaderInfo, 0,
curEntryIndex);
/**
* Create a helper function that multiplies coordinates by a local matrix, invokes the child
* entry with those updated coordinates, and returns the result. This helper function meets the
* requirements for use with GenerateDefaultExpression, so there's no need to have a separate
* special GenerateLocalMatrixExpression.
*/
std::string helperFnName = get_mangled_name(entry->fStaticFunctionName, curEntryIndex);
SkSL::String::appendf(preamble,
"half4 %s(half4 inColor, half4 destColor, float2 coords) {"
"coords = (%s * coords.xy01).xy;"
"return %s;"
"}",
helperFnName.c_str(),
localMatrixUni.c_str(),
childExpr.c_str());
}
//--------------------------------------------------------------------------------------------------
static constexpr int kNumXferFnCoeffs = 7;
static constexpr Uniform kImageShaderUniforms[] = {
{ "imgSize", SkSLType::kFloat2 },
{ "subset", SkSLType::kFloat4 },
{ "tilemodeX", SkSLType::kInt },
{ "tilemodeY", SkSLType::kInt },
{ "filterMode", SkSLType::kInt },
{ "useCubic", SkSLType::kInt },
{ "cubicCoeffs", SkSLType::kFloat4x4 },
// The next 6 uniforms are for the color space transformation
{ "csXformFlags", SkSLType::kInt },
{ "csXformSrcKind", SkSLType::kInt },
{ "csXformDstKind", SkSLType::kInt },
{ "csXformSrcCoeffs", SkSLType::kHalf, kNumXferFnCoeffs },
{ "csXformDstCoeffs", SkSLType::kHalf, kNumXferFnCoeffs },
{ "csXformGamutTransform", SkSLType::kHalf3x3 },
};
static constexpr TextureAndSampler kISTexturesAndSamplers[] = {
{"sampler"},
};
static_assert(0 == static_cast<int>(SkTileMode::kClamp), "ImageShader code depends on SkTileMode");
static_assert(1 == static_cast<int>(SkTileMode::kRepeat), "ImageShader code depends on SkTileMode");
static_assert(2 == static_cast<int>(SkTileMode::kMirror), "ImageShader code depends on SkTileMode");
static_assert(3 == static_cast<int>(SkTileMode::kDecal), "ImageShader code depends on SkTileMode");
static_assert(0 == static_cast<int>(SkFilterMode::kNearest),
"ImageShader code depends on SkFilterMode");
static_assert(1 == static_cast<int>(SkFilterMode::kLinear),
"ImageShader code depends on SkFilterMode");
static constexpr char kImageShaderName[] = "sk_image_shader";
//--------------------------------------------------------------------------------------------------
static constexpr Uniform kPorterDuffBlendShaderUniforms[] = {
{ "blendConstants", SkSLType::kHalf4 },
};
static constexpr char kPorterDuffBlendShaderName[] = "porter_duff_blend_shader";
//--------------------------------------------------------------------------------------------------
static constexpr Uniform kBlendShaderUniforms[] = {
{ "blendMode", SkSLType::kInt },
};
static constexpr char kBlendShaderName[] = "sk_blend_shader";
static constexpr int kNumBlendShaderChildren = 2;
//--------------------------------------------------------------------------------------------------
static constexpr char kColorFilterShaderName[] = "ColorFilterShader";
static constexpr int kNumColorFilterShaderChildren = 2;
//--------------------------------------------------------------------------------------------------
static constexpr char kRuntimeShaderName[] = "RuntimeEffect";
class GraphitePipelineCallbacks : public SkSL::PipelineStage::Callbacks {
public:
GraphitePipelineCallbacks(const ShaderInfo& shaderInfo,
int entryIndex,
const std::vector<int>& childEntryIndices,
std::string* preamble)
: fShaderInfo(shaderInfo)
, fEntryIndex(entryIndex)
, fChildEntryIndices(childEntryIndices)
, fPreamble(preamble) {}
std::string declareUniform(const SkSL::VarDeclaration* decl) override {
std::string result = get_mangled_name(std::string(decl->var()->name()), fEntryIndex);
if (fShaderInfo.ssboIndex()) {
result = EmitStorageBufferAccess("fs", fShaderInfo.ssboIndex(), result.c_str());
}
return result;
}
void defineFunction(const char* decl, const char* body, bool isMain) override {
if (isMain) {
SkSL::String::appendf(
fPreamble,
"half4 %s_%d(half4 inColor, half4 destColor, float2 coords) {"
"float2 pos = coords;"
"%s"
"}",
kRuntimeShaderName,
fEntryIndex,
body);
} else {
SkSL::String::appendf(fPreamble, "%s {%s}\n", decl, body);
}
}
void declareFunction(const char* decl) override {
*fPreamble += std::string(decl) + ";";
}
void defineStruct(const char* definition) override {
*fPreamble += std::string(definition) + ";";
}
void declareGlobal(const char* declaration) override {
*fPreamble += std::string(declaration) + ";";
}
std::string sampleShader(int index, std::string coords) override {
SkASSERT(index >= 0 && index < (int)fChildEntryIndices.size());
return emit_expression_for_entry(fShaderInfo, fChildEntryIndices[index],
{"inColor", "destColor", coords});
}
std::string sampleColorFilter(int index, std::string color) override {
SkASSERT(index >= 0 && index < (int)fChildEntryIndices.size());
return emit_expression_for_entry(fShaderInfo, fChildEntryIndices[index],
{color, "destColor", "coords"});
}
std::string sampleBlender(int index, std::string src, std::string dst) override {
return emit_expression_for_entry(fShaderInfo, fChildEntryIndices[index],
{src, dst, "coords"});
}
std::string toLinearSrgb(std::string color) override {
// TODO(skia:13508): implement to-linear-SRGB child effect
return color;
}
std::string fromLinearSrgb(std::string color) override {
// TODO(skia:13508): implement from-linear-SRGB child effect
return color;
}
std::string getMangledName(const char* name) override {
return get_mangled_name(name, fEntryIndex);
}
private:
const ShaderInfo& fShaderInfo;
int fEntryIndex;
const std::vector<int>& fChildEntryIndices;
std::string* fPreamble;
};
void GenerateRuntimeShaderPreamble(const ShaderInfo& shaderInfo,
int* entryIndex,
const PaintParamsKey::BlockReader& reader,
std::string* preamble) {
const ShaderSnippet* entry = reader.entry();
// Advance over the parent entry.
int curEntryIndex = *entryIndex;
*entryIndex += 1;
// Emit the preambles for all of our child effects (and advance the entry-index past them).
// This computes the indices of our child effects, which we use when invoking them below.
std::vector<int> childEntryIndices;
childEntryIndices.reserve(entry->fNumChildren);
for (int j = 0; j < entry->fNumChildren; ++j) {
childEntryIndices.push_back(*entryIndex);
emit_preamble_for_entry(shaderInfo, entryIndex, preamble);
}
// Find this runtime effect in the runtime-effect dictionary.
const int codeSnippetId = reader.codeSnippetId();
const SkRuntimeEffect* effect = shaderInfo.runtimeEffectDictionary()->find(codeSnippetId);
SkASSERT(effect);
const SkSL::Program& program = SkRuntimeEffectPriv::Program(*effect);
GraphitePipelineCallbacks callbacks{shaderInfo, curEntryIndex, childEntryIndices, preamble};
SkASSERT(std::string_view(entry->fName) == kRuntimeShaderName); // the callbacks assume this
SkSL::PipelineStage::ConvertProgram(program, "pos", "inColor", "destColor", &callbacks);
}
std::string GenerateRuntimeShaderExpression(const ShaderInfo& shaderInfo,
int entryIndex,
const PaintParamsKey::BlockReader& reader,
const ShaderSnippet::Args& args) {
const ShaderSnippet* entry = reader.entry();
return SkSL::String::printf("%s_%d(%.*s, %.*s, %.*s)",
entry->fName,
entryIndex,
(int)args.fPriorStageOutput.size(), args.fPriorStageOutput.data(),
(int)args.fDestColor.size(), args.fDestColor.data(),
(int)args.fFragCoord.size(), args.fFragCoord.data());
}
//--------------------------------------------------------------------------------------------------
// TODO: investigate the implications of having separate hlsa and rgba matrix colorfilters. It
// may be that having them separate will not contribute to combinatorial explosion.
static constexpr Uniform kMatrixColorFilterUniforms[] = {
{ "matrix", SkSLType::kFloat4x4 },
{ "translate", SkSLType::kFloat4 },
{ "inHSL", SkSLType::kInt },
};
static constexpr char kMatrixColorFilterName[] = "sk_matrix_colorfilter";
//--------------------------------------------------------------------------------------------------
static constexpr Uniform kBlendColorFilterUniforms[] = {
{ "blendMode", SkSLType::kInt },
{ "color", SkSLType::kFloat4 }
};
static constexpr char kBlendColorFilterName[] = "sk_blend_colorfilter";
//--------------------------------------------------------------------------------------------------
static constexpr char kComposeColorFilterName[] = "ComposeColorFilter";
static constexpr int kNumComposeColorFilterChildren = 2;
void GenerateNestedChildrenPreamble(const ShaderInfo& shaderInfo,
int* entryIndex,
const PaintParamsKey::BlockReader& reader,
std::string* preamble) {
const ShaderSnippet* entry = reader.entry();
SkASSERT(entry->fNumChildren == 2);
// Advance over the parent entry.
int curEntryIndex = *entryIndex;
*entryIndex += 1;
// Evaluate inner child.
static constexpr char kUnusedDestColor[] = "half4(1)";
std::string innerColor = emit_expression_for_entry(shaderInfo, *entryIndex, {"inColor",
kUnusedDestColor, "coords"});
// Emit preamble code for inner child.
emit_preamble_for_entry(shaderInfo, entryIndex, preamble);
// Evaluate outer child.
std::string outerColor = emit_expression_for_entry(shaderInfo, *entryIndex, {innerColor,
kUnusedDestColor, "coords"});
// Emit preamble code for outer child.
emit_preamble_for_entry(shaderInfo, entryIndex, preamble);
// Create a helper function that invokes the inner expression, then passes that result to the
// outer expression, and returns the composed result.
std::string helperFnName = get_mangled_name(entry->fStaticFunctionName, curEntryIndex);
SkSL::String::appendf(
preamble,
"half4 %s(half4 inColor, half4 destColor, float2 coords) {"
"return %s;"
"}",
helperFnName.c_str(),
outerColor.c_str());
}
//--------------------------------------------------------------------------------------------------
static constexpr TextureAndSampler kTableColorFilterTexturesAndSamplers[] = {
{"tableSampler"},
};
static constexpr char kTableColorFilterName[] = "sk_table_colorfilter";
//--------------------------------------------------------------------------------------------------
static constexpr char kGaussianColorFilterName[] = "sk_gaussian_colorfilter";
//--------------------------------------------------------------------------------------------------
static constexpr Uniform kColorSpaceTransformUniforms[] = {
{ "flags", SkSLType::kInt },
{ "srcKind", SkSLType::kInt },
{ "dstKind", SkSLType::kInt },
{ "srcCoeffs", SkSLType::kHalf, kNumXferFnCoeffs },
{ "dstCoeffs", SkSLType::kHalf, kNumXferFnCoeffs },
{ "gamutTransform", SkSLType::kHalf3x3 },
};
static_assert(0 == static_cast<int>(skcms_TFType_Invalid),
"ColorSpaceTransform code depends on skcms_TFType");
static_assert(1 == static_cast<int>(skcms_TFType_sRGBish),
"ColorSpaceTransform code depends on skcms_TFType");
static_assert(2 == static_cast<int>(skcms_TFType_PQish),
"ColorSpaceTransform code depends on skcms_TFType");
static_assert(3 == static_cast<int>(skcms_TFType_HLGish),
"ColorSpaceTransform code depends on skcms_TFType");
static_assert(4 == static_cast<int>(skcms_TFType_HLGinvish),
"ColorSpaceTransform code depends on skcms_TFType");
// TODO: We can meaningfully check these when we can use C++20 features.
// static_assert(0x1 == SkColorSpaceXformSteps::Flags{.unpremul = true}.mask(),
// "ColorSpaceTransform code depends on SkColorSpaceXformSteps::Flags");
// static_assert(0x2 == SkColorSpaceXformSteps::Flags{.linearize = true}.mask(),
// "ColorSpaceTransform code depends on SkColorSpaceXformSteps::Flags");
// static_assert(0x4 == SkColorSpaceXformSteps::Flags{.gamut_transform = true}.mask(),
// "ColorSpaceTransform code depends on SkColorSpaceXformSteps::Flags");
// static_assert(0x8 == SkColorSpaceXformSteps::Flags{.encode = true}.mask(),
// "ColorSpaceTransform code depends on SkColorSpaceXformSteps::Flags");
// static_assert(0x10 == SkColorSpaceXformSteps::Flags{.premul = true}.mask(),
// "ColorSpaceTransform code depends on SkColorSpaceXformSteps::Flags");
static constexpr char kColorSpaceTransformName[] = "sk_color_space_transform";
//--------------------------------------------------------------------------------------------------
static constexpr char kErrorName[] = "sk_error";
//--------------------------------------------------------------------------------------------------
static constexpr char kPassthroughShaderName[] = "sk_passthrough";
//--------------------------------------------------------------------------------------------------
static constexpr char kPassthroughBlenderName[] = "blend_src_over";
//--------------------------------------------------------------------------------------------------
static constexpr PaintParamsKey::DataPayloadField kFixedFunctionDataFields[] = {
{ "blendMode", PaintParamsKey::DataPayloadType::kByte, 1},
};
// This method generates the glue code for the case where the SkBlendMode-based blending is
// handled with fixed function blending.
std::string GenerateFixedFunctionBlenderExpression(const ShaderInfo&,
int entryIndex,
const PaintParamsKey::BlockReader& reader,
const ShaderSnippet::Args& args) {
SkASSERT(reader.entry()->fUniforms.empty());
SkASSERT(reader.numDataPayloadFields() == 1);
// The actual blending is set up via the fixed function pipeline so we don't actually
// need to access the blend mode in the glue code.
return std::string(args.fPriorStageOutput);
}
//--------------------------------------------------------------------------------------------------
static constexpr Uniform kShaderBasedBlenderUniforms[] = {
{ "blendMode", SkSLType::kInt },
};
static constexpr char kBlendHelperName[] = "sk_blend";
// This method generates the glue code for the case where the SkBlendMode-based blending must occur
// in the shader (i.e., fixed function blending isn't possible).
// It exists as custom glue code so that we can deal with the dest reads. If that can be
// standardized (e.g., via a snippets requirement flag) this could be removed.
std::string GenerateShaderBasedBlenderExpression(const ShaderInfo& shaderInfo,
int entryIndex,
const PaintParamsKey::BlockReader& reader,
const ShaderSnippet::Args& args) {
const bool usePrimitiveColorAsDst = reader.entry()->needsDestColor();
SkASSERT(reader.entry()->fUniforms.size() == 1);
SkASSERT(reader.numDataPayloadFields() == 0);
std::string uniformName = reader.entry()->getMangledUniformName(shaderInfo, 0, entryIndex);
// TODO: emit function to perform dest read into preamble, and replace half4(1) with that call
// (The `args.destColor` variable might seem tempting here, but this is used for programmatic
// src+dest blends within the shader, not for blends against the destination surface.)
const char * destColor = usePrimitiveColorAsDst ? "primitiveColor" : "half4(1)";
return SkSL::String::printf("%s(%s, %.*s, %s)",
reader.entry()->fStaticFunctionName,
uniformName.c_str(),
(int)args.fPriorStageOutput.size(), args.fPriorStageOutput.data(),
destColor);
}
//--------------------------------------------------------------------------------------------------
} // anonymous namespace
bool ShaderCodeDictionary::isValidID(int snippetID) const {
if (snippetID < 0) {
return false;
}
if (snippetID < kBuiltInCodeSnippetIDCount) {
return true;
}
int userDefinedCodeSnippetID = snippetID - kBuiltInCodeSnippetIDCount;
return userDefinedCodeSnippetID < SkTo<int>(fUserDefinedCodeSnippets.size());
}
static constexpr int kNoChildren = 0;
int ShaderCodeDictionary::addUserDefinedSnippet(
const char* name,
SkSpan<const Uniform> uniforms,
SkEnumBitMask<SnippetRequirementFlags> snippetRequirementFlags,
SkSpan<const TextureAndSampler> texturesAndSamplers,
const char* functionName,
ShaderSnippet::GenerateExpressionForSnippetFn expressionGenerator,
ShaderSnippet::GeneratePreambleForSnippetFn preambleGenerator,
int numChildren,
SkSpan<const PaintParamsKey::DataPayloadField> dataPayloadExpectations) {
// TODO: the memory for user-defined entries could go in the dictionary's arena but that
// would have to be a thread safe allocation since the arena also stores entries for
// 'fHash' and 'fEntryVector'
fUserDefinedCodeSnippets.push_back(std::make_unique<ShaderSnippet>(name,
uniforms,
snippetRequirementFlags,
texturesAndSamplers,
functionName,
expressionGenerator,
preambleGenerator,
numChildren,
dataPayloadExpectations));
return kBuiltInCodeSnippetIDCount + fUserDefinedCodeSnippets.size() - 1;
}
// TODO: this version needs to be removed
int ShaderCodeDictionary::addUserDefinedSnippet(
const char* name,
SkSpan<const DataPayloadField> dataPayloadExpectations) {
return this->addUserDefinedSnippet("UserDefined",
{}, // no uniforms
SnippetRequirementFlags::kNone,
{}, // no samplers
name,
GenerateDefaultExpression,
GenerateDefaultPreamble,
kNoChildren,
dataPayloadExpectations);
}
static SkSLType uniform_type_to_sksl_type(const SkRuntimeEffect::Uniform& u) {
using Type = SkRuntimeEffect::Uniform::Type;
if (u.flags & SkRuntimeEffect::Uniform::kHalfPrecision_Flag) {
switch (u.type) {
case Type::kFloat: return SkSLType::kHalf;
case Type::kFloat2: return SkSLType::kHalf2;
case Type::kFloat3: return SkSLType::kHalf3;
case Type::kFloat4: return SkSLType::kHalf4;
case Type::kFloat2x2: return SkSLType::kHalf2x2;
case Type::kFloat3x3: return SkSLType::kHalf3x3;
case Type::kFloat4x4: return SkSLType::kHalf4x4;
case Type::kInt: return SkSLType::kShort;
case Type::kInt2: return SkSLType::kShort2;
case Type::kInt3: return SkSLType::kShort3;
case Type::kInt4: return SkSLType::kShort4;
}
} else {
switch (u.type) {
case Type::kFloat: return SkSLType::kFloat;
case Type::kFloat2: return SkSLType::kFloat2;
case Type::kFloat3: return SkSLType::kFloat3;
case Type::kFloat4: return SkSLType::kFloat4;
case Type::kFloat2x2: return SkSLType::kFloat2x2;
case Type::kFloat3x3: return SkSLType::kFloat3x3;
case Type::kFloat4x4: return SkSLType::kFloat4x4;
case Type::kInt: return SkSLType::kInt;
case Type::kInt2: return SkSLType::kInt2;
case Type::kInt3: return SkSLType::kInt3;
case Type::kInt4: return SkSLType::kInt4;
}
}
SkUNREACHABLE;
}
const char* ShaderCodeDictionary::addTextToArena(std::string_view text) {
char* textInArena = fArena.makeArrayDefault<char>(text.size() + 1);
memcpy(textInArena, text.data(), text.size());
textInArena[text.size()] = '\0';
return textInArena;
}
SkSpan<const Uniform> ShaderCodeDictionary::convertUniforms(const SkRuntimeEffect* effect) {
using rteUniform = SkRuntimeEffect::Uniform;
SkSpan<const rteUniform> uniforms = effect->uniforms();
// Convert the SkRuntimeEffect::Uniform array into its Uniform equivalent.
int numUniforms = uniforms.size();
Uniform* uniformArray = fArena.makeInitializedArray<Uniform>(numUniforms, [&](int index) {
const rteUniform* u;
u = &uniforms[index];
// The existing uniform names live in the passed-in SkRuntimeEffect and may eventually
// disappear. Copy them into fArena. (It's safe to do this within makeInitializedArray; the
// entire array is allocated in one big slab before any initialization calls are done.)
const char* name = this->addTextToArena(u->name);
// Add one Uniform to our array.
SkSLType type = uniform_type_to_sksl_type(*u);
return (u->flags & rteUniform::kArray_Flag) ? Uniform(name, type, u->count)
: Uniform(name, type);
});
return SkSpan<const Uniform>(uniformArray, numUniforms);
}
int ShaderCodeDictionary::findOrCreateRuntimeEffectSnippet(const SkRuntimeEffect* effect) {
// Use the combination of {SkSL program hash, uniform size} as our key.
// In the unfortunate event of a hash collision, at least we'll have the right amount of
// uniform data available.
RuntimeEffectKey key;
key.fHash = SkRuntimeEffectPriv::Hash(*effect);
key.fUniformSize = effect->uniformSize();
SkAutoSpinlock lock{fSpinLock};
int32_t* existingCodeSnippetID = fRuntimeEffectMap.find(key);
if (existingCodeSnippetID) {
return *existingCodeSnippetID;
}
SkEnumBitMask<SnippetRequirementFlags> snippetFlags = SnippetRequirementFlags::kNone;
if (effect->allowShader()) {
snippetFlags |= SnippetRequirementFlags::kLocalCoords;
}
if (effect->allowBlender()) {
snippetFlags |= SnippetRequirementFlags::kDestColor;
}
int newCodeSnippetID = this->addUserDefinedSnippet("RuntimeEffect",
this->convertUniforms(effect),
snippetFlags,
/*texturesAndSamplers=*/{},
kRuntimeShaderName,
GenerateRuntimeShaderExpression,
GenerateRuntimeShaderPreamble,
(int)effect->children().size(),
/*dataPayloadExpectations=*/{});
fRuntimeEffectMap.set(key, newCodeSnippetID);
return newCodeSnippetID;
}
ShaderCodeDictionary::ShaderCodeDictionary() {
// The 0th index is reserved as invalid
fEntryVector.push_back(nullptr);
fBuiltInCodeSnippets[(int) BuiltInCodeSnippetID::kError] = {
"Error",
{ }, // no uniforms
SnippetRequirementFlags::kNone,
{ }, // no samplers
kErrorName,
GenerateDefaultExpression,
GenerateDefaultPreamble,
kNoChildren,
{ } // no data payload
};
fBuiltInCodeSnippets[(int) BuiltInCodeSnippetID::kPassthroughShader] = {
"PassthroughShader",
{ }, // no uniforms
SnippetRequirementFlags::kPriorStageOutput,
{ }, // no samplers
kPassthroughShaderName,
GenerateDefaultExpression,
GenerateDefaultPreamble,
kNoChildren,
{ } // no data payload
};
fBuiltInCodeSnippets[(int) BuiltInCodeSnippetID::kPassthroughBlender] = {
"PassthroughBlender",
{}, // no uniforms
SnippetRequirementFlags::kPriorStageOutput | SnippetRequirementFlags::kDestColor,
{}, // no samplers
kPassthroughBlenderName,
GenerateDefaultExpression,
GenerateDefaultPreamble,
kNoChildren,
{} // no data payload
};
fBuiltInCodeSnippets[(int) BuiltInCodeSnippetID::kSolidColorShader] = {
"SolidColor",
SkSpan(kSolidShaderUniforms),
SnippetRequirementFlags::kNone,
{ }, // no samplers
kSolidShaderName,
GenerateDefaultExpression,
GenerateDefaultPreamble,
kNoChildren,
{ } // no data payload
};
fBuiltInCodeSnippets[(int) BuiltInCodeSnippetID::kLinearGradientShader4] = {
"LinearGradient4",
SkSpan(kLinearGradientUniforms4),
SnippetRequirementFlags::kLocalCoords,
{ }, // no samplers
kLinearGradient4Name,
GenerateDefaultExpression,
GenerateDefaultPreamble,
kNoChildren,
{ } // no data payload
};
fBuiltInCodeSnippets[(int) BuiltInCodeSnippetID::kLinearGradientShader8] = {
"LinearGradient8",
SkSpan(kLinearGradientUniforms8),
SnippetRequirementFlags::kLocalCoords,
{ }, // no samplers
kLinearGradient8Name,
GenerateDefaultExpression,
GenerateDefaultPreamble,
kNoChildren,
{ } // no data payload
};
fBuiltInCodeSnippets[(int) BuiltInCodeSnippetID::kRadialGradientShader4] = {
"RadialGradient4",
SkSpan(kRadialGradientUniforms4),
SnippetRequirementFlags::kLocalCoords,
{ }, // no samplers
kRadialGradient4Name,
GenerateDefaultExpression,
GenerateDefaultPreamble,
kNoChildren,
{ } // no data payload
};
fBuiltInCodeSnippets[(int) BuiltInCodeSnippetID::kRadialGradientShader8] = {
"RadialGradient8",
SkSpan(kRadialGradientUniforms8),
SnippetRequirementFlags::kLocalCoords,
{ }, // no samplers
kRadialGradient8Name,
GenerateDefaultExpression,
GenerateDefaultPreamble,
kNoChildren,
{ } // no data payload
};
fBuiltInCodeSnippets[(int) BuiltInCodeSnippetID::kSweepGradientShader4] = {
"SweepGradient4",
SkSpan(kSweepGradientUniforms4),
SnippetRequirementFlags::kLocalCoords,
{ }, // no samplers
kSweepGradient4Name,
GenerateDefaultExpression,
GenerateDefaultPreamble,
kNoChildren,
{ } // no data payload
};
fBuiltInCodeSnippets[(int) BuiltInCodeSnippetID::kSweepGradientShader8] = {
"SweepGradient8",
SkSpan(kSweepGradientUniforms8),
SnippetRequirementFlags::kLocalCoords,
{ }, // no samplers
kSweepGradient8Name,
GenerateDefaultExpression,
GenerateDefaultPreamble,
kNoChildren,
{ } // no data payload
};
fBuiltInCodeSnippets[(int) BuiltInCodeSnippetID::kConicalGradientShader4] = {
"ConicalGradient4",
SkSpan(kConicalGradientUniforms4),
SnippetRequirementFlags::kLocalCoords,
{ }, // no samplers
kConicalGradient4Name,
GenerateDefaultExpression,
GenerateDefaultPreamble,
kNoChildren,
{ } // no data payload
};
fBuiltInCodeSnippets[(int) BuiltInCodeSnippetID::kConicalGradientShader8] = {
"ConicalGradient8",
SkSpan(kConicalGradientUniforms8),
SnippetRequirementFlags::kLocalCoords,
{ }, // no samplers
kConicalGradient8Name,
GenerateDefaultExpression,
GenerateDefaultPreamble,
kNoChildren,
{ } // no data payload
};
fBuiltInCodeSnippets[(int) BuiltInCodeSnippetID::kLocalMatrixShader] = {
"LocalMatrixShader",
SkSpan(kLocalMatrixShaderUniforms),
(SnippetRequirementFlags::kPriorStageOutput |
SnippetRequirementFlags::kLocalCoords),
{ }, // no samplers
kLocalMatrixShaderName,
GenerateDefaultExpression,
GenerateLocalMatrixPreamble,
kNumLocalMatrixShaderChildren,
{ } // no data payload
};
fBuiltInCodeSnippets[(int) BuiltInCodeSnippetID::kImageShader] = {
"ImageShader",
SkSpan(kImageShaderUniforms),
SnippetRequirementFlags::kLocalCoords,
SkSpan(kISTexturesAndSamplers),
kImageShaderName,
GenerateDefaultExpression,
GenerateDefaultPreamble,
kNoChildren,
{ } // no data payload
};
fBuiltInCodeSnippets[(int) BuiltInCodeSnippetID::kPorterDuffBlendShader] = {
"PorterDuffBlendShader",
SkSpan(kPorterDuffBlendShaderUniforms),
SnippetRequirementFlags::kNone,
{ }, // no samplers
kPorterDuffBlendShaderName,
GenerateDefaultExpression,
GenerateDefaultPreamble,
kNumBlendShaderChildren,
{ } // no data payload
};
fBuiltInCodeSnippets[(int) BuiltInCodeSnippetID::kBlendShader] = {
"BlendShader",
SkSpan(kBlendShaderUniforms),
SnippetRequirementFlags::kNone,
{ }, // no samplers
kBlendShaderName,
GenerateDefaultExpression,
GenerateDefaultPreamble,
kNumBlendShaderChildren,
{ } // no data payload
};
fBuiltInCodeSnippets[(int) BuiltInCodeSnippetID::kColorFilterShader] = {
"ColorFilterShader",
{}, // no uniforms
SnippetRequirementFlags::kNone,
{ }, // no samplers
kColorFilterShaderName,
GenerateDefaultExpression,
GenerateNestedChildrenPreamble,
kNumColorFilterShaderChildren,
{ } // no data payload
};
// SkColorFilter snippets
fBuiltInCodeSnippets[(int) BuiltInCodeSnippetID::kMatrixColorFilter] = {
"MatrixColorFilter",
SkSpan(kMatrixColorFilterUniforms),
SnippetRequirementFlags::kPriorStageOutput,
{ }, // no samplers
kMatrixColorFilterName,
GenerateDefaultExpression,
GenerateDefaultPreamble,
kNoChildren,
{ } // no data payload
};
fBuiltInCodeSnippets[(int) BuiltInCodeSnippetID::kBlendColorFilter] = {
"BlendColorFilter",
SkSpan(kBlendColorFilterUniforms),
SnippetRequirementFlags::kPriorStageOutput,
{ }, // no samplers
kBlendColorFilterName,
GenerateDefaultExpression,
GenerateDefaultPreamble,
kNoChildren,
{ } // no data payload
};
fBuiltInCodeSnippets[(int) BuiltInCodeSnippetID::kComposeColorFilter] = {
"ComposeColorFilter",
{ }, // no uniforms
SnippetRequirementFlags::kPriorStageOutput,
{ }, // no samplers
kComposeColorFilterName,
GenerateDefaultExpression,
GenerateNestedChildrenPreamble,
kNumComposeColorFilterChildren,
{ } // no data payload
};
fBuiltInCodeSnippets[(int) BuiltInCodeSnippetID::kTableColorFilter] = {
"TableColorFilter",
{ }, // no uniforms
SnippetRequirementFlags::kPriorStageOutput,
SkSpan(kTableColorFilterTexturesAndSamplers),
kTableColorFilterName,
GenerateDefaultExpression,
GenerateDefaultPreamble,
kNoChildren,
{ } // no data payload
};
fBuiltInCodeSnippets[(int) BuiltInCodeSnippetID::kGaussianColorFilter] = {
"GaussianColorFilter",
{ }, // no uniforms
SnippetRequirementFlags::kPriorStageOutput,
{ }, // no samplers
kGaussianColorFilterName,
GenerateDefaultExpression,
GenerateDefaultPreamble,
kNoChildren,
{ } // no data payload
};
fBuiltInCodeSnippets[(int) BuiltInCodeSnippetID::kColorSpaceXformColorFilter] = {
"ColorSpaceTransform",
SkSpan(kColorSpaceTransformUniforms),
SnippetRequirementFlags::kPriorStageOutput,
{ }, // no samplers
kColorSpaceTransformName,
GenerateDefaultExpression,
GenerateDefaultPreamble,
kNoChildren,
{ } // no data payload
};
fBuiltInCodeSnippets[(int) BuiltInCodeSnippetID::kFixedFunctionBlender] = {
"FixedFunctionBlender",
{ }, // no uniforms
SnippetRequirementFlags::kNone,
{ }, // no samplers
"FF-blending", // fixed function blending doesn't use static SkSL
GenerateFixedFunctionBlenderExpression,
GenerateDefaultPreamble,
kNoChildren,
kFixedFunctionDataFields
};
fBuiltInCodeSnippets[(int) BuiltInCodeSnippetID::kShaderBasedBlender] = {
"ShaderBasedBlender",
SkSpan(kShaderBasedBlenderUniforms),
SnippetRequirementFlags::kNone,
{ }, // no samplers
kBlendHelperName,
GenerateShaderBasedBlenderExpression,
GenerateDefaultPreamble,
kNoChildren,
{ } // no data payload
};
fBuiltInCodeSnippets[(int) BuiltInCodeSnippetID::kPrimitiveColorShaderBasedBlender] = {
"PrimitiveColorShaderBasedBlender",
SkSpan(kShaderBasedBlenderUniforms),
SnippetRequirementFlags::kDestColor,
{ }, // no samplers
kBlendHelperName,
GenerateShaderBasedBlenderExpression,
GenerateDefaultPreamble,
kNoChildren,
{ } // no data payload
};
}
} // namespace skgpu::graphite