blob: 1e44460adc9a6616f833af7968cbb4376525ae42 [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/GrRenderTarget.h"
#include "src/gpu/GrShaderCaps.h"
#include "src/gpu/gl/GrGLGpu.h"
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
#include "src/gpu/glsl/GrGLSLProgramBuilder.h"
#include "src/gpu/glsl/GrGLSLUniformHandler.h"
#include "src/gpu/glsl/GrGLSLVarying.h"
GrGLSLFragmentShaderBuilder::GrGLSLFragmentShaderBuilder(GrGLSLProgramBuilder* program)
: GrGLSLShaderBuilder(program) {
fSubstageIndices.push_back(0);
}
void GrGLSLFPFragmentBuilder::writeProcessorFunction(GrGLSLFragmentProcessor* fp,
GrGLSLFragmentProcessor::EmitArgs& args) {
this->onBeforeChildProcEmitCode();
this->nextStage();
// Conceptually, an FP is always sampled at a particular coordinate. However, if it is only
// sampled by a chain of uniform matrix expressions (or legacy coord transforms), the value that
// would have been passed to _coords is lifted to the vertex shader and stored in a unique
// varying. In that case it uses that variable and we do not pass a second argument for _coords.
GrShaderVar params[3];
int numParams = 0;
params[numParams++] = GrShaderVar(args.fInputColor, kHalf4_GrSLType);
if (args.fFp.isBlendFunction()) {
// Blend functions take a dest color as input.
params[numParams++] = GrShaderVar(args.fDestColor, kHalf4_GrSLType);
}
if (fProgramBuilder->fragmentProcessorHasCoordsParam(&args.fFp)) {
params[numParams++] = GrShaderVar(args.fSampleCoord, kFloat2_GrSLType);
} else {
// Either doesn't use coords at all or sampled through a chain of passthrough/matrix
// samples usages. In the latter case the coords are emitted in the vertex shader as a
// varying, so this only has to access it. Add a float2 _coords variable that maps to the
// associated varying and replaces the absent 2nd argument to the fp's function.
GrShaderVar varying = fProgramBuilder->varyingCoordsForFragmentProcessor(&args.fFp);
switch(varying.getType()) {
case kVoid_GrSLType:
SkASSERT(!args.fFp.usesSampleCoordsDirectly());
break;
case kFloat2_GrSLType:
// Just point the local coords to the varying
args.fSampleCoord = varying.getName().c_str();
break;
case kFloat3_GrSLType:
// Must perform the perspective divide in the frag shader based on the varying, and
// since we won't actually have a function parameter for local coords, add it as a
// local variable.
this->codeAppendf("float2 %s = %s.xy / %s.z;\n", args.fSampleCoord,
varying.getName().c_str(), varying.getName().c_str());
break;
default:
SkDEBUGFAILF("Unexpected varying type for coord: %s %d\n",
varying.getName().c_str(), (int) varying.getType());
break;
}
}
SkASSERT(numParams <= (int)SK_ARRAY_COUNT(params));
// First, emit every child's function. This needs to happen (even for children that aren't
// sampled), so that all of the expected uniforms are registered.
fp->emitChildFunctions(args);
fp->emitCode(args);
fp->setFunctionName(this->getMangledFunctionName(args.fFp.name()));
this->emitFunction(kHalf4_GrSLType, fp->functionName(), SkMakeSpan(params, numParams),
this->code().c_str());
this->deleteStage();
this->onAfterChildProcEmitCode();
}
const char* GrGLSLFragmentShaderBuilder::dstColor() {
SkDEBUGCODE(fHasReadDstColorThisStage_DebugOnly = true;)
const GrShaderCaps* shaderCaps = fProgramBuilder->shaderCaps();
if (shaderCaps->fbFetchSupport()) {
this->addFeature(1 << kFramebufferFetch_GLSLPrivateFeature,
shaderCaps->fbFetchExtensionString());
// Some versions of this extension string require declaring custom color output on ES 3.0+
const char* fbFetchColorName = "sk_LastFragColor";
if (shaderCaps->fbFetchNeedsCustomOutput()) {
this->enableCustomOutput();
fCustomColorOutput->setTypeModifier(GrShaderVar::TypeModifier::InOut);
fbFetchColorName = DeclaredColorOutputName();
// Set the dstColor to an intermediate variable so we don't override it with the output
this->codeAppendf("half4 %s = %s;", kDstColorName, fbFetchColorName);
} else {
return fbFetchColorName;
}
}
return kDstColorName;
}
void GrGLSLFragmentShaderBuilder::enableAdvancedBlendEquationIfNeeded(GrBlendEquation equation) {
SkASSERT(GrBlendEquationIsAdvanced(equation));
if (fProgramBuilder->shaderCaps()->mustEnableAdvBlendEqs()) {
this->addFeature(1 << kBlendEquationAdvanced_GLSLPrivateFeature,
"GL_KHR_blend_equation_advanced");
this->addLayoutQualifier("blend_support_all_equations", kOut_InterfaceQualifier);
}
}
void GrGLSLFragmentShaderBuilder::enableCustomOutput() {
if (!fCustomColorOutput) {
fCustomColorOutput = &fOutputs.emplace_back(DeclaredColorOutputName(), kHalf4_GrSLType,
GrShaderVar::TypeModifier::Out);
fProgramBuilder->finalizeFragmentOutputColor(fOutputs.back());
}
}
void GrGLSLFragmentShaderBuilder::enableSecondaryOutput() {
SkASSERT(!fHasSecondaryOutput);
fHasSecondaryOutput = true;
const GrShaderCaps& caps = *fProgramBuilder->shaderCaps();
if (const char* extension = caps.secondaryOutputExtensionString()) {
this->addFeature(1 << kBlendFuncExtended_GLSLPrivateFeature, extension);
}
// If the primary output is declared, we must declare also the secondary output
// and vice versa, since it is not allowed to use a built-in gl_FragColor and a custom
// output. The condition also co-incides with the condition in which GLES SL 2.0
// requires the built-in gl_SecondaryFragColorEXT, where as 3.0 requires a custom output.
if (caps.mustDeclareFragmentShaderOutput()) {
fOutputs.emplace_back(DeclaredSecondaryColorOutputName(), kHalf4_GrSLType,
GrShaderVar::TypeModifier::Out);
fProgramBuilder->finalizeFragmentSecondaryColor(fOutputs.back());
}
}
const char* GrGLSLFragmentShaderBuilder::getPrimaryColorOutputName() const {
return DeclaredColorOutputName();
}
bool GrGLSLFragmentShaderBuilder::primaryColorOutputIsInOut() const {
return fCustomColorOutput &&
fCustomColorOutput->getTypeModifier() == GrShaderVar::TypeModifier::InOut;
}
const char* GrGLSLFragmentShaderBuilder::getSecondaryColorOutputName() const {
if (this->hasSecondaryOutput()) {
return (fProgramBuilder->shaderCaps()->mustDeclareFragmentShaderOutput())
? DeclaredSecondaryColorOutputName()
: "gl_SecondaryFragColorEXT";
}
return nullptr;
}
GrSurfaceOrigin GrGLSLFragmentShaderBuilder::getSurfaceOrigin() const {
return fProgramBuilder->origin();
}
void GrGLSLFragmentShaderBuilder::onFinalize() {
SkASSERT(fProgramBuilder->processorFeatures() == fUsedProcessorFeaturesAllStages_DebugOnly);
fProgramBuilder->varyingHandler()->getFragDecls(&this->inputs(), &this->outputs());
}
void GrGLSLFragmentShaderBuilder::onBeforeChildProcEmitCode() {
SkASSERT(fSubstageIndices.count() >= 1);
fSubstageIndices.push_back(0);
// second-to-last value in the fSubstageIndices stack is the index of the child proc
// at that level which is currently emitting code.
fMangleString.appendf("_c%d", fSubstageIndices[fSubstageIndices.count() - 2]);
}
void GrGLSLFragmentShaderBuilder::onAfterChildProcEmitCode() {
SkASSERT(fSubstageIndices.count() >= 2);
fSubstageIndices.pop_back();
fSubstageIndices.back()++;
int removeAt = fMangleString.findLastOf('_');
fMangleString.remove(removeAt, fMangleString.size() - removeAt);
}