blob: 7ce8a30edb90500471082c615f7c0b18f3d4d9aa [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrGLSLGeometryProcessor_DEFINED
#define GrGLSLGeometryProcessor_DEFINED
#include "src/gpu/glsl/GrGLSLPrimitiveProcessor.h"
class GrGLSLGPBuilder;
/**
* If a GL effect needs a GrGLFullShaderBuilder* object to emit vertex code, then it must inherit
* from this class. Since paths don't have vertices, this class is only meant to be used internally
* by skia, for special cases.
*/
class GrGLSLGeometryProcessor : public GrGLSLPrimitiveProcessor {
public:
/* Any general emit code goes in the base class emitCode. Subclasses override onEmitCode */
void emitCode(EmitArgs&) final;
// Generate the final code for assigning transformed coordinates to the varyings recorded in
// the call to collectTransforms(). This must happen after FP code emission so that it has
// access to any uniforms the FPs registered for uniform sample matrix invocations.
void emitTransformCode(GrGLSLVertexBuilder* vb,
GrGLSLUniformHandler* uniformHandler) override;
protected:
// A helper for setting the matrix on a uniform handle initialized through
// writeOutputPosition or writeLocalCoord. Automatically handles elided uniforms,
// scale+translate matrices, and state tracking (if provided state pointer is non-null).
void setTransform(const GrGLSLProgramDataManager& pdman, const UniformHandle& uniform,
const SkMatrix& matrix, SkMatrix* state=nullptr) const;
struct GrGPArgs {
// Used to specify the output variable used by the GP to store its device position. It can
// either be a float2 or a float3 (in order to handle perspective). The subclass sets this
// in its onEmitCode().
GrShaderVar fPositionVar;
// Used to specify the variable storing the draw's local coordinates. It can be either a
// float2, float3, or void. It can only be void when no FP needs local coordinates. This
// variable can be an attribute or local variable, but should not itself be a varying.
// GrGLSLGeometryProcessor automatically determines if this must be passed to a FS.
GrShaderVar fLocalCoordVar;
};
// Helpers for adding code to write the transformed vertex position. The first simple version
// just writes a variable named by 'posName' into the position output variable with the
// assumption that the position is 2D. The second version transforms the input position by a
// view matrix and the output variable is 2D or 3D depending on whether the view matrix is
// perspective. Both versions declare the output position variable and will set
// GrGPArgs::fPositionVar.
void writeOutputPosition(GrGLSLVertexBuilder*, GrGPArgs*, const char* posName);
void writeOutputPosition(GrGLSLVertexBuilder*,
GrGLSLUniformHandler* uniformHandler,
GrGPArgs*,
const char* posName,
const SkMatrix& mat,
UniformHandle* viewMatrixUniform);
// Helper to transform an existing variable by a given local matrix (e.g. the inverse view
// matrix). It will declare the transformed local coord variable and will set
// GrGPArgs::fLocalCoordVar.
void writeLocalCoord(GrGLSLVertexBuilder*, GrGLSLUniformHandler*, GrGPArgs*,
GrShaderVar localVar, const SkMatrix& localMatrix,
UniformHandle* localMatrixUniform);
// GPs that use writeOutputPosition and/or writeLocalCoord must incorporate the matrix type
// into their key, and should use this function or one of the other related helpers.
static uint32_t ComputeMatrixKey(const SkMatrix& mat) {
if (mat.isIdentity()) {
return 0b00;
} else if (mat.isScaleTranslate()) {
return 0b01;
} else if (!mat.hasPerspective()) {
return 0b10;
} else {
return 0b11;
}
}
static uint32_t ComputeMatrixKeys(const SkMatrix& viewMatrix, const SkMatrix& localMatrix) {
return (ComputeMatrixKey(viewMatrix) << kMatrixKeyBits) | ComputeMatrixKey(localMatrix);
}
static uint32_t AddMatrixKeys(uint32_t flags, const SkMatrix& viewMatrix,
const SkMatrix& localMatrix) {
// Shifting to make room for the matrix keys shouldn't lose bits
SkASSERT(((flags << (2 * kMatrixKeyBits)) >> (2 * kMatrixKeyBits)) == flags);
return (flags << (2 * kMatrixKeyBits)) | ComputeMatrixKeys(viewMatrix, localMatrix);
}
static constexpr int kMatrixKeyBits = 2;
private:
virtual void onEmitCode(EmitArgs&, GrGPArgs*) = 0;
// Iterates over the FPs in 'handler' to register additional varyings and uniforms to support
// VS-promoted local coord evaluation for the FPs. Subclasses must call this with
// 'localCoordsVar' set to an SkSL variable expression of type 'float2' or 'float3' representing
// the original local coordinates of the draw.
//
// This must happen before FP code emission so that the FPs can find the appropriate varying
// handles they use in place of explicit coord sampling; it is automatically called after
// onEmitCode() returns using the value stored in GpArgs::fLocalCoordVar.
void collectTransforms(GrGLSLVertexBuilder* vb,
GrGLSLVaryingHandler* varyingHandler,
GrGLSLUniformHandler* uniformHandler,
const GrShaderVar& localCoordsVar,
FPCoordTransformHandler* handler);
struct TransformInfo {
// The vertex-shader output variable to assign the transformed coordinates to
GrShaderVar fOutputCoords;
// The coordinate to be transformed
GrShaderVar fLocalCoords;
// The leaf FP of a transform hierarchy to be evaluated in the vertex shader;
// this FP will be const-uniform sampled, and all of its parents will have a sample matrix
// type of none or const-uniform.
const GrFragmentProcessor* fFP;
};
SkTArray<TransformInfo> fTransformInfos;
using INHERITED = GrGLSLPrimitiveProcessor;
};
#endif