blob: 868bf6dd136fdb116ffc7abcdac36988b17d8841 [file] [log] [blame]
/*
* Copyright 2019 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkColorFilter.h"
#include "include/core/SkData.h"
#include "include/core/SkSurface.h"
#include "include/effects/SkRuntimeEffect.h"
#include "include/private/SkChecksum.h"
#include "include/private/SkMutex.h"
#include "src/core/SkCanvasPriv.h"
#include "src/core/SkColorFilterBase.h"
#include "src/core/SkColorSpacePriv.h"
#include "src/core/SkColorSpaceXformSteps.h"
#include "src/core/SkMatrixProvider.h"
#include "src/core/SkRasterPipeline.h"
#include "src/core/SkReadBuffer.h"
#include "src/core/SkUtils.h"
#include "src/core/SkVM.h"
#include "src/core/SkWriteBuffer.h"
#include "src/sksl/SkSLAnalysis.h"
#include "src/sksl/SkSLCompiler.h"
#include "src/sksl/SkSLUtil.h"
#include "src/sksl/SkSLVMGenerator.h"
#include "src/sksl/ir/SkSLFunctionDefinition.h"
#include "src/sksl/ir/SkSLVarDeclarations.h"
#if SK_SUPPORT_GPU
#include "include/gpu/GrRecordingContext.h"
#include "src/gpu/GrColorInfo.h"
#include "src/gpu/GrFPArgs.h"
#include "src/gpu/GrImageInfo.h"
#include "src/gpu/GrSurfaceFillContext.h"
#include "src/gpu/effects/GrMatrixEffect.h"
#include "src/gpu/effects/GrSkSLFP.h"
#include "src/image/SkImage_Gpu.h"
#endif
#include <algorithm>
namespace SkSL {
class SharedCompiler {
public:
SharedCompiler() : fLock(compiler_mutex()) {
if (!gImpl) {
gImpl = new Impl();
}
}
SkSL::Compiler* operator->() const { return gImpl->fCompiler; }
private:
SkAutoMutexExclusive fLock;
static SkMutex& compiler_mutex() {
static SkMutex& mutex = *(new SkMutex);
return mutex;
}
struct Impl {
Impl() {
// These caps are configured to apply *no* workarounds. This avoids changes that are
// unnecessary (GLSL intrinsic rewrites), or possibly incorrect (adding do-while loops).
// We may apply other "neutral" transformations to the user's SkSL, including inlining.
// Anything determined by the device caps is deferred to the GPU backend. The processor
// set produces the final program (including our re-emitted SkSL), and the backend's
// compiler resolves any necessary workarounds.
fCaps = ShaderCapsFactory::Standalone();
fCaps->fBuiltinFMASupport = true;
fCaps->fBuiltinDeterminantSupport = true;
// Don't inline if it would require a do loop, some devices don't support them.
fCaps->fCanUseDoLoops = false;
fCompiler = new SkSL::Compiler(fCaps.get());
}
SkSL::ShaderCapsPointer fCaps;
SkSL::Compiler* fCompiler;
};
static Impl* gImpl;
};
SharedCompiler::Impl* SharedCompiler::gImpl = nullptr;
} // namespace SkSL
// Accepts a valid marker, or "normals(<marker>)"
static bool parse_marker(const SkSL::StringFragment& marker, uint32_t* id, uint32_t* flags) {
SkString s = marker;
if (s.startsWith("normals(") && s.endsWith(')')) {
*flags |= SkRuntimeEffect::Uniform::kMarkerNormals_Flag;
s.set(marker.fChars + 8, marker.fLength - 9);
}
if (!SkCanvasPriv::ValidateMarker(s.c_str())) {
return false;
}
*id = SkOpts::hash_fn(s.c_str(), s.size(), 0);
return true;
}
static bool init_uniform_type(const SkSL::Context& ctx,
const SkSL::Type* type,
SkRuntimeEffect::Uniform* v) {
using Type = SkRuntimeEffect::Uniform::Type;
if (type == ctx.fTypes.fFloat.get()) { v->type = Type::kFloat; return true; }
if (type == ctx.fTypes.fHalf.get()) { v->type = Type::kFloat; return true; }
if (type == ctx.fTypes.fFloat2.get()) { v->type = Type::kFloat2; return true; }
if (type == ctx.fTypes.fHalf2.get()) { v->type = Type::kFloat2; return true; }
if (type == ctx.fTypes.fFloat3.get()) { v->type = Type::kFloat3; return true; }
if (type == ctx.fTypes.fHalf3.get()) { v->type = Type::kFloat3; return true; }
if (type == ctx.fTypes.fFloat4.get()) { v->type = Type::kFloat4; return true; }
if (type == ctx.fTypes.fHalf4.get()) { v->type = Type::kFloat4; return true; }
if (type == ctx.fTypes.fFloat2x2.get()) { v->type = Type::kFloat2x2; return true; }
if (type == ctx.fTypes.fHalf2x2.get()) { v->type = Type::kFloat2x2; return true; }
if (type == ctx.fTypes.fFloat3x3.get()) { v->type = Type::kFloat3x3; return true; }
if (type == ctx.fTypes.fHalf3x3.get()) { v->type = Type::kFloat3x3; return true; }
if (type == ctx.fTypes.fFloat4x4.get()) { v->type = Type::kFloat4x4; return true; }
if (type == ctx.fTypes.fHalf4x4.get()) { v->type = Type::kFloat4x4; return true; }
return false;
}
SkRuntimeEffect::Result SkRuntimeEffect::Make(SkString sksl, const Options& options) {
SkSL::SharedCompiler compiler;
SkSL::Program::Settings settings;
settings.fInlineThreshold = options.inlineThreshold;
settings.fAllowNarrowingConversions = true;
auto program = compiler->convertProgram(SkSL::ProgramKind::kRuntimeEffect,
SkSL::String(sksl.c_str(), sksl.size()),
settings);
// TODO: Many errors aren't caught until we process the generated Program here. Catching those
// in the IR generator would provide better errors messages (with locations).
#define RETURN_FAILURE(...) return Result{nullptr, SkStringPrintf(__VA_ARGS__)}
if (!program) {
RETURN_FAILURE("%s", compiler->errorText().c_str());
}
const SkSL::FunctionDefinition* main = nullptr;
const bool usesSampleCoords = SkSL::Analysis::ReferencesSampleCoords(*program);
const bool usesFragCoords = SkSL::Analysis::ReferencesFragCoords(*program);
// Color filters are not allowed to depend on position (local or device) in any way, but they
// can sample children with matrices or explicit coords. Because the children are color filters,
// we know (by induction) that they don't use those coords, so we keep the overall invariant.
//
// Further down, we also ensure that color filters can't use layout(marker), which would allow
// them to change behavior based on the CTM.
bool allowColorFilter = !usesSampleCoords && !usesFragCoords;
size_t offset = 0;
std::vector<Uniform> uniforms;
std::vector<SkString> children;
std::vector<SkSL::SampleUsage> sampleUsages;
std::vector<Varying> varyings;
const SkSL::Context& ctx(compiler->context());
// Go through program elements, pulling out information that we need
for (const SkSL::ProgramElement* elem : program->elements()) {
// Variables (uniform, varying, etc.)
if (elem->is<SkSL::GlobalVarDeclaration>()) {
const SkSL::GlobalVarDeclaration& global = elem->as<SkSL::GlobalVarDeclaration>();
const SkSL::VarDeclaration& varDecl = global.declaration()->as<SkSL::VarDeclaration>();
const SkSL::Variable& var = varDecl.var();
const SkSL::Type& varType = var.type();
// Varyings (only used in conjunction with drawVertices)
if (var.modifiers().fFlags & SkSL::Modifiers::kVarying_Flag) {
varyings.push_back({var.name(),
varType.typeKind() == SkSL::Type::TypeKind::kVector
? varType.columns()
: 1});
}
// Fragment Processors (aka 'shader'): These are child effects
else if (&varType == ctx.fTypes.fFragmentProcessor.get()) {
children.push_back(var.name());
sampleUsages.push_back(SkSL::Analysis::GetSampleUsage(*program, var));
}
// 'uniform' variables
else if (var.modifiers().fFlags & SkSL::Modifiers::kUniform_Flag) {
Uniform uni;
uni.name = var.name();
uni.flags = 0;
uni.count = 1;
const SkSL::Type* type = &var.type();
if (type->isArray()) {
uni.flags |= Uniform::kArray_Flag;
uni.count = type->columns();
type = &type->componentType();
}
if (!init_uniform_type(ctx, type, &uni)) {
RETURN_FAILURE("Invalid uniform type: '%s'", type->displayName().c_str());
}
const SkSL::StringFragment& marker(var.modifiers().fLayout.fMarker);
if (marker.fLength) {
uni.flags |= Uniform::kMarker_Flag;
allowColorFilter = false;
if (!parse_marker(marker, &uni.marker, &uni.flags)) {
RETURN_FAILURE("Invalid 'marker' string: '%.*s'", (int)marker.fLength,
marker.fChars);
}
}
if (var.modifiers().fLayout.fFlags & SkSL::Layout::Flag::kSRGBUnpremul_Flag) {
uni.flags |= Uniform::kSRGBUnpremul_Flag;
}
uni.offset = offset;
offset += uni.sizeInBytes();
SkASSERT(SkIsAlign4(offset));
uniforms.push_back(uni);
}
}
// Functions
else if (elem->is<SkSL::FunctionDefinition>()) {
const auto& func = elem->as<SkSL::FunctionDefinition>();
const SkSL::FunctionDeclaration& decl = func.declaration();
if (decl.name() == "main") {
main = &func;
}
}
}
if (!main) {
RETURN_FAILURE("missing 'main' function");
}
#undef RETURN_FAILURE
sk_sp<SkRuntimeEffect> effect(new SkRuntimeEffect(std::move(sksl),
std::move(program),
*main,
std::move(uniforms),
std::move(children),
std::move(sampleUsages),
std::move(varyings),
usesSampleCoords,
allowColorFilter));
return Result{std::move(effect), SkString()};
}
size_t SkRuntimeEffect::Uniform::sizeInBytes() const {
auto element_size = [](Type type) -> size_t {
switch (type) {
case Type::kFloat: return sizeof(float);
case Type::kFloat2: return sizeof(float) * 2;
case Type::kFloat3: return sizeof(float) * 3;
case Type::kFloat4: return sizeof(float) * 4;
case Type::kFloat2x2: return sizeof(float) * 4;
case Type::kFloat3x3: return sizeof(float) * 9;
case Type::kFloat4x4: return sizeof(float) * 16;
default: SkUNREACHABLE;
}
};
return element_size(this->type) * this->count;
}
SkRuntimeEffect::SkRuntimeEffect(SkString sksl,
std::unique_ptr<SkSL::Program> baseProgram,
const SkSL::FunctionDefinition& main,
std::vector<Uniform>&& uniforms,
std::vector<SkString>&& children,
std::vector<SkSL::SampleUsage>&& sampleUsages,
std::vector<Varying>&& varyings,
bool usesSampleCoords,
bool allowColorFilter)
: fHash(SkGoodHash()(sksl))
, fSkSL(std::move(sksl))
, fBaseProgram(std::move(baseProgram))
, fMain(main)
, fUniforms(std::move(uniforms))
, fChildren(std::move(children))
, fSampleUsages(std::move(sampleUsages))
, fVaryings(std::move(varyings))
, fUsesSampleCoords(usesSampleCoords)
, fAllowColorFilter(allowColorFilter) {
SkASSERT(fBaseProgram);
SkASSERT(fChildren.size() == fSampleUsages.size());
}
SkRuntimeEffect::~SkRuntimeEffect() = default;
size_t SkRuntimeEffect::uniformSize() const {
return fUniforms.empty() ? 0
: SkAlign4(fUniforms.back().offset + fUniforms.back().sizeInBytes());
}
const SkRuntimeEffect::Uniform* SkRuntimeEffect::findUniform(const char* name) const {
auto iter = std::find_if(fUniforms.begin(), fUniforms.end(),
[name](const Uniform& u) { return u.name.equals(name); });
return iter == fUniforms.end() ? nullptr : &(*iter);
}
int SkRuntimeEffect::findChild(const char* name) const {
auto iter = std::find_if(fChildren.begin(), fChildren.end(),
[name](const SkString& s) { return s.equals(name); });
return iter == fChildren.end() ? -1 : static_cast<int>(iter - fChildren.begin());
}
///////////////////////////////////////////////////////////////////////////////////////////////////
static sk_sp<SkData> get_xformed_uniforms(const SkRuntimeEffect* effect,
sk_sp<SkData> baseUniforms,
const SkMatrixProvider* matrixProvider,
const SkColorSpace* dstCS) {
using Flags = SkRuntimeEffect::Uniform::Flags;
using Type = SkRuntimeEffect::Uniform::Type;
SkColorSpaceXformSteps steps(sk_srgb_singleton(), kUnpremul_SkAlphaType,
dstCS, kUnpremul_SkAlphaType);
sk_sp<SkData> uniforms = nullptr;
auto writableData = [&]() {
if (!uniforms) {
uniforms = SkData::MakeWithCopy(baseUniforms->data(), baseUniforms->size());
}
return uniforms->writable_data();
};
for (const auto& v : effect->uniforms()) {
if (v.flags & Flags::kMarker_Flag) {
SkASSERT(v.type == Type::kFloat4x4);
// Color filters don't provide a matrix provider, but shouldn't be allowed to get here
SkASSERT(matrixProvider);
SkM44* localToMarker = SkTAddOffset<SkM44>(writableData(), v.offset);
if (!matrixProvider->getLocalToMarker(v.marker, localToMarker)) {
// We couldn't provide a matrix that was requested by the SkSL
return nullptr;
}
if (v.flags & Flags::kMarkerNormals_Flag) {
// Normals need to be transformed by the inverse-transpose of the upper-left
// 3x3 portion (scale + rotate) of the matrix.
localToMarker->setRow(3, {0, 0, 0, 1});
localToMarker->setCol(3, {0, 0, 0, 1});
if (!localToMarker->invert(localToMarker)) {
return nullptr;
}
*localToMarker = localToMarker->transpose();
}
} else if (v.flags & Flags::kSRGBUnpremul_Flag) {
SkASSERT(v.type == Type::kFloat3 || v.type == Type::kFloat4);
if (steps.flags.mask()) {
float* color = SkTAddOffset<float>(writableData(), v.offset);
if (v.type == Type::kFloat4) {
// RGBA, easy case
for (int i = 0; i < v.count; ++i) {
steps.apply(color);
color += 4;
}
} else {
// RGB, need to pad out to include alpha. Technically, this isn't necessary,
// because steps shouldn't include unpremul or premul, and thus shouldn't
// read or write the fourth element. But let's be safe.
float rgba[4];
for (int i = 0; i < v.count; ++i) {
memcpy(rgba, color, 3 * sizeof(float));
rgba[3] = 1.0f;
steps.apply(rgba);
memcpy(color, rgba, 3 * sizeof(float));
color += 3;
}
}
}
}
}
return uniforms ? uniforms : baseUniforms;
}
class SkRuntimeColorFilter : public SkColorFilterBase {
public:
SkRuntimeColorFilter(sk_sp<SkRuntimeEffect> effect,
sk_sp<SkData> uniforms,
sk_sp<SkColorFilter> children[],
size_t childCount)
: fEffect(std::move(effect))
, fUniforms(std::move(uniforms))
, fChildren(children, children + childCount) {}
#if SK_SUPPORT_GPU
GrFPResult asFragmentProcessor(std::unique_ptr<GrFragmentProcessor> inputFP,
GrRecordingContext* context,
const GrColorInfo& colorInfo) const override {
sk_sp<SkData> uniforms =
get_xformed_uniforms(fEffect.get(), fUniforms, nullptr, colorInfo.colorSpace());
if (!uniforms) {
return GrFPFailure(nullptr);
}
auto fp = GrSkSLFP::Make(context, fEffect, "Runtime_Color_Filter", std::move(uniforms));
for (const auto& child : fChildren) {
std::unique_ptr<GrFragmentProcessor> childFP;
if (child) {
bool success;
std::tie(success, childFP) = as_CFB(child)->asFragmentProcessor(
/*inputFP=*/nullptr, context, colorInfo);
if (!success) {
return GrFPFailure(std::move(inputFP));
}
}
fp->addChild(std::move(childFP));
}
// Runtime effect scripts are written to take an input color, not a fragment processor.
// We need to pass the input to the runtime filter using Compose. This ensures that it will
// be invoked exactly once, and the result will be returned when null children are sampled,
// or as the (default) input color for non-null children.
return GrFPSuccess(GrFragmentProcessor::Compose(std::move(inputFP), std::move(fp)));
}
#endif
bool onAppendStages(const SkStageRec& rec, bool shaderIsOpaque) const override {
return false;
}
skvm::Color onProgram(skvm::Builder* p, skvm::Color c,
SkColorSpace* dstCS,
skvm::Uniforms* uniforms, SkArenaAlloc* alloc) const override {
sk_sp<SkData> inputs = get_xformed_uniforms(fEffect.get(), fUniforms, nullptr, dstCS);
if (!inputs) {
return {};
}
// The color filter code might use sample-with-matrix (even though the matrix/coords are
// ignored by the child). There should be no way for the color filter to use device coords.
// Regardless, just to be extra-safe, we pass something valid (0, 0) as both coords, so
// the builder isn't trying to do math on invalid values.
skvm::Coord zeroCoord = { p->splat(0.0f), p->splat(0.0f) };
auto sampleChild = [&](int ix, skvm::Coord /*coord*/) {
if (fChildren[ix]) {
return as_CFB(fChildren[ix])->program(p, c, dstCS, uniforms, alloc);
} else {
return c;
}
};
std::vector<skvm::Val> uniform;
for (int i = 0; i < (int)fEffect->uniformSize() / 4; i++) {
int bits;
memcpy(&bits, (const char*)inputs->data() + 4*i, 4);
uniform.push_back(p->uniform32(uniforms->push(bits)).id);
}
return SkSL::ProgramToSkVM(*fEffect->fBaseProgram, fEffect->fMain, p, uniform,
/*device=*/zeroCoord, /*local=*/zeroCoord, sampleChild);
}
uint32_t onGetFlags() const override {
skvm::Builder p;
SkColorSpace* dstCS = sk_srgb_singleton(); // This _shouldn't_ matter for alpha.
skvm::Uniforms uniforms{p.uniform(), 0};
SkArenaAlloc alloc{16};
skvm::Color in = p.load({skvm::PixelFormat::FLOAT, 32,32,32,32, 0,32,64,96}, p.arg(16)),
out = this->onProgram(&p,in,dstCS,&uniforms,&alloc);
if (out.a.id == in.a.id) {
return SkColorFilter::kAlphaUnchanged_Flag;
}
return 0;
}
void flatten(SkWriteBuffer& buffer) const override {
buffer.writeString(fEffect->source().c_str());
if (fUniforms) {
buffer.writeDataAsByteArray(fUniforms.get());
} else {
buffer.writeByteArray(nullptr, 0);
}
buffer.write32(fChildren.size());
for (const auto& child : fChildren) {
buffer.writeFlattenable(child.get());
}
}
SK_FLATTENABLE_HOOKS(SkRuntimeColorFilter)
private:
sk_sp<SkRuntimeEffect> fEffect;
sk_sp<SkData> fUniforms;
std::vector<sk_sp<SkColorFilter>> fChildren;
};
sk_sp<SkFlattenable> SkRuntimeColorFilter::CreateProc(SkReadBuffer& buffer) {
SkString sksl;
buffer.readString(&sksl);
sk_sp<SkData> uniforms = buffer.readByteArrayAsData();
auto effect = SkRuntimeEffect::Make(std::move(sksl)).effect;
if (!buffer.validate(effect != nullptr)) {
return nullptr;
}
size_t childCount = buffer.read32();
if (!buffer.validate(childCount == effect->children().count())) {
return nullptr;
}
std::vector<sk_sp<SkColorFilter>> children(childCount);
for (size_t i = 0; i < children.size(); ++i) {
children[i] = buffer.readColorFilter();
}
return effect->makeColorFilter(std::move(uniforms), children.data(), children.size());
}
///////////////////////////////////////////////////////////////////////////////////////////////////
class SkRTShader : public SkShaderBase {
public:
SkRTShader(sk_sp<SkRuntimeEffect> effect, sk_sp<SkData> uniforms, const SkMatrix* localMatrix,
sk_sp<SkShader>* children, size_t childCount, bool isOpaque)
: SkShaderBase(localMatrix)
, fEffect(std::move(effect))
, fIsOpaque(isOpaque)
, fUniforms(std::move(uniforms))
, fChildren(children, children + childCount) {}
bool isOpaque() const override { return fIsOpaque; }
#if SK_SUPPORT_GPU
std::unique_ptr<GrFragmentProcessor> asFragmentProcessor(const GrFPArgs& args) const override {
SkMatrix matrix;
if (!this->totalLocalMatrix(args.fPreLocalMatrix)->invert(&matrix)) {
return nullptr;
}
sk_sp<SkData> uniforms = get_xformed_uniforms(
fEffect.get(), fUniforms, &args.fMatrixProvider, args.fDstColorInfo->colorSpace());
if (!uniforms) {
return nullptr;
}
auto fp = GrSkSLFP::Make(args.fContext, fEffect, "runtime_shader", std::move(uniforms));
for (const auto& child : fChildren) {
auto childFP = child ? as_SB(child)->asFragmentProcessor(args) : nullptr;
fp->addChild(std::move(childFP));
}
std::unique_ptr<GrFragmentProcessor> result = std::move(fp);
// If the shader was created with isOpaque = true, we *force* that result here.
// CPU does the same thing (in SkShaderBase::program).
if (fIsOpaque) {
result = GrFragmentProcessor::SwizzleOutput(std::move(result), GrSwizzle::RGB1());
}
result = GrMatrixEffect::Make(matrix, std::move(result));
// Three cases of GrClampType to think about:
// kAuto - Normalized fixed-point. If fIsOpaque, then A is 1 (above), and the format's
// range ensures RGB must be no larger. If !fIsOpaque, we clamp here.
// kManual - Normalized floating point. Whether or not we set A above, the format's range
// means we need to clamp RGB.
// kNone - Unclamped floating point. No clamping is done, ever.
GrClampType clampType = GrColorTypeClampType(args.fDstColorInfo->colorType());
if (clampType == GrClampType::kManual || (clampType == GrClampType::kAuto && !fIsOpaque)) {
return GrFragmentProcessor::ClampPremulOutput(std::move(result));
} else {
return result;
}
}
#endif
bool onAppendStages(const SkStageRec& rec) const override {
return false;
}
skvm::Color onProgram(skvm::Builder* p,
skvm::Coord device, skvm::Coord local, skvm::Color paint,
const SkMatrixProvider& matrices, const SkMatrix* localM,
SkFilterQuality quality, const SkColorInfo& dst,
skvm::Uniforms* uniforms, SkArenaAlloc* alloc) const override {
sk_sp<SkData> inputs =
get_xformed_uniforms(fEffect.get(), fUniforms, &matrices, dst.colorSpace());
if (!inputs) {
return {};
}
SkMatrix inv;
if (!this->computeTotalInverse(matrices.localToDevice(), localM, &inv)) {
return {};
}
local = SkShaderBase::ApplyMatrix(p,inv,local,uniforms);
auto sampleChild = [&](int ix, skvm::Coord coord) {
if (fChildren[ix]) {
SkOverrideDeviceMatrixProvider mats{matrices, SkMatrix::I()};
return as_SB(fChildren[ix])->program(p, device, coord, paint,
mats, nullptr,
quality, dst,
uniforms, alloc);
} else {
return paint;
}
};
std::vector<skvm::Val> uniform;
for (int i = 0; i < (int)fEffect->uniformSize() / 4; i++) {
int bits;
memcpy(&bits, (const char*)inputs->data() + 4*i, 4);
uniform.push_back(p->uniform32(uniforms->push(bits)).id);
}
return SkSL::ProgramToSkVM(*fEffect->fBaseProgram, fEffect->fMain, p, uniform,
device, local, sampleChild);
}
void flatten(SkWriteBuffer& buffer) const override {
uint32_t flags = 0;
if (fIsOpaque) {
flags |= kIsOpaque_Flag;
}
if (!this->getLocalMatrix().isIdentity()) {
flags |= kHasLocalMatrix_Flag;
}
buffer.writeString(fEffect->source().c_str());
if (fUniforms) {
buffer.writeDataAsByteArray(fUniforms.get());
} else {
buffer.writeByteArray(nullptr, 0);
}
buffer.write32(flags);
if (flags & kHasLocalMatrix_Flag) {
buffer.writeMatrix(this->getLocalMatrix());
}
buffer.write32(fChildren.size());
for (const auto& child : fChildren) {
buffer.writeFlattenable(child.get());
}
}
SkRuntimeEffect* asRuntimeEffect() const override { return fEffect.get(); }
SK_FLATTENABLE_HOOKS(SkRTShader)
private:
enum Flags {
kIsOpaque_Flag = 1 << 0,
kHasLocalMatrix_Flag = 1 << 1,
};
sk_sp<SkRuntimeEffect> fEffect;
bool fIsOpaque;
sk_sp<SkData> fUniforms;
std::vector<sk_sp<SkShader>> fChildren;
};
sk_sp<SkFlattenable> SkRTShader::CreateProc(SkReadBuffer& buffer) {
SkString sksl;
buffer.readString(&sksl);
sk_sp<SkData> uniforms = buffer.readByteArrayAsData();
uint32_t flags = buffer.read32();
bool isOpaque = SkToBool(flags & kIsOpaque_Flag);
SkMatrix localM, *localMPtr = nullptr;
if (flags & kHasLocalMatrix_Flag) {
buffer.readMatrix(&localM);
localMPtr = &localM;
}
auto effect = SkRuntimeEffect::Make(std::move(sksl)).effect;
if (!buffer.validate(effect != nullptr)) {
return nullptr;
}
size_t childCount = buffer.read32();
if (!buffer.validate(childCount == effect->children().count())) {
return nullptr;
}
std::vector<sk_sp<SkShader>> children(childCount);
for (size_t i = 0; i < children.size(); ++i) {
children[i] = buffer.readShader();
}
return effect->makeShader(std::move(uniforms), children.data(), children.size(), localMPtr,
isOpaque);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
sk_sp<SkShader> SkRuntimeEffect::makeShader(sk_sp<SkData> uniforms,
sk_sp<SkShader> children[], size_t childCount,
const SkMatrix* localMatrix, bool isOpaque) {
if (!uniforms) {
uniforms = SkData::MakeEmpty();
}
return uniforms->size() == this->uniformSize() && childCount == fChildren.size()
? sk_sp<SkShader>(new SkRTShader(sk_ref_sp(this), std::move(uniforms), localMatrix,
children, childCount, isOpaque))
: nullptr;
}
sk_sp<SkImage> SkRuntimeEffect::makeImage(GrRecordingContext* recordingContext,
sk_sp<SkData> uniforms,
sk_sp<SkShader> children[],
size_t childCount,
const SkMatrix* localMatrix,
SkImageInfo resultInfo,
bool mipmapped) {
if (recordingContext) {
#if SK_SUPPORT_GPU
if (!recordingContext->priv().caps()->mipmapSupport()) {
mipmapped = false;
}
auto fillContext = GrSurfaceFillContext::Make(recordingContext,
resultInfo,
SkBackingFit::kExact,
/*sample count*/ 1,
GrMipmapped(mipmapped));
if (!fillContext) {
return nullptr;
}
SkSimpleMatrixProvider matrixProvider(SkMatrix::I());
uniforms = get_xformed_uniforms(this,
std::move(uniforms),
&matrixProvider,
resultInfo.colorSpace());
if (!uniforms) {
return nullptr;
}
auto fp = GrSkSLFP::Make(recordingContext,
sk_ref_sp(this),
"runtime_image",
std::move(uniforms));
GrColorInfo colorInfo(resultInfo.colorInfo());
GrFPArgs args(recordingContext,
matrixProvider,
SkSamplingOptions{},
&colorInfo);
for (size_t i = 0; i < childCount; ++i) {
if (!children[i]) {
return nullptr;
}
auto childFP = as_SB(children[i])->asFragmentProcessor(args);
fp->addChild(std::move(childFP));
}
if (localMatrix) {
SkMatrix invLM;
if (!localMatrix->invert(&invLM)) {
return nullptr;
}
fillContext->fillWithFP(invLM, std::move(fp));
} else {
fillContext->fillWithFP(std::move(fp));
}
return sk_sp<SkImage>(new SkImage_Gpu(sk_ref_sp(recordingContext),
kNeedNewImageUniqueID,
fillContext->readSurfaceView(),
resultInfo.colorInfo()));
#else
return nullptr;
#endif
}
if (resultInfo.alphaType() == kUnpremul_SkAlphaType) {
// We don't have a good way of supporting this right now. In this case the runtime effect
// will produce a unpremul value. The shader generated from it is assumed to produce
// premul and RGB get pinned to A. Moreover, after the blend in premul the new dst is
// unpremul'ed, producing a double unpremul result.
return nullptr;
}
auto surf = SkSurface::MakeRaster(resultInfo);
if (!surf) {
return nullptr;
}
SkCanvas* canvas = surf->getCanvas();
SkTLazy<SkCanvas> tempCanvas;
auto shader = this->makeShader(std::move(uniforms), children, childCount, localMatrix, false);
if (!shader) {
return nullptr;
}
SkPaint paint;
paint.setShader(std::move(shader));
paint.setBlendMode(SkBlendMode::kSrc);
canvas->drawPaint(paint);
// TODO: Specify snapshot should have mip levels if mipmapped is true.
return surf->makeImageSnapshot();
}
sk_sp<SkColorFilter> SkRuntimeEffect::makeColorFilter(sk_sp<SkData> uniforms,
sk_sp<SkColorFilter> children[],
size_t childCount) {
if (!fAllowColorFilter) {
return nullptr;
}
if (!uniforms) {
uniforms = SkData::MakeEmpty();
}
return uniforms->size() == this->uniformSize() && childCount == fChildren.size()
? sk_sp<SkColorFilter>(new SkRuntimeColorFilter(sk_ref_sp(this), std::move(uniforms),
children, childCount))
: nullptr;
}
sk_sp<SkColorFilter> SkRuntimeEffect::makeColorFilter(sk_sp<SkData> uniforms) {
return this->makeColorFilter(std::move(uniforms), nullptr, 0);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
void SkRuntimeEffect::RegisterFlattenables() {
SK_REGISTER_FLATTENABLE(SkRuntimeColorFilter);
SK_REGISTER_FLATTENABLE(SkRTShader);
}
SkRuntimeShaderBuilder::SkRuntimeShaderBuilder(sk_sp<SkRuntimeEffect> effect)
: fEffect(std::move(effect))
, fUniforms(SkData::MakeUninitialized(fEffect->uniformSize()))
, fChildren(fEffect->children().count()) {}
SkRuntimeShaderBuilder::~SkRuntimeShaderBuilder() = default;
void* SkRuntimeShaderBuilder::writableUniformData() {
if (!fUniforms->unique()) {
fUniforms = SkData::MakeWithCopy(fUniforms->data(), fUniforms->size());
}
return fUniforms->writable_data();
}
sk_sp<SkShader> SkRuntimeShaderBuilder::makeShader(const SkMatrix* localMatrix, bool isOpaque) {
return fEffect->makeShader(fUniforms, fChildren.data(), fChildren.size(), localMatrix, isOpaque);
}
sk_sp<SkImage> SkRuntimeShaderBuilder::makeImage(GrRecordingContext* recordingContext,
const SkMatrix* localMatrix,
SkImageInfo resultInfo,
bool mipmapped) {
return fEffect->makeImage(recordingContext,
fUniforms,
fChildren.data(),
fChildren.size(),
localMatrix,
resultInfo,
mipmapped);
}
SkRuntimeShaderBuilder::BuilderChild&
SkRuntimeShaderBuilder::BuilderChild::operator=(const sk_sp<SkShader>& val) {
if (fIndex < 0) {
SkDEBUGFAIL("Assigning to missing child");
} else {
fOwner->fChildren[fIndex] = val;
}
return *this;
}