blob: 01d4b6b571bc89df8204b01ae0a271af1a88efac [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrDrawingManager_DEFINED
#define GrDrawingManager_DEFINED
#include "include/core/SkSurface.h"
#include "include/private/SkTArray.h"
#include "include/private/SkTHash.h"
#include "src/core/SkSpan.h"
#include "src/gpu/GrBufferAllocPool.h"
#include "src/gpu/GrDeferredUpload.h"
#include "src/gpu/GrHashMapWithCache.h"
#include "src/gpu/GrPathRenderer.h"
#include "src/gpu/GrPathRendererChain.h"
#include "src/gpu/GrResourceCache.h"
#include "src/gpu/GrSurfaceProxy.h"
// Enabling this will print out which path renderers are being chosen
#define GR_PATH_RENDERER_SPEW 0
class GrCoverageCountingPathRenderer;
class GrGpuBuffer;
class GrOnFlushCallbackObject;
class GrOpFlushState;
class GrOpsTask;
class GrRecordingContext;
class GrSurfaceDrawContext;
class GrRenderTargetProxy;
class GrRenderTask;
class GrSemaphore;
class GrSoftwarePathRenderer;
class GrSurfaceContext;
class GrSurfaceProxyView;
class GrTextureResolveRenderTask;
class SkDeferredDisplayList;
class GrDrawingManager {
public:
~GrDrawingManager();
void freeGpuResources();
// OpsTasks created at flush time are stored and handled different from the others.
sk_sp<GrOpsTask> newOpsTask(GrSurfaceProxyView, bool flushTimeOpsTask);
// Create a render task that can resolve MSAA and/or regenerate mipmap levels on proxies. This
// method will only add the new render task to the list. It is up to the caller to call
// addProxy() on the returned object.
GrTextureResolveRenderTask* newTextureResolveRenderTask(const GrCaps&);
// Create a new render task that will cause the gpu to wait on semaphores before executing any
// more RenderTasks that target proxy. It is possible for this wait to also block additional
// work (even to other proxies) that has already been recorded or will be recorded later. The
// only guarantee is that future work to the passed in proxy will wait on the semaphores to be
// signaled.
void newWaitRenderTask(sk_sp<GrSurfaceProxy> proxy,
std::unique_ptr<std::unique_ptr<GrSemaphore>[]>,
int numSemaphores);
// Create a new render task which copies the pixels from the srcProxy into the dstBuffer. This
// is used to support the asynchronous readback API. The srcRect is the region of the srcProxy
// to be copied. The surfaceColorType says how we should interpret the data when reading back
// from the source. DstColorType describes how the data should be stored in the dstBuffer.
// DstOffset is the offset into the dstBuffer where we will start writing data.
void newTransferFromRenderTask(sk_sp<GrSurfaceProxy> srcProxy, const SkIRect& srcRect,
GrColorType surfaceColorType, GrColorType dstColorType,
sk_sp<GrGpuBuffer> dstBuffer, size_t dstOffset);
// Creates a new render task which copies a pixel rectangle from srcView into dstView. The src
// pixels copied are specified by srcRect. They are copied to a rect of the same size in
// dstProxy with top left at dstPoint. If the src rect is clipped by the src bounds then pixel
// values in the dst rect corresponding to the area clipped by the src rect are not overwritten.
// This method is not guaranteed to succeed depending on the type of surface, formats, etc, and
// the backend-specific limitations.
bool newCopyRenderTask(sk_sp<GrSurfaceProxy> src,
SkIRect srcRect,
sk_sp<GrSurfaceProxy> dst,
SkIPoint dstPoint,
GrSurfaceOrigin);
// Adds a task that writes the data from the passed GrMipLevels to dst. The lifetime of the
// pixel data in the levels should be tied to the passed SkData or the caller must flush the
// context before the data may become invalid. srcColorType is the color type of the
// GrMipLevels. dstColorType is the color type being used with dst and must be compatible with
// dst's format according to GrCaps::areColorTypeAndFormatCompatible().
bool newWritePixelsTask(sk_sp<GrSurfaceProxy> dst,
SkIRect rect,
GrColorType srcColorType,
GrColorType dstColorType,
const GrMipLevel[],
int levelCount,
sk_sp<SkData> storage);
GrRecordingContext* getContext() { return fContext; }
GrPathRenderer* getPathRenderer(const GrPathRenderer::CanDrawPathArgs& args,
bool allowSW,
GrPathRendererChain::DrawType drawType,
GrPathRenderer::StencilSupport* stencilSupport = nullptr);
GrPathRenderer* getSoftwarePathRenderer();
// Returns a direct pointer to the coverage counting path renderer, or null if it is not
// supported and turned on.
GrCoverageCountingPathRenderer* getCoverageCountingPathRenderer();
// Returns a direct pointer to the tessellation path renderer, or null if it is not supported
// and turned on.
GrPathRenderer* getTessellationPathRenderer();
void flushIfNecessary();
static bool ProgramUnitTest(GrDirectContext*, int maxStages, int maxLevels);
GrSemaphoresSubmitted flushSurfaces(SkSpan<GrSurfaceProxy*>,
SkSurface::BackendSurfaceAccess,
const GrFlushInfo&,
const GrBackendSurfaceMutableState* newState);
void addOnFlushCallbackObject(GrOnFlushCallbackObject*);
#if GR_TEST_UTILS
void testingOnly_removeOnFlushCallbackObject(GrOnFlushCallbackObject*);
GrPathRendererChain::Options testingOnly_getOptionsForPathRendererChain() {
return fOptionsForPathRendererChain;
}
#endif
GrRenderTask* getLastRenderTask(const GrSurfaceProxy*) const;
GrOpsTask* getLastOpsTask(const GrSurfaceProxy*) const;
void setLastRenderTask(const GrSurfaceProxy*, GrRenderTask*);
void moveRenderTasksToDDL(SkDeferredDisplayList* ddl);
void createDDLTask(sk_sp<const SkDeferredDisplayList>,
sk_sp<GrRenderTargetProxy> newDest,
SkIPoint offset);
private:
GrDrawingManager(GrRecordingContext*,
const GrPathRendererChain::Options&,
bool reduceOpsTaskSplitting);
bool wasAbandoned() const;
void closeActiveOpsTask();
// return true if any GrRenderTasks were actually executed; false otherwise
bool executeRenderTasks(GrOpFlushState*);
void removeRenderTasks();
void sortTasks();
void reorderTasks();
void closeAllTasks();
GrRenderTask* appendTask(sk_sp<GrRenderTask>);
GrRenderTask* insertTaskBeforeLast(sk_sp<GrRenderTask>);
bool flush(SkSpan<GrSurfaceProxy*> proxies,
SkSurface::BackendSurfaceAccess access,
const GrFlushInfo&,
const GrBackendSurfaceMutableState* newState);
bool submitToGpu(bool syncToCpu);
SkDEBUGCODE(void validate() const);
friend class GrDirectContext; // access to: flush & cleanup
friend class GrDirectContextPriv; // access to: flush
friend class GrOnFlushResourceProvider; // this is just a shallow wrapper around this class
friend class GrRecordingContext; // access to: ctor
friend class SkImage; // for access to: flush
static const int kNumPixelGeometries = 5; // The different pixel geometries
static const int kNumDFTOptions = 2; // DFT or no DFT
GrRecordingContext* fContext;
GrPathRendererChain::Options fOptionsForPathRendererChain;
// This cache is used by both the vertex and index pools. It reuses memory across multiple
// flushes.
sk_sp<GrBufferAllocPool::CpuBufferCache> fCpuBufferCache;
SkTArray<sk_sp<GrRenderTask>> fDAG;
GrOpsTask* fActiveOpsTask = nullptr;
// These are the IDs of the opsTask currently being flushed (in internalFlush). They are
// only stored here to prevent memory thrashing.
SkSTArray<8, uint32_t, true> fFlushingRenderTaskIDs;
// These are the new renderTasks generated by the onFlush CBs
SkSTArray<4, sk_sp<GrRenderTask>> fOnFlushRenderTasks;
std::unique_ptr<GrPathRendererChain> fPathRendererChain;
sk_sp<GrSoftwarePathRenderer> fSoftwarePathRenderer;
GrTokenTracker fTokenTracker;
bool fFlushing;
const bool fReduceOpsTaskSplitting;
SkTArray<GrOnFlushCallbackObject*> fOnFlushCBObjects;
struct SurfaceIDKeyTraits {
static uint32_t GetInvalidKey() {
return GrSurfaceProxy::UniqueID::InvalidID().asUInt();
}
};
GrHashMapWithCache<uint32_t, GrRenderTask*, SurfaceIDKeyTraits, GrCheapHash> fLastRenderTasks;
};
#endif