| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include <cmath> |
| #include "SkRRect.h" |
| #include "SkScopeExit.h" |
| #include "SkBuffer.h" |
| #include "SkMalloc.h" |
| #include "SkMatrix.h" |
| #include "SkScaleToSides.h" |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkRRect::setRectXY(const SkRect& rect, SkScalar xRad, SkScalar yRad) { |
| if (!this->initializeRect(rect)) { |
| return; |
| } |
| |
| if (!SkScalarsAreFinite(xRad, yRad)) { |
| xRad = yRad = 0; // devolve into a simple rect |
| } |
| if (xRad <= 0 || yRad <= 0) { |
| // all corners are square in this case |
| this->setRect(rect); |
| return; |
| } |
| |
| if (fRect.width() < xRad+xRad || fRect.height() < yRad+yRad) { |
| SkScalar scale = SkMinScalar(fRect.width() / (xRad + xRad), fRect.height() / (yRad + yRad)); |
| SkASSERT(scale < SK_Scalar1); |
| xRad *= scale; |
| yRad *= scale; |
| } |
| |
| for (int i = 0; i < 4; ++i) { |
| fRadii[i].set(xRad, yRad); |
| } |
| fType = kSimple_Type; |
| if (xRad >= SkScalarHalf(fRect.width()) && yRad >= SkScalarHalf(fRect.height())) { |
| fType = kOval_Type; |
| // TODO: assert that all the x&y radii are already W/2 & H/2 |
| } |
| |
| SkASSERT(this->isValid()); |
| } |
| |
| void SkRRect::setNinePatch(const SkRect& rect, SkScalar leftRad, SkScalar topRad, |
| SkScalar rightRad, SkScalar bottomRad) { |
| if (!this->initializeRect(rect)) { |
| return; |
| } |
| |
| const SkScalar array[4] = { leftRad, topRad, rightRad, bottomRad }; |
| if (!SkScalarsAreFinite(array, 4)) { |
| this->setRect(rect); // devolve into a simple rect |
| return; |
| } |
| |
| leftRad = SkMaxScalar(leftRad, 0); |
| topRad = SkMaxScalar(topRad, 0); |
| rightRad = SkMaxScalar(rightRad, 0); |
| bottomRad = SkMaxScalar(bottomRad, 0); |
| |
| SkScalar scale = SK_Scalar1; |
| if (leftRad + rightRad > fRect.width()) { |
| scale = fRect.width() / (leftRad + rightRad); |
| } |
| if (topRad + bottomRad > fRect.height()) { |
| scale = SkMinScalar(scale, fRect.height() / (topRad + bottomRad)); |
| } |
| |
| if (scale < SK_Scalar1) { |
| leftRad *= scale; |
| topRad *= scale; |
| rightRad *= scale; |
| bottomRad *= scale; |
| } |
| |
| if (leftRad == rightRad && topRad == bottomRad) { |
| if (leftRad >= SkScalarHalf(fRect.width()) && topRad >= SkScalarHalf(fRect.height())) { |
| fType = kOval_Type; |
| } else if (0 == leftRad || 0 == topRad) { |
| // If the left and (by equality check above) right radii are zero then it is a rect. |
| // Same goes for top/bottom. |
| fType = kRect_Type; |
| leftRad = 0; |
| topRad = 0; |
| rightRad = 0; |
| bottomRad = 0; |
| } else { |
| fType = kSimple_Type; |
| } |
| } else { |
| fType = kNinePatch_Type; |
| } |
| |
| fRadii[kUpperLeft_Corner].set(leftRad, topRad); |
| fRadii[kUpperRight_Corner].set(rightRad, topRad); |
| fRadii[kLowerRight_Corner].set(rightRad, bottomRad); |
| fRadii[kLowerLeft_Corner].set(leftRad, bottomRad); |
| |
| SkASSERT(this->isValid()); |
| } |
| |
| // These parameters intentionally double. Apropos crbug.com/463920, if one of the |
| // radii is huge while the other is small, single precision math can completely |
| // miss the fact that a scale is required. |
| static double compute_min_scale(double rad1, double rad2, double limit, double curMin) { |
| if ((rad1 + rad2) > limit) { |
| return SkTMin(curMin, limit / (rad1 + rad2)); |
| } |
| return curMin; |
| } |
| |
| void SkRRect::setRectRadii(const SkRect& rect, const SkVector radii[4]) { |
| if (!this->initializeRect(rect)) { |
| return; |
| } |
| |
| if (!SkScalarsAreFinite(&radii[0].fX, 8)) { |
| this->setRect(rect); // devolve into a simple rect |
| return; |
| } |
| |
| memcpy(fRadii, radii, sizeof(fRadii)); |
| |
| bool allCornersSquare = true; |
| |
| // Clamp negative radii to zero |
| for (int i = 0; i < 4; ++i) { |
| if (fRadii[i].fX <= 0 || fRadii[i].fY <= 0) { |
| // In this case we are being a little fast & loose. Since one of |
| // the radii is 0 the corner is square. However, the other radii |
| // could still be non-zero and play in the global scale factor |
| // computation. |
| fRadii[i].fX = 0; |
| fRadii[i].fY = 0; |
| } else { |
| allCornersSquare = false; |
| } |
| } |
| |
| if (allCornersSquare) { |
| this->setRect(rect); |
| return; |
| } |
| |
| this->scaleRadii(); |
| } |
| |
| bool SkRRect::initializeRect(const SkRect& rect) { |
| // Check this before sorting because sorting can hide nans. |
| if (!rect.isFinite()) { |
| *this = SkRRect(); |
| return false; |
| } |
| fRect = rect.makeSorted(); |
| if (fRect.isEmpty()) { |
| memset(fRadii, 0, sizeof(fRadii)); |
| fType = kEmpty_Type; |
| return false; |
| } |
| return true; |
| } |
| |
| void SkRRect::scaleRadii() { |
| |
| // Proportionally scale down all radii to fit. Find the minimum ratio |
| // of a side and the radii on that side (for all four sides) and use |
| // that to scale down _all_ the radii. This algorithm is from the |
| // W3 spec (http://www.w3.org/TR/css3-background/) section 5.5 - Overlapping |
| // Curves: |
| // "Let f = min(Li/Si), where i is one of { top, right, bottom, left }, |
| // Si is the sum of the two corresponding radii of the corners on side i, |
| // and Ltop = Lbottom = the width of the box, |
| // and Lleft = Lright = the height of the box. |
| // If f < 1, then all corner radii are reduced by multiplying them by f." |
| double scale = 1.0; |
| |
| // The sides of the rectangle may be larger than a float. |
| double width = (double)fRect.fRight - (double)fRect.fLeft; |
| double height = (double)fRect.fBottom - (double)fRect.fTop; |
| scale = compute_min_scale(fRadii[0].fX, fRadii[1].fX, width, scale); |
| scale = compute_min_scale(fRadii[1].fY, fRadii[2].fY, height, scale); |
| scale = compute_min_scale(fRadii[2].fX, fRadii[3].fX, width, scale); |
| scale = compute_min_scale(fRadii[3].fY, fRadii[0].fY, height, scale); |
| |
| if (scale < 1.0) { |
| SkScaleToSides::AdjustRadii(width, scale, &fRadii[0].fX, &fRadii[1].fX); |
| SkScaleToSides::AdjustRadii(height, scale, &fRadii[1].fY, &fRadii[2].fY); |
| SkScaleToSides::AdjustRadii(width, scale, &fRadii[2].fX, &fRadii[3].fX); |
| SkScaleToSides::AdjustRadii(height, scale, &fRadii[3].fY, &fRadii[0].fY); |
| } |
| |
| // At this point we're either oval, simple, or complex (not empty or rect). |
| this->computeType(); |
| |
| SkASSERT(this->isValid()); |
| } |
| |
| // This method determines if a point known to be inside the RRect's bounds is |
| // inside all the corners. |
| bool SkRRect::checkCornerContainment(SkScalar x, SkScalar y) const { |
| SkPoint canonicalPt; // (x,y) translated to one of the quadrants |
| int index; |
| |
| if (kOval_Type == this->type()) { |
| canonicalPt.set(x - fRect.centerX(), y - fRect.centerY()); |
| index = kUpperLeft_Corner; // any corner will do in this case |
| } else { |
| if (x < fRect.fLeft + fRadii[kUpperLeft_Corner].fX && |
| y < fRect.fTop + fRadii[kUpperLeft_Corner].fY) { |
| // UL corner |
| index = kUpperLeft_Corner; |
| canonicalPt.set(x - (fRect.fLeft + fRadii[kUpperLeft_Corner].fX), |
| y - (fRect.fTop + fRadii[kUpperLeft_Corner].fY)); |
| SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY < 0); |
| } else if (x < fRect.fLeft + fRadii[kLowerLeft_Corner].fX && |
| y > fRect.fBottom - fRadii[kLowerLeft_Corner].fY) { |
| // LL corner |
| index = kLowerLeft_Corner; |
| canonicalPt.set(x - (fRect.fLeft + fRadii[kLowerLeft_Corner].fX), |
| y - (fRect.fBottom - fRadii[kLowerLeft_Corner].fY)); |
| SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY > 0); |
| } else if (x > fRect.fRight - fRadii[kUpperRight_Corner].fX && |
| y < fRect.fTop + fRadii[kUpperRight_Corner].fY) { |
| // UR corner |
| index = kUpperRight_Corner; |
| canonicalPt.set(x - (fRect.fRight - fRadii[kUpperRight_Corner].fX), |
| y - (fRect.fTop + fRadii[kUpperRight_Corner].fY)); |
| SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY < 0); |
| } else if (x > fRect.fRight - fRadii[kLowerRight_Corner].fX && |
| y > fRect.fBottom - fRadii[kLowerRight_Corner].fY) { |
| // LR corner |
| index = kLowerRight_Corner; |
| canonicalPt.set(x - (fRect.fRight - fRadii[kLowerRight_Corner].fX), |
| y - (fRect.fBottom - fRadii[kLowerRight_Corner].fY)); |
| SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY > 0); |
| } else { |
| // not in any of the corners |
| return true; |
| } |
| } |
| |
| // A point is in an ellipse (in standard position) if: |
| // x^2 y^2 |
| // ----- + ----- <= 1 |
| // a^2 b^2 |
| // or : |
| // b^2*x^2 + a^2*y^2 <= (ab)^2 |
| SkScalar dist = SkScalarSquare(canonicalPt.fX) * SkScalarSquare(fRadii[index].fY) + |
| SkScalarSquare(canonicalPt.fY) * SkScalarSquare(fRadii[index].fX); |
| return dist <= SkScalarSquare(fRadii[index].fX * fRadii[index].fY); |
| } |
| |
| bool SkRRect::allCornersCircular(SkScalar tolerance) const { |
| return SkScalarNearlyEqual(fRadii[0].fX, fRadii[0].fY, tolerance) && |
| SkScalarNearlyEqual(fRadii[1].fX, fRadii[1].fY, tolerance) && |
| SkScalarNearlyEqual(fRadii[2].fX, fRadii[2].fY, tolerance) && |
| SkScalarNearlyEqual(fRadii[3].fX, fRadii[3].fY, tolerance); |
| } |
| |
| bool SkRRect::contains(const SkRect& rect) const { |
| if (!this->getBounds().contains(rect)) { |
| // If 'rect' isn't contained by the RR's bounds then the |
| // RR definitely doesn't contain it |
| return false; |
| } |
| |
| if (this->isRect()) { |
| // the prior test was sufficient |
| return true; |
| } |
| |
| // At this point we know all four corners of 'rect' are inside the |
| // bounds of of this RR. Check to make sure all the corners are inside |
| // all the curves |
| return this->checkCornerContainment(rect.fLeft, rect.fTop) && |
| this->checkCornerContainment(rect.fRight, rect.fTop) && |
| this->checkCornerContainment(rect.fRight, rect.fBottom) && |
| this->checkCornerContainment(rect.fLeft, rect.fBottom); |
| } |
| |
| static bool radii_are_nine_patch(const SkVector radii[4]) { |
| return radii[SkRRect::kUpperLeft_Corner].fX == radii[SkRRect::kLowerLeft_Corner].fX && |
| radii[SkRRect::kUpperLeft_Corner].fY == radii[SkRRect::kUpperRight_Corner].fY && |
| radii[SkRRect::kUpperRight_Corner].fX == radii[SkRRect::kLowerRight_Corner].fX && |
| radii[SkRRect::kLowerLeft_Corner].fY == radii[SkRRect::kLowerRight_Corner].fY; |
| } |
| |
| // There is a simplified version of this method in setRectXY |
| void SkRRect::computeType() { |
| SK_AT_SCOPE_EXIT(SkASSERT(this->isValid())); |
| |
| if (fRect.isEmpty()) { |
| SkASSERT(fRect.isSorted()); |
| for (size_t i = 0; i < SK_ARRAY_COUNT(fRadii); ++i) { |
| SkASSERT((fRadii[i] == SkVector{0, 0})); |
| } |
| fType = kEmpty_Type; |
| return; |
| } |
| |
| bool allRadiiEqual = true; // are all x radii equal and all y radii? |
| bool allCornersSquare = 0 == fRadii[0].fX || 0 == fRadii[0].fY; |
| |
| for (int i = 1; i < 4; ++i) { |
| if (0 != fRadii[i].fX && 0 != fRadii[i].fY) { |
| // if either radius is zero the corner is square so both have to |
| // be non-zero to have a rounded corner |
| allCornersSquare = false; |
| } |
| if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) { |
| allRadiiEqual = false; |
| } |
| } |
| |
| if (allCornersSquare) { |
| fType = kRect_Type; |
| return; |
| } |
| |
| if (allRadiiEqual) { |
| if (fRadii[0].fX >= SkScalarHalf(fRect.width()) && |
| fRadii[0].fY >= SkScalarHalf(fRect.height())) { |
| fType = kOval_Type; |
| } else { |
| fType = kSimple_Type; |
| } |
| return; |
| } |
| |
| if (radii_are_nine_patch(fRadii)) { |
| fType = kNinePatch_Type; |
| } else { |
| fType = kComplex_Type; |
| } |
| } |
| |
| static bool matrix_only_scale_and_translate(const SkMatrix& matrix) { |
| const SkMatrix::TypeMask m = (SkMatrix::TypeMask) (SkMatrix::kAffine_Mask |
| | SkMatrix::kPerspective_Mask); |
| return (matrix.getType() & m) == 0; |
| } |
| |
| bool SkRRect::transform(const SkMatrix& matrix, SkRRect* dst) const { |
| if (nullptr == dst) { |
| return false; |
| } |
| |
| // Assert that the caller is not trying to do this in place, which |
| // would violate const-ness. Do not return false though, so that |
| // if they know what they're doing and want to violate it they can. |
| SkASSERT(dst != this); |
| |
| if (matrix.isIdentity()) { |
| *dst = *this; |
| return true; |
| } |
| |
| // If transform supported 90 degree rotations (which it could), we could |
| // use SkMatrix::rectStaysRect() to check for a valid transformation. |
| if (!matrix_only_scale_and_translate(matrix)) { |
| return false; |
| } |
| |
| SkRect newRect; |
| if (!matrix.mapRect(&newRect, fRect)) { |
| return false; |
| } |
| |
| // The matrix may have scaled us to zero (or due to float madness, we now have collapsed |
| // some dimension of the rect, so we need to check for that. Note that matrix must be |
| // scale and translate and mapRect() produces a sorted rect. So an empty rect indicates |
| // loss of precision. |
| if (!newRect.isFinite() || newRect.isEmpty()) { |
| return false; |
| } |
| |
| // At this point, this is guaranteed to succeed, so we can modify dst. |
| dst->fRect = newRect; |
| |
| // Since the only transforms that were allowed are scale and translate, the type |
| // remains unchanged. |
| dst->fType = fType; |
| |
| if (kRect_Type == fType) { |
| SkASSERT(dst->isValid()); |
| return true; |
| } |
| if (kOval_Type == fType) { |
| for (int i = 0; i < 4; ++i) { |
| dst->fRadii[i].fX = SkScalarHalf(newRect.width()); |
| dst->fRadii[i].fY = SkScalarHalf(newRect.height()); |
| } |
| SkASSERT(dst->isValid()); |
| return true; |
| } |
| |
| // Now scale each corner |
| SkScalar xScale = matrix.getScaleX(); |
| const bool flipX = xScale < 0; |
| if (flipX) { |
| xScale = -xScale; |
| } |
| SkScalar yScale = matrix.getScaleY(); |
| const bool flipY = yScale < 0; |
| if (flipY) { |
| yScale = -yScale; |
| } |
| |
| // Scale the radii without respecting the flip. |
| for (int i = 0; i < 4; ++i) { |
| dst->fRadii[i].fX = fRadii[i].fX * xScale; |
| dst->fRadii[i].fY = fRadii[i].fY * yScale; |
| } |
| |
| // Now swap as necessary. |
| if (flipX) { |
| if (flipY) { |
| // Swap with opposite corners |
| SkTSwap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerRight_Corner]); |
| SkTSwap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerLeft_Corner]); |
| } else { |
| // Only swap in x |
| SkTSwap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kUpperLeft_Corner]); |
| SkTSwap(dst->fRadii[kLowerRight_Corner], dst->fRadii[kLowerLeft_Corner]); |
| } |
| } else if (flipY) { |
| // Only swap in y |
| SkTSwap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerLeft_Corner]); |
| SkTSwap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerRight_Corner]); |
| } |
| |
| if (!AreRectAndRadiiValid(dst->fRect, dst->fRadii)) { |
| return false; |
| } |
| |
| dst->scaleRadii(); |
| dst->isValid(); |
| |
| return true; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkRRect::inset(SkScalar dx, SkScalar dy, SkRRect* dst) const { |
| SkRect r = fRect.makeInset(dx, dy); |
| bool degenerate = false; |
| if (r.fRight <= r.fLeft) { |
| degenerate = true; |
| r.fLeft = r.fRight = SkScalarAve(r.fLeft, r.fRight); |
| } |
| if (r.fBottom <= r.fTop) { |
| degenerate = true; |
| r.fTop = r.fBottom = SkScalarAve(r.fTop, r.fBottom); |
| } |
| if (degenerate) { |
| dst->fRect = r; |
| memset(dst->fRadii, 0, sizeof(dst->fRadii)); |
| dst->fType = kEmpty_Type; |
| return; |
| } |
| if (!r.isFinite()) { |
| *dst = SkRRect(); |
| return; |
| } |
| |
| SkVector radii[4]; |
| memcpy(radii, fRadii, sizeof(radii)); |
| for (int i = 0; i < 4; ++i) { |
| if (radii[i].fX) { |
| radii[i].fX -= dx; |
| } |
| if (radii[i].fY) { |
| radii[i].fY -= dy; |
| } |
| } |
| dst->setRectRadii(r, radii); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| size_t SkRRect::writeToMemory(void* buffer) const { |
| // Serialize only the rect and corners, but not the derived type tag. |
| memcpy(buffer, this, kSizeInMemory); |
| return kSizeInMemory; |
| } |
| |
| void SkRRect::writeToBuffer(SkWBuffer* buffer) const { |
| // Serialize only the rect and corners, but not the derived type tag. |
| buffer->write(this, kSizeInMemory); |
| } |
| |
| size_t SkRRect::readFromMemory(const void* buffer, size_t length) { |
| if (length < kSizeInMemory) { |
| return 0; |
| } |
| |
| SkRRect raw; |
| memcpy(&raw, buffer, kSizeInMemory); |
| this->setRectRadii(raw.fRect, raw.fRadii); |
| return kSizeInMemory; |
| } |
| |
| bool SkRRect::readFromBuffer(SkRBuffer* buffer) { |
| if (buffer->available() < kSizeInMemory) { |
| return false; |
| } |
| SkRRect storage; |
| return buffer->read(&storage, kSizeInMemory) && |
| (this->readFromMemory(&storage, kSizeInMemory) == kSizeInMemory); |
| } |
| |
| #include "SkString.h" |
| #include "SkStringUtils.h" |
| |
| void SkRRect::dump(bool asHex) const { |
| SkScalarAsStringType asType = asHex ? kHex_SkScalarAsStringType : kDec_SkScalarAsStringType; |
| |
| fRect.dump(asHex); |
| SkString line("const SkPoint corners[] = {\n"); |
| for (int i = 0; i < 4; ++i) { |
| SkString strX, strY; |
| SkAppendScalar(&strX, fRadii[i].x(), asType); |
| SkAppendScalar(&strY, fRadii[i].y(), asType); |
| line.appendf(" { %s, %s },", strX.c_str(), strY.c_str()); |
| if (asHex) { |
| line.appendf(" /* %f %f */", fRadii[i].x(), fRadii[i].y()); |
| } |
| line.append("\n"); |
| } |
| line.append("};"); |
| SkDebugf("%s\n", line.c_str()); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * We need all combinations of predicates to be true to have a "safe" radius value. |
| */ |
| static bool are_radius_check_predicates_valid(SkScalar rad, SkScalar min, SkScalar max) { |
| return (min <= max) && (rad <= max - min) && (min + rad <= max) && (max - rad >= min) && |
| rad >= 0; |
| } |
| |
| bool SkRRect::isValid() const { |
| if (!AreRectAndRadiiValid(fRect, fRadii)) { |
| return false; |
| } |
| |
| bool allRadiiZero = (0 == fRadii[0].fX && 0 == fRadii[0].fY); |
| bool allCornersSquare = (0 == fRadii[0].fX || 0 == fRadii[0].fY); |
| bool allRadiiSame = true; |
| |
| for (int i = 1; i < 4; ++i) { |
| if (0 != fRadii[i].fX || 0 != fRadii[i].fY) { |
| allRadiiZero = false; |
| } |
| |
| if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) { |
| allRadiiSame = false; |
| } |
| |
| if (0 != fRadii[i].fX && 0 != fRadii[i].fY) { |
| allCornersSquare = false; |
| } |
| } |
| bool patchesOfNine = radii_are_nine_patch(fRadii); |
| |
| if (fType < 0 || fType > kLastType) { |
| return false; |
| } |
| |
| switch (fType) { |
| case kEmpty_Type: |
| if (!fRect.isEmpty() || !allRadiiZero || !allRadiiSame || !allCornersSquare) { |
| return false; |
| } |
| break; |
| case kRect_Type: |
| if (fRect.isEmpty() || !allRadiiZero || !allRadiiSame || !allCornersSquare) { |
| return false; |
| } |
| break; |
| case kOval_Type: |
| if (fRect.isEmpty() || allRadiiZero || !allRadiiSame || allCornersSquare) { |
| return false; |
| } |
| |
| for (int i = 0; i < 4; ++i) { |
| if (!SkScalarNearlyEqual(fRadii[i].fX, SkScalarHalf(fRect.width())) || |
| !SkScalarNearlyEqual(fRadii[i].fY, SkScalarHalf(fRect.height()))) { |
| return false; |
| } |
| } |
| break; |
| case kSimple_Type: |
| if (fRect.isEmpty() || allRadiiZero || !allRadiiSame || allCornersSquare) { |
| return false; |
| } |
| break; |
| case kNinePatch_Type: |
| if (fRect.isEmpty() || allRadiiZero || allRadiiSame || allCornersSquare || |
| !patchesOfNine) { |
| return false; |
| } |
| break; |
| case kComplex_Type: |
| if (fRect.isEmpty() || allRadiiZero || allRadiiSame || allCornersSquare || |
| patchesOfNine) { |
| return false; |
| } |
| break; |
| } |
| |
| return true; |
| } |
| |
| bool SkRRect::AreRectAndRadiiValid(const SkRect& rect, const SkVector radii[4]) { |
| if (!rect.isFinite() || !rect.isSorted()) { |
| return false; |
| } |
| for (int i = 0; i < 4; ++i) { |
| if (!are_radius_check_predicates_valid(radii[i].fX, rect.fLeft, rect.fRight) || |
| !are_radius_check_predicates_valid(radii[i].fY, rect.fTop, rect.fBottom)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| /////////////////////////////////////////////////////////////////////////////// |