blob: fdb1236422a4664434a686ce871a5524164df99a [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/core/SkArenaAlloc.h"
#include "src/core/SkBitmapController.h"
#include "src/core/SkColorSpacePriv.h"
#include "src/core/SkColorSpaceXformSteps.h"
#include "src/core/SkOpts.h"
#include "src/core/SkRasterPipeline.h"
#include "src/core/SkReadBuffer.h"
#include "src/core/SkVM.h"
#include "src/core/SkWriteBuffer.h"
#include "src/image/SkImage_Base.h"
#include "src/shaders/SkBitmapProcShader.h"
#include "src/shaders/SkEmptyShader.h"
#include "src/shaders/SkImageShader.h"
/**
* We are faster in clamp, so always use that tiling when we can.
*/
static SkTileMode optimize(SkTileMode tm, int dimension) {
SkASSERT(dimension > 0);
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
// need to update frameworks/base/libs/hwui/tests/unit/SkiaBehaviorTests.cpp:55 to allow
// for transforming to clamp.
return tm;
#else
return dimension == 1 ? SkTileMode::kClamp : tm;
#endif
}
SkImageShader::SkImageShader(sk_sp<SkImage> img,
SkTileMode tmx, SkTileMode tmy,
const SkMatrix* localMatrix,
bool clampAsIfUnpremul)
: INHERITED(localMatrix)
, fImage(std::move(img))
, fTileModeX(optimize(tmx, fImage->width()))
, fTileModeY(optimize(tmy, fImage->height()))
, fClampAsIfUnpremul(clampAsIfUnpremul)
{}
// fClampAsIfUnpremul is always false when constructed through public APIs,
// so there's no need to read or write it here.
sk_sp<SkFlattenable> SkImageShader::CreateProc(SkReadBuffer& buffer) {
auto tmx = buffer.read32LE<SkTileMode>(SkTileMode::kLastTileMode);
auto tmy = buffer.read32LE<SkTileMode>(SkTileMode::kLastTileMode);
SkMatrix localMatrix;
buffer.readMatrix(&localMatrix);
sk_sp<SkImage> img = buffer.readImage();
if (!img) {
return nullptr;
}
return SkImageShader::Make(std::move(img), tmx, tmy, &localMatrix);
}
void SkImageShader::flatten(SkWriteBuffer& buffer) const {
buffer.writeUInt((unsigned)fTileModeX);
buffer.writeUInt((unsigned)fTileModeY);
buffer.writeMatrix(this->getLocalMatrix());
buffer.writeImage(fImage.get());
SkASSERT(fClampAsIfUnpremul == false);
}
bool SkImageShader::isOpaque() const {
return fImage->isOpaque() &&
fTileModeX != SkTileMode::kDecal && fTileModeY != SkTileMode::kDecal;
}
#ifdef SK_ENABLE_LEGACY_SHADERCONTEXT
static bool legacy_shader_can_handle(const SkMatrix& inv) {
if (inv.hasPerspective()) {
return false;
}
// Scale+translate methods are always present, but affine might not be.
if (!SkOpts::S32_alpha_D32_filter_DXDY && !inv.isScaleTranslate()) {
return false;
}
// legacy code uses SkFixed 32.32, so ensure the inverse doesn't map device coordinates
// out of range.
const SkScalar max_dev_coord = 32767.0f;
const SkRect src = inv.mapRect(SkRect::MakeWH(max_dev_coord, max_dev_coord));
// take 1/4 of max signed 32bits so we have room to subtract local values
const SkScalar max_fixed32dot32 = SK_MaxS32 * 0.25f;
if (!SkRect::MakeLTRB(-max_fixed32dot32, -max_fixed32dot32,
+max_fixed32dot32, +max_fixed32dot32).contains(src)) {
return false;
}
// legacy shader impl should be able to handle these matrices
return true;
}
SkShaderBase::Context* SkImageShader::onMakeContext(const ContextRec& rec,
SkArenaAlloc* alloc) const {
if (fImage->alphaType() == kUnpremul_SkAlphaType) {
return nullptr;
}
if (fImage->colorType() != kN32_SkColorType) {
return nullptr;
}
#if !defined(SK_SUPPORT_LEGACY_TILED_BITMAPS)
if (fTileModeX != fTileModeY) {
return nullptr;
}
#endif
if (fTileModeX == SkTileMode::kDecal || fTileModeY == SkTileMode::kDecal) {
return nullptr;
}
// SkBitmapProcShader stores bitmap coordinates in a 16bit buffer,
// so it can't handle bitmaps larger than 65535.
//
// We back off another bit to 32767 to make small amounts of
// intermediate math safe, e.g. in
//
// SkFixed fx = ...;
// fx = tile(fx + SK_Fixed1);
//
// we want to make sure (fx + SK_Fixed1) never overflows.
if (fImage-> width() > 32767 ||
fImage->height() > 32767) {
return nullptr;
}
SkMatrix inv;
if (!this->computeTotalInverse(*rec.fMatrix, rec.fLocalMatrix, &inv) ||
!legacy_shader_can_handle(inv)) {
return nullptr;
}
if (!rec.isLegacyCompatible(fImage->colorSpace())) {
return nullptr;
}
return SkBitmapProcLegacyShader::MakeContext(*this, fTileModeX, fTileModeY,
as_IB(fImage.get()), rec, alloc);
}
#endif
SkImage* SkImageShader::onIsAImage(SkMatrix* texM, SkTileMode xy[]) const {
if (texM) {
*texM = this->getLocalMatrix();
}
if (xy) {
xy[0] = fTileModeX;
xy[1] = fTileModeY;
}
return const_cast<SkImage*>(fImage.get());
}
sk_sp<SkShader> SkImageShader::Make(sk_sp<SkImage> image,
SkTileMode tmx, SkTileMode tmy,
const SkMatrix* localMatrix,
bool clampAsIfUnpremul) {
if (!image) {
return sk_make_sp<SkEmptyShader>();
}
return sk_sp<SkShader>{ new SkImageShader(image, tmx, tmy, localMatrix, clampAsIfUnpremul) };
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
#include "include/private/GrRecordingContext.h"
#include "src/gpu/GrCaps.h"
#include "src/gpu/GrColorInfo.h"
#include "src/gpu/GrRecordingContextPriv.h"
#include "src/gpu/SkGr.h"
#include "src/gpu/effects/GrBicubicEffect.h"
#include "src/gpu/effects/GrTextureEffect.h"
static GrSamplerState::WrapMode tile_mode_to_wrap_mode(const SkTileMode tileMode) {
switch (tileMode) {
case SkTileMode::kClamp:
return GrSamplerState::WrapMode::kClamp;
case SkTileMode::kRepeat:
return GrSamplerState::WrapMode::kRepeat;
case SkTileMode::kMirror:
return GrSamplerState::WrapMode::kMirrorRepeat;
case SkTileMode::kDecal:
return GrSamplerState::WrapMode::kClampToBorder;
}
SK_ABORT("Unknown tile mode.");
}
std::unique_ptr<GrFragmentProcessor> SkImageShader::asFragmentProcessor(
const GrFPArgs& args) const {
const auto lm = this->totalLocalMatrix(args.fPreLocalMatrix, args.fPostLocalMatrix);
SkMatrix lmInverse;
if (!lm->invert(&lmInverse)) {
return nullptr;
}
GrSamplerState::WrapMode wrapModes[] = {tile_mode_to_wrap_mode(fTileModeX),
tile_mode_to_wrap_mode(fTileModeY)};
// If either domainX or domainY are un-ignored, a texture domain effect has to be used to
// implement the decal mode (while leaving non-decal axes alone). The wrap mode originally
// clamp-to-border is reset to clamp since the hw cannot implement it directly.
GrTextureDomain::Mode domainX = GrTextureDomain::kIgnore_Mode;
GrTextureDomain::Mode domainY = GrTextureDomain::kIgnore_Mode;
if (!args.fContext->priv().caps()->clampToBorderSupport()) {
if (wrapModes[0] == GrSamplerState::WrapMode::kClampToBorder) {
domainX = GrTextureDomain::kDecal_Mode;
wrapModes[0] = GrSamplerState::WrapMode::kClamp;
}
if (wrapModes[1] == GrSamplerState::WrapMode::kClampToBorder) {
domainY = GrTextureDomain::kDecal_Mode;
wrapModes[1] = GrSamplerState::WrapMode::kClamp;
}
}
// Must set wrap and filter on the sampler before requesting a texture. In two places below
// we check the matrix scale factors to determine how to interpret the filter quality setting.
// This completely ignores the complexity of the drawVertices case where explicit local coords
// are provided by the caller.
bool doBicubic;
GrSamplerState::Filter textureFilterMode = GrSkFilterQualityToGrFilterMode(
fImage->width(), fImage->height(), args.fFilterQuality, *args.fViewMatrix, *lm,
args.fContext->priv().options().fSharpenMipmappedTextures, &doBicubic);
GrSamplerState samplerState(wrapModes, textureFilterMode);
SkScalar scaleAdjust[2] = { 1.0f, 1.0f };
sk_sp<GrTextureProxy> proxy(as_IB(fImage)->asTextureProxyRef(args.fContext, samplerState,
scaleAdjust));
if (!proxy) {
return nullptr;
}
SkAlphaType srcAlphaType = fImage->alphaType();
lmInverse.postScale(scaleAdjust[0], scaleAdjust[1]);
std::unique_ptr<GrFragmentProcessor> inner;
if (doBicubic) {
// domainX and domainY will properly apply the decal effect with the texture domain used in
// the bicubic filter if clamp to border was unsupported in hardware
static constexpr auto kDir = GrBicubicEffect::Direction::kXY;
inner = GrBicubicEffect::Make(std::move(proxy), lmInverse, wrapModes, domainX, domainY,
kDir, srcAlphaType);
} else {
auto dimensions = proxy->dimensions();
inner = GrTextureEffect::Make(std::move(proxy), srcAlphaType, lmInverse, samplerState);
if (domainX != GrTextureDomain::kIgnore_Mode || domainY != GrTextureDomain::kIgnore_Mode) {
SkRect domain = GrTextureDomain::MakeTexelDomain(SkIRect::MakeSize(dimensions),
domainX, domainY);
inner = GrDomainEffect::Make(std::move(inner), domain, domainX, domainY,
samplerState.filter());
}
}
inner = GrColorSpaceXformEffect::Make(std::move(inner), fImage->colorSpace(), srcAlphaType,
args.fDstColorInfo->colorSpace());
bool isAlphaOnly = SkColorTypeIsAlphaOnly(fImage->colorType());
if (isAlphaOnly) {
return inner;
} else if (args.fInputColorIsOpaque) {
return GrFragmentProcessor::OverrideInput(std::move(inner), SK_PMColor4fWHITE, false);
}
return GrFragmentProcessor::MulChildByInputAlpha(std::move(inner));
}
#endif
///////////////////////////////////////////////////////////////////////////////////////////////////
#include "src/core/SkImagePriv.h"
sk_sp<SkShader> SkMakeBitmapShader(const SkBitmap& src, SkTileMode tmx, SkTileMode tmy,
const SkMatrix* localMatrix, SkCopyPixelsMode cpm) {
return SkImageShader::Make(SkMakeImageFromRasterBitmap(src, cpm),
tmx, tmy, localMatrix);
}
sk_sp<SkShader> SkMakeBitmapShaderForPaint(const SkPaint& paint, const SkBitmap& src,
SkTileMode tmx, SkTileMode tmy,
const SkMatrix* localMatrix, SkCopyPixelsMode mode) {
auto s = SkMakeBitmapShader(src, tmx, tmy, localMatrix, mode);
if (!s) {
return nullptr;
}
if (src.colorType() == kAlpha_8_SkColorType && paint.getShader()) {
// Compose the image shader with the paint's shader. Alpha images+shaders should output the
// texture's alpha multiplied by the shader's color. DstIn (d*sa) will achieve this with
// the source image and dst shader (MakeBlend takes dst first, src second).
s = SkShaders::Blend(SkBlendMode::kDstIn, paint.refShader(), std::move(s));
}
return s;
}
void SkShaderBase::RegisterFlattenables() { SK_REGISTER_FLATTENABLE(SkImageShader); }
class SkImageStageUpdater : public SkStageUpdater {
public:
SkImageStageUpdater(const SkImageShader* shader, bool usePersp)
: fShader(shader), fUsePersp(usePersp)
{}
const SkImageShader* fShader;
const bool fUsePersp; // else use affine
// large enough for perspective, though often we just use 2x3
float fMatrixStorage[9];
#if 0 // TODO: when we support mipmaps
SkRasterPipeline_GatherCtx* fGather;
SkRasterPipeline_TileCtx* fLimitX;
SkRasterPipeline_TileCtx* fLimitY;
SkRasterPipeline_DecalTileCtx* fDecal;
#endif
void append_matrix_stage(SkRasterPipeline* p) {
if (fUsePersp) {
p->append(SkRasterPipeline::matrix_perspective, fMatrixStorage);
} else {
p->append(SkRasterPipeline::matrix_2x3, fMatrixStorage);
}
}
bool update(const SkMatrix& ctm, const SkMatrix* localM) override {
SkMatrix matrix;
if (fShader->computeTotalInverse(ctm, localM, &matrix)) {
if (fUsePersp) {
matrix.get9(fMatrixStorage);
} else {
SkAssertResult(matrix.asAffine(fMatrixStorage));
}
return true;
}
return false;
}
};
static void tweak_quality_and_inv_matrix(SkFilterQuality* quality, SkMatrix* matrix) {
// When the matrix is just an integer translate, bilerp == nearest neighbor.
if (*quality == kLow_SkFilterQuality &&
matrix->getType() <= SkMatrix::kTranslate_Mask &&
matrix->getTranslateX() == (int)matrix->getTranslateX() &&
matrix->getTranslateY() == (int)matrix->getTranslateY()) {
*quality = kNone_SkFilterQuality;
}
// See skia:4649 and the GM image_scale_aligned.
if (*quality == kNone_SkFilterQuality) {
if (matrix->getScaleX() >= 0) {
matrix->setTranslateX(nextafterf(matrix->getTranslateX(),
floorf(matrix->getTranslateX())));
}
if (matrix->getScaleY() >= 0) {
matrix->setTranslateY(nextafterf(matrix->getTranslateY(),
floorf(matrix->getTranslateY())));
}
}
}
bool SkImageShader::doStages(const SkStageRec& rec, SkImageStageUpdater* updater) const {
if (updater && rec.fPaint.getFilterQuality() == kMedium_SkFilterQuality) {
// TODO: medium: recall RequestBitmap and update width/height accordingly
return false;
}
SkRasterPipeline* p = rec.fPipeline;
SkArenaAlloc* alloc = rec.fAlloc;
auto quality = rec.fPaint.getFilterQuality();
SkMatrix matrix;
if (!this->computeTotalInverse(rec.fCTM, rec.fLocalM, &matrix)) {
return false;
}
const auto* state = SkBitmapController::RequestBitmap(as_IB(fImage.get()),
matrix, quality, alloc);
if (!state) {
return false;
}
const SkPixmap& pm = state->pixmap();
matrix = state->invMatrix();
quality = state->quality();
auto info = pm.info();
p->append(SkRasterPipeline::seed_shader);
if (updater) {
updater->append_matrix_stage(p);
} else {
tweak_quality_and_inv_matrix(&quality, &matrix);
p->append_matrix(alloc, matrix);
}
auto gather = alloc->make<SkRasterPipeline_GatherCtx>();
gather->pixels = pm.addr();
gather->stride = pm.rowBytesAsPixels();
gather->width = pm.width();
gather->height = pm.height();
auto limit_x = alloc->make<SkRasterPipeline_TileCtx>(),
limit_y = alloc->make<SkRasterPipeline_TileCtx>();
limit_x->scale = pm.width();
limit_x->invScale = 1.0f / pm.width();
limit_y->scale = pm.height();
limit_y->invScale = 1.0f / pm.height();
SkRasterPipeline_DecalTileCtx* decal_ctx = nullptr;
bool decal_x_and_y = fTileModeX == SkTileMode::kDecal && fTileModeY == SkTileMode::kDecal;
if (fTileModeX == SkTileMode::kDecal || fTileModeY == SkTileMode::kDecal) {
decal_ctx = alloc->make<SkRasterPipeline_DecalTileCtx>();
decal_ctx->limit_x = limit_x->scale;
decal_ctx->limit_y = limit_y->scale;
}
#if 0 // TODO: when we support kMedium
if (updator && (quality == kMedium_SkFilterQuality)) {
// if we change levels in mipmap, we need to update the scales (and invScales)
updator->fGather = gather;
updator->fLimitX = limit_x;
updator->fLimitY = limit_y;
updator->fDecal = decal_ctx;
}
#endif
auto append_tiling_and_gather = [&] {
if (decal_x_and_y) {
p->append(SkRasterPipeline::decal_x_and_y, decal_ctx);
} else {
switch (fTileModeX) {
case SkTileMode::kClamp: /* The gather_xxx stage will clamp for us. */ break;
case SkTileMode::kMirror: p->append(SkRasterPipeline::mirror_x, limit_x); break;
case SkTileMode::kRepeat: p->append(SkRasterPipeline::repeat_x, limit_x); break;
case SkTileMode::kDecal: p->append(SkRasterPipeline::decal_x, decal_ctx); break;
}
switch (fTileModeY) {
case SkTileMode::kClamp: /* The gather_xxx stage will clamp for us. */ break;
case SkTileMode::kMirror: p->append(SkRasterPipeline::mirror_y, limit_y); break;
case SkTileMode::kRepeat: p->append(SkRasterPipeline::repeat_y, limit_y); break;
case SkTileMode::kDecal: p->append(SkRasterPipeline::decal_y, decal_ctx); break;
}
}
void* ctx = gather;
switch (info.colorType()) {
case kAlpha_8_SkColorType: p->append(SkRasterPipeline::gather_a8, ctx); break;
case kA16_unorm_SkColorType: p->append(SkRasterPipeline::gather_a16, ctx); break;
case kA16_float_SkColorType: p->append(SkRasterPipeline::gather_af16, ctx); break;
case kRGB_565_SkColorType: p->append(SkRasterPipeline::gather_565, ctx); break;
case kARGB_4444_SkColorType: p->append(SkRasterPipeline::gather_4444, ctx); break;
case kR8G8_unorm_SkColorType: p->append(SkRasterPipeline::gather_rg88, ctx); break;
case kR16G16_unorm_SkColorType: p->append(SkRasterPipeline::gather_rg1616, ctx); break;
case kR16G16_float_SkColorType: p->append(SkRasterPipeline::gather_rgf16, ctx); break;
case kRGBA_8888_SkColorType: p->append(SkRasterPipeline::gather_8888, ctx); break;
case kRGBA_1010102_SkColorType: p->append(SkRasterPipeline::gather_1010102, ctx); break;
case kR16G16B16A16_unorm_SkColorType:
p->append(SkRasterPipeline::gather_16161616,ctx); break;
case kRGBA_F16Norm_SkColorType:
case kRGBA_F16_SkColorType: p->append(SkRasterPipeline::gather_f16, ctx); break;
case kRGBA_F32_SkColorType: p->append(SkRasterPipeline::gather_f32, ctx); break;
case kGray_8_SkColorType: p->append(SkRasterPipeline::gather_a8, ctx);
p->append(SkRasterPipeline::alpha_to_gray ); break;
case kRGB_888x_SkColorType: p->append(SkRasterPipeline::gather_8888, ctx);
p->append(SkRasterPipeline::force_opaque ); break;
case kRGB_101010x_SkColorType: p->append(SkRasterPipeline::gather_1010102, ctx);
p->append(SkRasterPipeline::force_opaque ); break;
case kBGRA_8888_SkColorType: p->append(SkRasterPipeline::gather_8888, ctx);
p->append(SkRasterPipeline::swap_rb ); break;
case kUnknown_SkColorType: SkASSERT(false);
}
if (decal_ctx) {
p->append(SkRasterPipeline::check_decal_mask, decal_ctx);
}
};
auto append_misc = [&] {
// This is an inessential optimization... it's logically safe to set this to false.
// But if...
// - we know the image is definitely normalized, and
// - we're doing some color space conversion, and
// - sRGB curves are involved,
// then we can use slightly faster math that doesn't work well outside [0,1].
bool src_is_normalized = SkColorTypeIsNormalized(info.colorType());
SkColorSpace* cs = info.colorSpace();
SkAlphaType at = info.alphaType();
// Color for A8 images comes from the paint. TODO: all alpha images? none?
if (info.colorType() == kAlpha_8_SkColorType) {
SkColor4f rgb = rec.fPaint.getColor4f();
p->append_set_rgb(alloc, rgb);
src_is_normalized = rgb.fitsInBytes();
cs = sk_srgb_singleton();
at = kUnpremul_SkAlphaType;
}
// Bicubic filtering naturally produces out of range values on both sides of [0,1].
if (quality == kHigh_SkFilterQuality) {
p->append(SkRasterPipeline::clamp_0);
p->append(at == kUnpremul_SkAlphaType || fClampAsIfUnpremul
? SkRasterPipeline::clamp_1
: SkRasterPipeline::clamp_a);
src_is_normalized = true;
}
// Transform color space and alpha type to match shader convention (dst CS, premul alpha).
alloc->make<SkColorSpaceXformSteps>(cs, at,
rec.fDstCS, kPremul_SkAlphaType)
->apply(p, src_is_normalized);
return true;
};
// Check for fast-path stages.
auto ct = info.colorType();
if (true
&& (ct == kRGBA_8888_SkColorType || ct == kBGRA_8888_SkColorType)
&& quality == kLow_SkFilterQuality
&& fTileModeX == SkTileMode::kClamp && fTileModeY == SkTileMode::kClamp) {
p->append(SkRasterPipeline::bilerp_clamp_8888, gather);
if (ct == kBGRA_8888_SkColorType) {
p->append(SkRasterPipeline::swap_rb);
}
return append_misc();
}
if (true
&& (ct == kRGBA_8888_SkColorType || ct == kBGRA_8888_SkColorType) // TODO: all formats
&& quality == kLow_SkFilterQuality
&& fTileModeX != SkTileMode::kDecal // TODO decal too?
&& fTileModeY != SkTileMode::kDecal) {
auto ctx = alloc->make<SkRasterPipeline_SamplerCtx2>();
*(SkRasterPipeline_GatherCtx*)(ctx) = *gather;
ctx->ct = ct;
ctx->tileX = fTileModeX;
ctx->tileY = fTileModeY;
ctx->invWidth = 1.0f / ctx->width;
ctx->invHeight = 1.0f / ctx->height;
p->append(SkRasterPipeline::bilinear, ctx);
return append_misc();
}
if (true
&& (ct == kRGBA_8888_SkColorType || ct == kBGRA_8888_SkColorType)
&& quality == kHigh_SkFilterQuality
&& fTileModeX == SkTileMode::kClamp && fTileModeY == SkTileMode::kClamp) {
p->append(SkRasterPipeline::bicubic_clamp_8888, gather);
if (ct == kBGRA_8888_SkColorType) {
p->append(SkRasterPipeline::swap_rb);
}
return append_misc();
}
if (true
&& (ct == kRGBA_8888_SkColorType || ct == kBGRA_8888_SkColorType) // TODO: all formats
&& quality == kHigh_SkFilterQuality
&& fTileModeX != SkTileMode::kDecal // TODO decal too?
&& fTileModeY != SkTileMode::kDecal) {
auto ctx = alloc->make<SkRasterPipeline_SamplerCtx2>();
*(SkRasterPipeline_GatherCtx*)(ctx) = *gather;
ctx->ct = ct;
ctx->tileX = fTileModeX;
ctx->tileY = fTileModeY;
ctx->invWidth = 1.0f / ctx->width;
ctx->invHeight = 1.0f / ctx->height;
p->append(SkRasterPipeline::bicubic, ctx);
return append_misc();
}
SkRasterPipeline_SamplerCtx* sampler = nullptr;
if (quality != kNone_SkFilterQuality) {
sampler = alloc->make<SkRasterPipeline_SamplerCtx>();
}
auto sample = [&](SkRasterPipeline::StockStage setup_x,
SkRasterPipeline::StockStage setup_y) {
p->append(setup_x, sampler);
p->append(setup_y, sampler);
append_tiling_and_gather();
p->append(SkRasterPipeline::accumulate, sampler);
};
if (quality == kNone_SkFilterQuality) {
append_tiling_and_gather();
} else if (quality == kLow_SkFilterQuality) {
p->append(SkRasterPipeline::save_xy, sampler);
sample(SkRasterPipeline::bilinear_nx, SkRasterPipeline::bilinear_ny);
sample(SkRasterPipeline::bilinear_px, SkRasterPipeline::bilinear_ny);
sample(SkRasterPipeline::bilinear_nx, SkRasterPipeline::bilinear_py);
sample(SkRasterPipeline::bilinear_px, SkRasterPipeline::bilinear_py);
p->append(SkRasterPipeline::move_dst_src);
} else {
SkASSERT(quality == kHigh_SkFilterQuality);
p->append(SkRasterPipeline::save_xy, sampler);
sample(SkRasterPipeline::bicubic_n3x, SkRasterPipeline::bicubic_n3y);
sample(SkRasterPipeline::bicubic_n1x, SkRasterPipeline::bicubic_n3y);
sample(SkRasterPipeline::bicubic_p1x, SkRasterPipeline::bicubic_n3y);
sample(SkRasterPipeline::bicubic_p3x, SkRasterPipeline::bicubic_n3y);
sample(SkRasterPipeline::bicubic_n3x, SkRasterPipeline::bicubic_n1y);
sample(SkRasterPipeline::bicubic_n1x, SkRasterPipeline::bicubic_n1y);
sample(SkRasterPipeline::bicubic_p1x, SkRasterPipeline::bicubic_n1y);
sample(SkRasterPipeline::bicubic_p3x, SkRasterPipeline::bicubic_n1y);
sample(SkRasterPipeline::bicubic_n3x, SkRasterPipeline::bicubic_p1y);
sample(SkRasterPipeline::bicubic_n1x, SkRasterPipeline::bicubic_p1y);
sample(SkRasterPipeline::bicubic_p1x, SkRasterPipeline::bicubic_p1y);
sample(SkRasterPipeline::bicubic_p3x, SkRasterPipeline::bicubic_p1y);
sample(SkRasterPipeline::bicubic_n3x, SkRasterPipeline::bicubic_p3y);
sample(SkRasterPipeline::bicubic_n1x, SkRasterPipeline::bicubic_p3y);
sample(SkRasterPipeline::bicubic_p1x, SkRasterPipeline::bicubic_p3y);
sample(SkRasterPipeline::bicubic_p3x, SkRasterPipeline::bicubic_p3y);
p->append(SkRasterPipeline::move_dst_src);
}
return append_misc();
}
bool SkImageShader::onAppendStages(const SkStageRec& rec) const {
return this->doStages(rec, nullptr);
}
SkStageUpdater* SkImageShader::onAppendUpdatableStages(const SkStageRec& rec) const {
bool usePersp = rec.fCTM.hasPerspective();
auto updater = rec.fAlloc->make<SkImageStageUpdater>(this, usePersp);
return this->doStages(rec, updater) ? updater : nullptr;
}
bool SkImageShader::onProgram(skvm::Builder* p,
const SkMatrix& ctm, const SkMatrix* localM,
SkFilterQuality quality, SkColorSpace* dstCS,
skvm::Uniforms* uniforms, SkArenaAlloc* alloc,
skvm::F32 x, skvm::F32 y,
skvm::F32* r, skvm::F32* g, skvm::F32* b, skvm::F32* a) const {
SkMatrix inv;
if (!this->computeTotalInverse(ctm, localM, &inv)) {
return false;
}
// We use RequestBitmap() to make sure our SkBitmapController::State lives in the alloc.
// This lets the SkVMBlitter hang on to this state and keep our image alive.
auto state = SkBitmapController::RequestBitmap(as_IB(fImage.get()), inv, quality, alloc);
if (!state) {
return false;
}
const SkPixmap& pm = state->pixmap();
inv = state->invMatrix();
quality = state->quality();
tweak_quality_and_inv_matrix(&quality, &inv);
// Apply matrix to convert dst coords to sample center coords.
inv.normalizePerspective();
if (inv.isIdentity()) {
// That was easy.
} else if (inv.isTranslate()) {
x = p->add(x, p->uniformF(uniforms->pushF(inv[2])));
y = p->add(y, p->uniformF(uniforms->pushF(inv[5])));
} else if (inv.isScaleTranslate()) {
x = p->mad(x, p->uniformF(uniforms->pushF(inv[0])), p->uniformF(uniforms->pushF(inv[2])));
y = p->mad(y, p->uniformF(uniforms->pushF(inv[4])), p->uniformF(uniforms->pushF(inv[5])));
} else { // Affine or perspective.
auto dot = [&,x,y](int row) {
return p->mad(x, p->uniformF(uniforms->pushF(inv[3*row+0])),
p->mad(y, p->uniformF(uniforms->pushF(inv[3*row+1])),
p->uniformF(uniforms->pushF(inv[3*row+2]))));
};
x = dot(0);
y = dot(1);
if (inv.hasPerspective()) {
x = p->div(x, dot(2));
y = p->div(y, dot(2));
}
}
// Bail out if sample() can't yet handle our image's color type.
switch (pm.colorType()) {
default: return false;
case kRGB_565_SkColorType:
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType: break;
}
auto sample = [&](skvm::F32 sx, skvm::F32 sy) -> skvm::Color {
// repeat() and mirror() are written assuming they'll be followed by a [0,scale) clamp.
auto repeat = [&](skvm::F32 v, float scale) {
skvm::F32 S = p->uniformF(uniforms->pushF( scale)),
I = p->uniformF(uniforms->pushF(1.0f/scale));
// v - floor(v/scale)*scale
return p->sub(v, p->mul(p->floor(p->mul(v,I)), S));
};
auto mirror = [&](skvm::F32 v, float scale) {
skvm::F32 S = p->uniformF(uniforms->pushF( scale)),
I2 = p->uniformF(uniforms->pushF(0.5f/scale));
// abs( (v-scale) - (2*scale)*floor((v-scale)*(0.5f/scale)) - scale )
// {---A---} {------------------B------------------}
skvm::F32 A = p->sub(v,S),
B = p->mul(p->add(S,S), p->floor(p->mul(A,I2)));
return p->abs(p->sub(p->sub(A,B), S));
};
switch (fTileModeX) {
case SkTileMode::kDecal: /* handled after gather */ break;
case SkTileMode::kClamp: /* we always clamp */ break;
case SkTileMode::kRepeat: sx = repeat(sx, pm.width()); break;
case SkTileMode::kMirror: sx = mirror(sx, pm.width()); break;
}
switch (fTileModeY) {
case SkTileMode::kDecal: /* handled after gather */ break;
case SkTileMode::kClamp: /* we always clamp */ break;
case SkTileMode::kRepeat: sy = repeat(sy, pm.height()); break;
case SkTileMode::kMirror: sy = mirror(sy, pm.height()); break;
}
// Always clamp sample coordinates to [0,width), [0,height), both for memory
// safety and to handle the clamps still needed by kClamp, kRepeat, and kMirror.
auto clamp = [&](skvm::F32 v, float limit) {
// Subtract an ulp so the upper clamp limit excludes limit itself.
int bits;
memcpy(&bits, &limit, 4);
return p->clamp(v, p->splat(0.0f), p->uniformF(uniforms->push(bits-1)));
};
skvm::F32 clamped_x = clamp(sx, pm. width()),
clamped_y = clamp(sy, pm.height());
// Load pixels from pm.addr()[(int)sx + (int)sy*stride].
skvm::Builder::Uniform img = uniforms->pushPtr(pm.addr());
skvm::I32 index = p->add(p->trunc(clamped_x),
p->mul(p->trunc(clamped_y),
p->uniform32(uniforms->push(pm.rowBytesAsPixels()))));
skvm::Color c;
switch (pm.colorType()) {
default: SkUNREACHABLE;
case kRGB_565_SkColorType: c = p->unpack_565 (p->gather16(img, index)); break;
case kRGBA_8888_SkColorType: c = p->unpack_8888(p->gather32(img, index)); break;
case kBGRA_8888_SkColorType: c = p->unpack_8888(p->gather32(img, index));
std::swap(c.r, c.b);
break;
}
// Mask away any pixels that we tried to sample outside the bounds in kDecal.
if (fTileModeX == SkTileMode::kDecal || fTileModeY == SkTileMode::kDecal) {
skvm::I32 mask = p->splat(~0);
if (fTileModeX == SkTileMode::kDecal) { mask = p->bit_and(mask, p->eq(sx, clamped_x)); }
if (fTileModeY == SkTileMode::kDecal) { mask = p->bit_and(mask, p->eq(sy, clamped_y)); }
c.r = p->bit_cast(p->bit_and(mask, p->bit_cast(c.r)));
c.g = p->bit_cast(p->bit_and(mask, p->bit_cast(c.g)));
c.b = p->bit_cast(p->bit_and(mask, p->bit_cast(c.b)));
c.a = p->bit_cast(p->bit_and(mask, p->bit_cast(c.a)));
}
return c;
};
if (quality == kNone_SkFilterQuality) {
skvm::Color c = sample(x,y);
*r = c.r;
*g = c.g;
*b = c.b;
*a = c.a;
} else if (quality == kLow_SkFilterQuality) {
// Our four sample points are the corners of a logical 1x1 pixel
// box surrounding (x,y) at (0.5,0.5) off-center.
skvm::F32 left = p->sub(x, p->splat(0.5f)),
top = p->sub(y, p->splat(0.5f)),
right = p->add(x, p->splat(0.5f)),
bottom = p->add(y, p->splat(0.5f));
// The fractional parts of right and bottom are our lerp factors in x and y respectively.
skvm::F32 fx = p->fract(right ),
fy = p->fract(bottom);
skvm::Color c = p->lerp(p->lerp(sample(left,top ), sample(right,top ), fx),
p->lerp(sample(left,bottom), sample(right,bottom), fx), fy);
*r = c.r;
*g = c.g;
*b = c.b;
*a = c.a;
} else {
SkASSERT(quality == kHigh_SkFilterQuality);
// All bicubic samples have the same fractional offset (fx,fy) from the center.
// They're either the 16 corners of a 3x3 grid/ surrounding (x,y) at (0.5,0.5) off-center.
skvm::F32 fx = p->fract(p->add(x, p->splat(0.5f))),
fy = p->fract(p->add(y, p->splat(0.5f)));
// See GrCubicEffect for details of these weights.
// TODO: these maybe don't seem right looking at gm/bicubic and GrBicubicEffect.
auto near = [&](skvm::F32 t) {
// 1/18 + 9/18t + 27/18t^2 - 21/18t^3 == t ( t ( -21/18t + 27/18) + 9/18) + 1/18
return p->mad(t,
p->mad(t,
p->mad(t, p->splat(-21/18.0f),
p->splat( 27/18.0f)),
p->splat( 9/18.0f)),
p->splat( 1/18.0f));
};
auto far = [&](skvm::F32 t) {
// 0/18 + 0/18*t - 6/18t^2 + 7/18t^3 == t^2 (7/18t - 6/18)
return p->mul(p->mul(t,t), p->mad(t, p->splat( 7/18.0f),
p->splat(-6/18.0f)));
};
const skvm::F32 wx[] = {
far (p->sub(p->splat(1.0f), fx)),
near(p->sub(p->splat(1.0f), fx)),
near( fx ),
far ( fx ),
};
const skvm::F32 wy[] = {
far (p->sub(p->splat(1.0f), fy)),
near(p->sub(p->splat(1.0f), fy)),
near( fy ),
far ( fy ),
};
*r = *g = *b = *a = p->splat(0.0f);
skvm::F32 sy = p->add(y, p->splat(-1.5f));
for (int j = 0; j < 4; j++, sy = p->add(sy, p->splat(1.0f))) {
skvm::F32 sx = p->add(x, p->splat(-1.5f));
for (int i = 0; i < 4; i++, sx = p->add(sx, p->splat(1.0f))) {
skvm::Color c = sample(sx,sy);
skvm::F32 w = p->mul(wx[i], wy[j]);
*r = p->mad(c.r,w, *r);
*g = p->mad(c.g,w, *g);
*b = p->mad(c.b,w, *b);
*a = p->mad(c.a,w, *a);
}
}
// Bicubic filtering naturally produces out of range values on both sides of [0,1].
*a = p->clamp(*a, p->splat(0.0f), p->splat(1.0f));
skvm::F32 limit = (pm.alphaType() == kUnpremul_SkAlphaType || fClampAsIfUnpremul)
? p->splat(1.0f)
: *a;
*r = p->clamp(*r, p->splat(0.0f), limit);
*g = p->clamp(*g, p->splat(0.0f), limit);
*b = p->clamp(*b, p->splat(0.0f), limit);
}
// Follow SkColorSpaceXformSteps to match shader output convention (dstCS, premul).
// TODO: may need to extend lifetime once doing actual transforms? maybe all in uniforms.
auto flags = SkColorSpaceXformSteps{pm.colorSpace(), pm.alphaType(),
dstCS, kPremul_SkAlphaType}.flags;
// TODO: once this all works, move it to SkColorSpaceXformSteps
if (flags.unpremul) { p->unpremul(r,g,b,*a); }
if (flags.linearize) { return false; }
if (flags.gamut_transform) { return false; }
if (flags.encode) { return false; }
if (flags.premul) { p->premul(r,g,b,*a); }
return true;
}