blob: b9e4560b7c6f88482857e6dc99f6ef53590a72f3 [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/gl/GrGLCaps.h"
#include <memory>
#include "include/gpu/GrContextOptions.h"
#include "src/core/SkCompressedDataUtils.h"
#include "src/core/SkMathPriv.h"
#include "src/core/SkTSearch.h"
#include "src/gpu/GrBackendUtils.h"
#include "src/gpu/GrProgramDesc.h"
#include "src/gpu/GrShaderCaps.h"
#include "src/gpu/GrSurfaceProxyPriv.h"
#include "src/gpu/GrTextureProxyPriv.h"
#include "src/gpu/SkGr.h"
#include "src/gpu/gl/GrGLContext.h"
#include "src/gpu/gl/GrGLRenderTarget.h"
#include "src/gpu/gl/GrGLTexture.h"
#include "src/utils/SkJSONWriter.h"
#if defined(SK_BUILD_FOR_IOS)
#include <TargetConditionals.h>
#endif
GrGLCaps::GrGLCaps(const GrContextOptions& contextOptions,
const GrGLContextInfo& ctxInfo,
const GrGLInterface* glInterface) : INHERITED(contextOptions) {
fStandard = ctxInfo.standard();
fPackFlipYSupport = false;
fTextureUsageSupport = false;
fImagingSupport = false;
fVertexArrayObjectSupport = false;
fDebugSupport = false;
fES2CompatibilitySupport = false;
fDrawRangeElementsSupport = false;
fBaseVertexBaseInstanceSupport = false;
fIsCoreProfile = false;
fBindFragDataLocationSupport = false;
fRectangleTextureSupport = false;
fBindUniformLocationSupport = false;
fMipmapLevelControlSupport = false;
fMipmapLodControlSupport = false;
fUseBufferDataNullHint = false;
fDoManualMipmapping = false;
fClearToBoundaryValuesIsBroken = false;
fClearTextureSupport = false;
fDrawArraysBaseVertexIsBroken = false;
fDisallowTexSubImageForUnormConfigTexturesEverBoundToFBO = false;
fUseDrawInsteadOfAllRenderTargetWrites = false;
fRequiresCullFaceEnableDisableWhenDrawingLinesAfterNonLines = false;
fDontSetBaseOrMaxLevelForExternalTextures = false;
fNeverDisableColorWrites = false;
fMustSetAnyTexParameterToEnableMipmapping = false;
fAllowBGRA8CopyTexSubImage = false;
fDisallowDynamicMSAA = false;
fProgramBinarySupport = false;
fProgramParameterSupport = false;
fSamplerObjectSupport = false;
fUseSamplerObjects = false;
fTextureSwizzleSupport = false;
fTiledRenderingSupport = false;
fFBFetchRequiresEnablePerSample = false;
fSRGBWriteControl = false;
fSkipErrorChecks = false;
fShaderCaps.reset(new GrShaderCaps(contextOptions));
// All of Skia's automated testing of ANGLE and all related tuning of performance and driver
// workarounds is oriented around the D3D backends of ANGLE. Chrome has started using Skia
// on top of ANGLE's GL backend. In this case ANGLE is still interfacing the same underlying
// GL driver that our performance and correctness tuning was performed on. To avoid losing
// that we strip the ANGLE info and for the rest of caps setup pretend we're directly on top of
// the GL driver. Note that this means that some driver workarounds are likely implemented at
// two levels of the stack (Skia and ANGLE) but we haven't determined which.
if (ctxInfo.angleBackend() == GrGLANGLEBackend::kOpenGL) {
this->init(contextOptions, ctxInfo.makeNonAngle(), glInterface);
// A major caveat is that ANGLE does not allow client side arrays.
fPreferClientSideDynamicBuffers = false;
} else {
this->init(contextOptions, ctxInfo, glInterface);
}
}
void GrGLCaps::init(const GrContextOptions& contextOptions,
const GrGLContextInfo& ctxInfo,
const GrGLInterface* gli) {
GrGLStandard standard = ctxInfo.standard();
// standard can be unused (optimzed away) if SK_ASSUME_GL_ES is set
sk_ignore_unused_variable(standard);
GrGLVersion version = ctxInfo.version();
if (GR_IS_GR_GL(standard)) {
GrGLint max;
GR_GL_GetIntegerv(gli, GR_GL_MAX_FRAGMENT_UNIFORM_COMPONENTS, &max);
fMaxFragmentUniformVectors = max / 4;
if (version >= GR_GL_VER(3, 2)) {
GrGLint profileMask;
GR_GL_GetIntegerv(gli, GR_GL_CONTEXT_PROFILE_MASK, &profileMask);
fIsCoreProfile = SkToBool(profileMask & GR_GL_CONTEXT_CORE_PROFILE_BIT);
}
} else if (GR_IS_GR_GL_ES(standard) || GR_IS_GR_WEBGL(standard)) {
GR_GL_GetIntegerv(gli, GR_GL_MAX_FRAGMENT_UNIFORM_VECTORS,
&fMaxFragmentUniformVectors);
}
if (fDriverBugWorkarounds.max_fragment_uniform_vectors_32) {
fMaxFragmentUniformVectors = std::min(fMaxFragmentUniformVectors, 32);
}
GR_GL_GetIntegerv(gli, GR_GL_MAX_VERTEX_ATTRIBS, &fMaxVertexAttributes);
if (GR_IS_GR_GL(standard)) {
fWritePixelsRowBytesSupport = true;
fReadPixelsRowBytesSupport = true;
fPackFlipYSupport = false;
} else if (GR_IS_GR_GL_ES(standard)) {
fWritePixelsRowBytesSupport =
version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_EXT_unpack_subimage");
fReadPixelsRowBytesSupport =
version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_NV_pack_subimage");
fPackFlipYSupport =
ctxInfo.hasExtension("GL_ANGLE_pack_reverse_row_order");
} else if (GR_IS_GR_WEBGL(standard)) {
// WebGL 2.0 has these
fWritePixelsRowBytesSupport = version >= GR_GL_VER(2, 0);
fReadPixelsRowBytesSupport = version >= GR_GL_VER(2, 0);
}
fTransferPixelsToRowBytesSupport = fWritePixelsRowBytesSupport;
if (fDriverBugWorkarounds.pack_parameters_workaround_with_pack_buffer) {
// In some cases drivers handle copying the last row incorrectly
// when using GL_PACK_ROW_LENGTH. Chromium handles this by iterating
// through every row and conditionally clobbering that value, but
// Skia already has a scratch buffer workaround when pack row length
// is not supported, so just use that.
fReadPixelsRowBytesSupport = false;
}
fTextureUsageSupport = GR_IS_GR_GL_ES(standard) &&
ctxInfo.hasExtension("GL_ANGLE_texture_usage");
if (GR_IS_GR_GL(standard)) {
fTextureBarrierSupport = version >= GR_GL_VER(4,5) ||
ctxInfo.hasExtension("GL_ARB_texture_barrier") ||
ctxInfo.hasExtension("GL_NV_texture_barrier");
} else if (GR_IS_GR_GL_ES(standard)) {
fTextureBarrierSupport = ctxInfo.hasExtension("GL_NV_texture_barrier");
} // no WebGL support
if (GR_IS_GR_GL(standard)) {
fSampleLocationsSupport = version >= GR_GL_VER(3,2) ||
ctxInfo.hasExtension("GL_ARB_texture_multisample");
} else if (GR_IS_GR_GL_ES(standard)) {
fSampleLocationsSupport = version >= GR_GL_VER(3,1);
} // no WebGL support
fImagingSupport = GR_IS_GR_GL(standard) &&
ctxInfo.hasExtension("GL_ARB_imaging");
if (((GR_IS_GR_GL(standard) && version >= GR_GL_VER(4,3)) ||
(GR_IS_GR_GL_ES(standard) && version >= GR_GL_VER(3,0)) ||
ctxInfo.hasExtension("GL_ARB_invalidate_subdata"))) {
fInvalidateFBType = kInvalidate_InvalidateFBType;
} else if (ctxInfo.hasExtension("GL_EXT_discard_framebuffer")) {
fInvalidateFBType = kDiscard_InvalidateFBType;
}
// For future reference on Desktop GL, GL_PRIMITIVE_RESTART_FIXED_INDEX appears in 4.3, and
// GL_PRIMITIVE_RESTART (where the client must call glPrimitiveRestartIndex) appears in 3.1.
if (GR_IS_GR_GL_ES(standard)) {
// Primitive restart can cause a 3x slowdown on Adreno. Enable conservatively.
// FIXME: Primitive restart would likely be a win on iOS if we had an enum value for it.
if (ctxInfo.vendor() == GrGLVendor::kARM) {
fUsePrimitiveRestart = version >= GR_GL_VER(3,0);
}
}
if (ctxInfo.vendor() == GrGLVendor::kARM ||
ctxInfo.vendor() == GrGLVendor::kImagination ||
ctxInfo.vendor() == GrGLVendor::kQualcomm ) {
fPreferFullscreenClears = true;
}
if (GR_IS_GR_GL(standard)) {
fVertexArrayObjectSupport = version >= GR_GL_VER(3, 0) ||
ctxInfo.hasExtension("GL_ARB_vertex_array_object") ||
ctxInfo.hasExtension("GL_APPLE_vertex_array_object");
} else if (GR_IS_GR_GL_ES(standard)) {
fVertexArrayObjectSupport = version >= GR_GL_VER(3, 0) ||
ctxInfo.hasExtension("GL_OES_vertex_array_object");
} else if (GR_IS_GR_WEBGL(standard)) {
fVertexArrayObjectSupport = version >= GR_GL_VER(2, 0) ||
ctxInfo.hasExtension("GL_OES_vertex_array_object") ||
ctxInfo.hasExtension("OES_vertex_array_object");
}
if (GR_IS_GR_GL(standard) && version >= GR_GL_VER(4,3)) {
fDebugSupport = true;
} else if (GR_IS_GR_GL_ES(standard)) {
fDebugSupport = ctxInfo.hasExtension("GL_KHR_debug");
} // no WebGL support
if (GR_IS_GR_GL(standard)) {
fES2CompatibilitySupport = ctxInfo.hasExtension("GL_ARB_ES2_compatibility");
}
else if (GR_IS_GR_GL_ES(standard)) {
fES2CompatibilitySupport = true;
} else if (GR_IS_GR_WEBGL(standard)) {
fES2CompatibilitySupport = true;
}
if (GR_IS_GR_GL(standard)) {
fClientCanDisableMultisample = true;
} else if (GR_IS_GR_GL_ES(standard)) {
fClientCanDisableMultisample = ctxInfo.hasExtension("GL_EXT_multisample_compatibility");
} // no WebGL support
#if 0
#ifdef SK_BUILD_FOR_MAC
fMultisampleDisableSupport = false;
#else
fMultisampleDisableSupport = fClientCanDisableMultisample;
#endif
#endif
if (GR_IS_GR_GL(standard)) {
// 3.1 has draw_instanced but not instanced_arrays, for the time being we only care about
// instanced arrays, but we could make this more granular if we wanted
fDrawInstancedSupport =
version >= GR_GL_VER(3, 2) ||
(ctxInfo.hasExtension("GL_ARB_draw_instanced") &&
ctxInfo.hasExtension("GL_ARB_instanced_arrays"));
} else if (GR_IS_GR_GL_ES(standard)) {
fDrawInstancedSupport =
version >= GR_GL_VER(3, 0) ||
(ctxInfo.hasExtension("GL_EXT_draw_instanced") &&
ctxInfo.hasExtension("GL_EXT_instanced_arrays")) ||
ctxInfo.hasExtension("GL_ANGLE_instanced_arrays");
} else if (GR_IS_GR_WEBGL(standard)) {
// WebGL 2.0 has DrawArraysInstanced and drawElementsInstanced
fDrawInstancedSupport = version >= GR_GL_VER(2, 0);
}
#ifdef GR_DISABLE_TESSELLATION_ON_ES2
if (GR_IS_GR_GL_ES(standard) && version < GR_GL_VER(3, 0)) {
// Temporarily disable the tessellation path renderer on Chrome ES2 while we roll the
// necessary Skia changes.
fDisableTessellationPathRenderer = true;
}
#else
if (GR_IS_GR_GL_ES(standard) && ctxInfo.isOverCommandBuffer() && version < GR_GL_VER(3, 0)) {
// Temporarily disable the tessellation path renderer over the ES2 command buffer. This is
// an attempt to lower impact while we roll out tessellation in Chrome.
fDisableTessellationPathRenderer = true;
}
#endif
if (GR_IS_GR_GL(standard)) {
if (version >= GR_GL_VER(3, 0)) {
fBindFragDataLocationSupport = true;
}
} else if (GR_IS_GR_GL_ES(standard)) {
if (version >= GR_GL_VER(3, 0) && ctxInfo.hasExtension("GL_EXT_blend_func_extended")) {
fBindFragDataLocationSupport = true;
}
} // no WebGL support
fBindUniformLocationSupport = ctxInfo.hasExtension("GL_CHROMIUM_bind_uniform_location");
if (GR_IS_GR_GL(standard)) {
if (version >= GR_GL_VER(3, 1) || ctxInfo.hasExtension("GL_ARB_texture_rectangle") ||
ctxInfo.hasExtension("GL_ANGLE_texture_rectangle")) {
fRectangleTextureSupport = true;
}
} else if (GR_IS_GR_GL_ES(standard)) {
fRectangleTextureSupport = ctxInfo.hasExtension("GL_ARB_texture_rectangle") ||
ctxInfo.hasExtension("GL_ANGLE_texture_rectangle");
} // no WebGL support
// GrCaps defaults fClampToBorderSupport to true, so disable when unsupported
if (GR_IS_GR_GL(standard)) {
// Clamp to border added in 1.3
if (version < GR_GL_VER(1, 3) && !ctxInfo.hasExtension("GL_ARB_texture_border_clamp")) {
fClampToBorderSupport = false;
}
} else if (GR_IS_GR_GL_ES(standard)) {
// GLES didn't have clamp to border until 3.2, but provides several alternative extensions
if (version < GR_GL_VER(3, 2) && !ctxInfo.hasExtension("GL_EXT_texture_border_clamp") &&
!ctxInfo.hasExtension("GL_NV_texture_border_clamp") &&
!ctxInfo.hasExtension("GL_OES_texture_border_clamp")) {
fClampToBorderSupport = false;
}
} else if (GR_IS_GR_WEBGL(standard)) {
// WebGL appears to only have REPEAT, CLAMP_TO_EDGE and MIRRORED_REPEAT
fClampToBorderSupport = false;
}
if (GR_IS_GR_GL(standard)) {
if (version >= GR_GL_VER(3,3) || ctxInfo.hasExtension("GL_ARB_texture_swizzle")) {
fTextureSwizzleSupport = true;
}
} else if (GR_IS_GR_GL_ES(standard)) {
if (version >= GR_GL_VER(3,0)) {
fTextureSwizzleSupport = true;
}
} // no WebGL support
if (GR_IS_GR_GL(standard)) {
fMipmapLevelControlSupport = true;
fMipmapLodControlSupport = true;
} else if (GR_IS_GR_GL_ES(standard)) {
if (version >= GR_GL_VER(3,0)) {
fMipmapLevelControlSupport = true;
fMipmapLodControlSupport = true;
}
} // no WebGL support
// Chrome's command buffer will zero out a buffer if null is passed to glBufferData to avoid
// letting an application see uninitialized memory. WebGL spec explicitly disallows null values.
fUseBufferDataNullHint = !GR_IS_GR_WEBGL(standard) && !ctxInfo.isOverCommandBuffer();
if (GR_IS_GR_GL(standard)) {
fClearTextureSupport = (version >= GR_GL_VER(4,4) ||
ctxInfo.hasExtension("GL_ARB_clear_texture"));
} else if (GR_IS_GR_GL_ES(standard)) {
fClearTextureSupport = ctxInfo.hasExtension("GL_EXT_clear_texture");
} // no WebGL support
#if defined(SK_BUILD_FOR_ANDROID) && __ANDROID_API__ >= 26
fSupportsAHardwareBufferImages = true;
#endif
if (GR_IS_GR_GL(standard)) {
fSRGBWriteControl = version >= GR_GL_VER(3, 0) ||
ctxInfo.hasExtension("GL_ARB_framebuffer_sRGB") ||
ctxInfo.hasExtension("GL_EXT_framebuffer_sRGB");
} else if (GR_IS_GR_GL_ES(standard)) {
// ES through 3.2 requires EXT_srgb_write_control to support toggling
// sRGB writing for destinations.
fSRGBWriteControl = ctxInfo.hasExtension("GL_EXT_sRGB_write_control");
} // No WebGL support
fSkipErrorChecks = ctxInfo.isOverCommandBuffer();
if (GR_IS_GR_WEBGL(standard)) {
// Error checks are quite costly in webgl, especially in Chrome.
fSkipErrorChecks = true;
}
// When we are abandoning the context we cannot call into GL thus we should skip any sync work.
fMustSyncGpuDuringAbandon = false;
/**************************************************************************
* GrShaderCaps fields
**************************************************************************/
// This must be called after fCoreProfile is set on the GrGLCaps
this->initGLSL(ctxInfo, gli);
GrShaderCaps* shaderCaps = fShaderCaps.get();
// Enable supported shader-related caps
if (GR_IS_GR_GL(standard)) {
shaderCaps->fDualSourceBlendingSupport =
(version >= GR_GL_VER(3, 3) ||
ctxInfo.hasExtension("GL_ARB_blend_func_extended")) &&
ctxInfo.glslGeneration() >= k130_GrGLSLGeneration;
shaderCaps->fShaderDerivativeSupport = true;
// we don't support GL_ARB_geometry_shader4, just GL 3.2+ GS
shaderCaps->fGeometryShaderSupport = version >= GR_GL_VER(3, 2) &&
ctxInfo.glslGeneration() >= k150_GrGLSLGeneration;
if (shaderCaps->fGeometryShaderSupport) {
if (ctxInfo.glslGeneration() >= k400_GrGLSLGeneration) {
shaderCaps->fGSInvocationsSupport = true;
} else if (ctxInfo.hasExtension("GL_ARB_gpu_shader5")) {
shaderCaps->fGSInvocationsSupport = true;
shaderCaps->fGSInvocationsExtensionString = "GL_ARB_gpu_shader5";
}
}
shaderCaps->fIntegerSupport = version >= GR_GL_VER(3, 0) &&
ctxInfo.glslGeneration() >= k130_GrGLSLGeneration;
shaderCaps->fNonsquareMatrixSupport = ctxInfo.glslGeneration() >= k130_GrGLSLGeneration;
} else if (GR_IS_GR_GL_ES(standard)) {
shaderCaps->fDualSourceBlendingSupport = ctxInfo.hasExtension("GL_EXT_blend_func_extended");
shaderCaps->fShaderDerivativeSupport = version >= GR_GL_VER(3, 0) ||
ctxInfo.hasExtension("GL_OES_standard_derivatives");
// Mali and early Adreno both have support for geometry shaders, but they appear to be
// implemented in software. In practice with ccpr, they were slower than the backup impl
// that only uses vertex shaders.
if (ctxInfo.vendor() != GrGLVendor::kARM &&
ctxInfo.renderer() != GrGLRenderer::kAdreno3xx &&
ctxInfo.renderer() != GrGLRenderer::kAdreno4xx_other) {
if (version >= GR_GL_VER(3,2)) {
shaderCaps->fGeometryShaderSupport = true;
} else if (ctxInfo.hasExtension("GL_EXT_geometry_shader")) {
shaderCaps->fGeometryShaderSupport = true;
shaderCaps->fGeometryShaderExtensionString = "GL_EXT_geometry_shader";
}
shaderCaps->fGSInvocationsSupport = shaderCaps->fGeometryShaderSupport;
}
shaderCaps->fIntegerSupport = version >= GR_GL_VER(3, 0) &&
ctxInfo.glslGeneration() >= k330_GrGLSLGeneration; // We use this value for GLSL ES 3.0.
shaderCaps->fNonsquareMatrixSupport = ctxInfo.glslGeneration() >= k330_GrGLSLGeneration;
} else if (GR_IS_GR_WEBGL(standard)) {
shaderCaps->fShaderDerivativeSupport = version >= GR_GL_VER(2, 0) ||
ctxInfo.hasExtension("GL_OES_standard_derivatives") ||
ctxInfo.hasExtension("OES_standard_derivatives");
shaderCaps->fIntegerSupport = (version >= GR_GL_VER(2, 0));
shaderCaps->fNonsquareMatrixSupport = ctxInfo.glslGeneration() >= k330_GrGLSLGeneration;
}
if (ctxInfo.hasExtension("GL_NV_conservative_raster")) {
fConservativeRasterSupport = true;
}
if (GR_IS_GR_GL(standard)) {
fWireframeSupport = true;
}
// Protect ourselves against tracking huge amounts of texture state.
static const uint8_t kMaxSaneSamplers = 32;
GrGLint maxSamplers;
GR_GL_GetIntegerv(gli, GR_GL_MAX_TEXTURE_IMAGE_UNITS, &maxSamplers);
shaderCaps->fMaxFragmentSamplers = std::min<GrGLint>(kMaxSaneSamplers, maxSamplers);
// SGX and Mali GPUs have tiled architectures that have trouble with frequently changing VBOs.
// We've measured a performance increase using non-VBO vertex data for dynamic content on these
// GPUs. Perhaps we should read the renderer string and limit this decision to specific GPU
// families rather than basing it on the vendor alone.
// The Chrome command buffer blocks the use of client side buffers (but may emulate VBOs with
// them). Client side buffers are not allowed in core profiles.
if (GR_IS_GR_GL(standard) || GR_IS_GR_GL_ES(standard)) {
if (!ctxInfo.isOverCommandBuffer() && !fIsCoreProfile &&
(ctxInfo.vendor() == GrGLVendor::kARM ||
ctxInfo.vendor() == GrGLVendor::kImagination ||
ctxInfo.vendor() == GrGLVendor::kQualcomm)) {
fPreferClientSideDynamicBuffers = true;
}
} // No client side arrays in WebGL https://www.khronos.org/registry/webgl/specs/1.0/#6.2
if (!contextOptions.fAvoidStencilBuffers) {
// To reduce surface area, if we avoid stencil buffers, we also disable MSAA.
this->initFSAASupport(contextOptions, ctxInfo, gli);
this->initStencilSupport(ctxInfo);
}
// Setup blit framebuffer
if (GR_IS_GR_GL(standard)) {
if (version >= GR_GL_VER(3,0) ||
ctxInfo.hasExtension("GL_ARB_framebuffer_object") ||
ctxInfo.hasExtension("GL_EXT_framebuffer_blit")) {
fBlitFramebufferFlags = 0;
}
} else if (GR_IS_GR_GL_ES(standard)) {
if (version >= GR_GL_VER(3, 0) ||
ctxInfo.hasExtension("GL_NV_framebuffer_blit")) {
fBlitFramebufferFlags = kNoFormatConversionForMSAASrc_BlitFramebufferFlag |
kNoMSAADst_BlitFramebufferFlag |
kRectsMustMatchForMSAASrc_BlitFramebufferFlag;
} else if (ctxInfo.hasExtension("GL_CHROMIUM_framebuffer_multisample") ||
ctxInfo.hasExtension("GL_ANGLE_framebuffer_blit")) {
// The CHROMIUM extension uses the ANGLE version of glBlitFramebuffer and includes its
// limitations.
fBlitFramebufferFlags = kNoScalingOrMirroring_BlitFramebufferFlag |
kResolveMustBeFull_BlitFrambufferFlag |
kNoMSAADst_BlitFramebufferFlag |
kNoFormatConversion_BlitFramebufferFlag |
kRectsMustMatchForMSAASrc_BlitFramebufferFlag;
}
} // No WebGL 1.0 support for BlitFramebuffer
this->initBlendEqationSupport(ctxInfo);
if (GR_IS_GR_GL(standard)) {
fMapBufferFlags = kCanMap_MapFlag; // we require VBO support and the desktop VBO
// extension includes glMapBuffer.
if (version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_ARB_map_buffer_range")) {
fMapBufferFlags |= kSubset_MapFlag;
fMapBufferType = kMapBufferRange_MapBufferType;
} else {
fMapBufferType = kMapBuffer_MapBufferType;
}
} else if (GR_IS_GR_GL_ES(standard)) {
// Unextended GLES2 doesn't have any buffer mapping.
fMapBufferFlags = kNone_MapFlags;
if (ctxInfo.hasExtension("GL_CHROMIUM_map_sub")) {
fMapBufferFlags = kCanMap_MapFlag | kSubset_MapFlag;
fMapBufferType = kChromium_MapBufferType;
} else if (version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_EXT_map_buffer_range")) {
fMapBufferFlags = kCanMap_MapFlag | kSubset_MapFlag;
fMapBufferType = kMapBufferRange_MapBufferType;
} else if (ctxInfo.hasExtension("GL_OES_mapbuffer")) {
fMapBufferFlags = kCanMap_MapFlag;
fMapBufferType = kMapBuffer_MapBufferType;
}
} else if (GR_IS_GR_WEBGL(standard)) {
// explicitly removed https://www.khronos.org/registry/webgl/specs/2.0/#5.14
fMapBufferFlags = kNone_MapFlags;
}
if (GR_IS_GR_GL(standard)) {
if (version >= GR_GL_VER(2, 1) || ctxInfo.hasExtension("GL_ARB_pixel_buffer_object") ||
ctxInfo.hasExtension("GL_EXT_pixel_buffer_object")) {
fTransferFromBufferToTextureSupport = true;
fTransferFromSurfaceToBufferSupport = true;
fTransferBufferType = TransferBufferType::kARB_PBO;
}
} else if (GR_IS_GR_GL_ES(standard)) {
if (version >= GR_GL_VER(3, 0) ||
(ctxInfo.hasExtension("GL_NV_pixel_buffer_object") &&
// GL_EXT_unpack_subimage needed to support subtexture rectangles
ctxInfo.hasExtension("GL_EXT_unpack_subimage"))) {
fTransferFromBufferToTextureSupport = true;
fTransferFromSurfaceToBufferSupport = true;
if (version < GR_GL_VER(3, 0)) {
fTransferBufferType = TransferBufferType::kNV_PBO;
} else {
fTransferBufferType = TransferBufferType::kARB_PBO;
}
// TODO: get transfer buffers working in Chrome
// } else if (ctxInfo.hasExtension("GL_CHROMIUM_pixel_transfer_buffer_object")) {
// fTransferFromBufferToTextureSupport = false;
// fTransferFromSurfaceToBufferSupport = false;
// fTransferBufferType = TransferBufferType::kChromium;
}
} // no WebGL support
// On many GPUs, map memory is very expensive, so we effectively disable it here by setting the
// threshold to the maximum unless the client gives us a hint that map memory is cheap.
if (fBufferMapThreshold < 0) {
#if 0
// We think mapping on Chromium will be cheaper once we know ahead of time how much space
// we will use for all GrMeshDrawOps. Right now we might wind up mapping a large buffer and
// using a small subset.
fBufferMapThreshold = ctxInfo.isOverCommandBuffer() ? 0 : SK_MaxS32;
#else
fBufferMapThreshold = SK_MaxS32;
#endif
}
if (GR_IS_GR_GL(standard)) {
fNPOTTextureTileSupport = true;
fMipmapSupport = true;
} else if (GR_IS_GR_GL_ES(standard)) {
// Unextended ES2 supports NPOT textures with clamp_to_edge and non-mip filters only
// ES3 has no limitations.
fNPOTTextureTileSupport = version >= GR_GL_VER(3,0) ||
ctxInfo.hasExtension("GL_OES_texture_npot");
// ES2 supports MIP mapping for POT textures but our caps don't allow for limited MIP
// support. The OES extension or ES 3.0 allow for MIPS on NPOT textures. So, apparently,
// does the undocumented GL_IMG_texture_npot extension. This extension does not seem to
// to alllow arbitrary wrap modes, however.
fMipmapSupport = fNPOTTextureTileSupport || ctxInfo.hasExtension("GL_IMG_texture_npot");
} else if (GR_IS_GR_WEBGL(standard)) {
// Texture access works in the WebGL 2.0 API as in the OpenGL ES 3.0 API
fNPOTTextureTileSupport = version >= GR_GL_VER(2,0);
// All mipmapping and all wrapping modes are supported for non-power-of-
// two images [in WebGL 2.0].
fMipmapSupport = fNPOTTextureTileSupport;
}
GR_GL_GetIntegerv(gli, GR_GL_MAX_TEXTURE_SIZE, &fMaxTextureSize);
if (fDriverBugWorkarounds.max_texture_size_limit_4096) {
fMaxTextureSize = std::min(fMaxTextureSize, 4096);
}
GR_GL_GetIntegerv(gli, GR_GL_MAX_RENDERBUFFER_SIZE, &fMaxRenderTargetSize);
fMaxPreferredRenderTargetSize = fMaxRenderTargetSize;
if (ctxInfo.vendor() == GrGLVendor::kARM) {
// On Mali G71, RT's above 4k have been observed to incur a performance cost.
fMaxPreferredRenderTargetSize = std::min(4096, fMaxPreferredRenderTargetSize);
}
fGpuTracingSupport = ctxInfo.hasExtension("GL_EXT_debug_marker");
// Disable scratch texture reuse on Mali and Adreno devices
fReuseScratchTextures = (ctxInfo.vendor() != GrGLVendor::kARM);
#if 0
fReuseScratchBuffers = ctxInfo.vendor() != GrGLVendor::kARM
ctxInfo.vendor() != GrGLVendor::kQualcomm;
#endif
if (ctxInfo.hasExtension("GL_EXT_window_rectangles")) {
GR_GL_GetIntegerv(gli, GR_GL_MAX_WINDOW_RECTANGLES, &fMaxWindowRectangles);
}
#ifdef SK_BUILD_FOR_WIN
// We're assuming that on Windows Chromium we're using ANGLE.
bool isANGLE = ctxInfo.angleBackend() != GrGLANGLEBackend::kUnknown ||
ctxInfo.isOverCommandBuffer();
// On ANGLE deferring flushes can lead to GPU starvation
fPreferVRAMUseOverFlushes = !isANGLE;
#endif
if (ctxInfo.isOverCommandBuffer()) {
fMustClearUploadedBufferData = true;
}
// In a WASM build on Firefox, we see warnings like
// WebGL warning: texSubImage2D: This operation requires zeroing texture data. This is slow.
// WebGL warning: texSubImage2D: Texture has not been initialized prior to a partial upload,
// forcing the browser to clear it. This may be slow.
// Setting the initial clear seems to make those warnings go away and offers a substantial
// boost in performance in Firefox. Chrome sees a more modest increase.
if (GR_IS_GR_WEBGL(standard)) {
fShouldInitializeTextures = true;
}
if (GR_IS_GR_GL(standard)) {
// ARB allows mixed size FBO attachments, EXT does not.
if (version >= GR_GL_VER(3, 0) ||
ctxInfo.hasExtension("GL_ARB_framebuffer_object")) {
fOversizedStencilSupport = true;
} else {
SkASSERT(ctxInfo.hasExtension("GL_EXT_framebuffer_object"));
}
} else if (GR_IS_GR_GL_ES(standard)) {
// ES 3.0 supports mixed size FBO attachments, 2.0 does not.
fOversizedStencilSupport = version >= GR_GL_VER(3, 0);
} else if (GR_IS_GR_WEBGL(standard)) {
// WebGL 1.0 has some constraints for FBO attachments:
// https://www.khronos.org/registry/webgl/specs/1.0/index.html#6.6
// These constraints "no longer apply in WebGL 2"
fOversizedStencilSupport = version >= GR_GL_VER(2, 0);
}
if (GR_IS_GR_GL(standard)) {
fBaseVertexBaseInstanceSupport = version >= GR_GL_VER(4,2) ||
ctxInfo.hasExtension("GL_ARB_base_instance");
if (fBaseVertexBaseInstanceSupport) {
fNativeDrawIndirectSupport = version >= GR_GL_VER(4,0) ||
ctxInfo.hasExtension("GL_ARB_draw_indirect");
if (version >= GR_GL_VER(4,3) || ctxInfo.hasExtension("GL_ARB_multi_draw_indirect")) {
fMultiDrawType = MultiDrawType::kMultiDrawIndirect;
}
}
fDrawRangeElementsSupport = version >= GR_GL_VER(2,0);
} else if (GR_IS_GR_GL_ES(standard)) {
if (ctxInfo.hasExtension("GL_ANGLE_base_vertex_base_instance")) {
fBaseVertexBaseInstanceSupport = true;
fNativeDrawIndirectSupport = true;
fMultiDrawType = MultiDrawType::kANGLEOrWebGL;
// The indirect structs need to reside in CPU memory for the ANGLE version.
fUseClientSideIndirectBuffers = true;
} else {
fBaseVertexBaseInstanceSupport = ctxInfo.hasExtension("GL_EXT_base_instance");
if (fBaseVertexBaseInstanceSupport) {
fNativeDrawIndirectSupport = (version >= GR_GL_VER(3,1));
if (ctxInfo.hasExtension("GL_EXT_multi_draw_indirect")) {
fMultiDrawType = MultiDrawType::kMultiDrawIndirect;
}
}
}
fDrawRangeElementsSupport = version >= GR_GL_VER(3,0);
} else if (GR_IS_GR_WEBGL(standard)) {
fBaseVertexBaseInstanceSupport = ctxInfo.hasExtension(
"WEBGL_draw_instanced_base_vertex_base_instance");
if (fBaseVertexBaseInstanceSupport && ctxInfo.hasExtension(
"GL_WEBGL_multi_draw_instanced_base_vertex_base_instance")) {
fNativeDrawIndirectSupport = true;
fMultiDrawType = MultiDrawType::kANGLEOrWebGL;
}
// The indirect structs need to reside in CPU memory for the WebGL version.
fUseClientSideIndirectBuffers = true;
fDrawRangeElementsSupport = version >= GR_GL_VER(2,0);
}
// We used to disable this as a correctness workaround (http://anglebug.com/4536). Now it is
// disabled because of poor performance (http://skbug.com/11998).
if (ctxInfo.angleBackend() == GrGLANGLEBackend::kD3D11) {
fBaseVertexBaseInstanceSupport = false;
fNativeDrawIndirectSupport = false;
fMultiDrawType = MultiDrawType::kNone;
}
// We prefer GL sync objects but also support NV_fence_sync. The former can be
// used to implements GrFence and GrSemaphore. The latter only implements GrFence.
// TODO: support CHROMIUM_sync_point and maybe KHR_fence_sync
if (GR_IS_GR_WEBGL(standard)) {
// Only in WebGL 2.0
fSemaphoreSupport = fFenceSyncSupport = version >= GR_GL_VER(2, 0);
fFenceType = FenceType::kSyncObject;
} else if (GR_IS_GR_GL(standard) &&
(version >= GR_GL_VER(3, 2) || ctxInfo.hasExtension("GL_ARB_sync"))) {
fSemaphoreSupport = fFenceSyncSupport = true;
fFenceType = FenceType::kSyncObject;
} else if (GR_IS_GR_GL_ES(standard) &&
(version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_APPLE_sync"))) {
fSemaphoreSupport = fFenceSyncSupport = true;
fFenceType = FenceType::kSyncObject;
} else if (ctxInfo.hasExtension("GL_NV_fence")) {
// This extension can exist in GL and GL ES. We have it last because we prefer the
// standard GLsync object implementation which also supports GPU semaphore semantics.
fFenceSyncSupport = true;
fFenceType = FenceType::kNVFence;
}
// Safely moving textures between contexts requires semaphores.
fCrossContextTextureSupport = fSemaphoreSupport;
// Half float vertex attributes requires GL3 or ES3
// It can also work with OES_VERTEX_HALF_FLOAT, but that requires a different enum.
if (GR_IS_GR_GL(standard)) {
fHalfFloatVertexAttributeSupport = (version >= GR_GL_VER(3, 0));
} else if (GR_IS_GR_GL_ES(standard)) {
fHalfFloatVertexAttributeSupport = (version >= GR_GL_VER(3, 0));
} else if (GR_IS_GR_WEBGL(standard)) {
// This appears to be supported in 2.0, looking at the spec.
fHalfFloatVertexAttributeSupport = (version >= GR_GL_VER(2, 0));
}
fDynamicStateArrayGeometryProcessorTextureSupport = true;
if (GR_IS_GR_GL(standard)) {
fProgramBinarySupport = (version >= GR_GL_VER(4, 1));
fProgramParameterSupport = (version >= GR_GL_VER(4, 1));
} else if (GR_IS_GR_GL_ES(standard)) {
fProgramBinarySupport =
(version >= GR_GL_VER(3, 0)) || ctxInfo.hasExtension("GL_OES_get_program_binary");
fProgramParameterSupport = (version >= GR_GL_VER(3, 0));
} // Explicitly not supported in WebGL 2.0
// https://www.khronos.org/registry/webgl/specs/2.0/#5.4
if (fProgramBinarySupport) {
GrGLint count;
GR_GL_GetIntegerv(gli, GR_GL_NUM_PROGRAM_BINARY_FORMATS, &count);
fProgramBinarySupport = count > 0;
}
if (GR_IS_GR_GL(standard)) {
fSamplerObjectSupport =
version >= GR_GL_VER(3,3) || ctxInfo.hasExtension("GL_ARB_sampler_objects");
} else if (GR_IS_GR_GL_ES(standard)) {
fSamplerObjectSupport = version >= GR_GL_VER(3,0);
} else if (GR_IS_GR_WEBGL(standard)) {
fSamplerObjectSupport = version >= GR_GL_VER(2,0);
}
// We currently use sampler objects whenever they are available.
fUseSamplerObjects = fSamplerObjectSupport;
if (GR_IS_GR_GL_ES(standard)) {
fTiledRenderingSupport = ctxInfo.hasExtension("GL_QCOM_tiled_rendering");
}
if (ctxInfo.vendor() == GrGLVendor::kARM) {
fShouldCollapseSrcOverToSrcWhenAble = true;
}
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
if (ctxInfo.renderer() == GrGLRenderer::kPowerVRRogue) {
// https://b/195281495
// The TecnoSpark 3 Pro with a PowerVR GE8300 seems to have a steep dithering performance
// cliff in the Android Framework
fAvoidDithering = true;
}
#endif
FormatWorkarounds formatWorkarounds;
if (!contextOptions.fDisableDriverCorrectnessWorkarounds) {
this->applyDriverCorrectnessWorkarounds(ctxInfo, contextOptions, gli, shaderCaps,
&formatWorkarounds);
}
// Requires msaa support, ES compatibility have already been detected.
this->initFormatTable(ctxInfo, gli, formatWorkarounds);
this->finishInitialization(contextOptions);
// For now these two are equivalent but we could have dst read in shader via some other method.
shaderCaps->fDstReadInShaderSupport = shaderCaps->fFBFetchSupport;
}
const char* get_glsl_version_decl_string(GrGLStandard standard, GrGLSLGeneration generation,
bool isCoreProfile) {
if (GR_IS_GR_GL(standard)) {
switch (generation) {
case k110_GrGLSLGeneration:
return "#version 110\n";
case k130_GrGLSLGeneration:
return "#version 130\n";
case k140_GrGLSLGeneration:
return "#version 140\n";
case k150_GrGLSLGeneration:
if (isCoreProfile) {
return "#version 150\n";
} else {
return "#version 150 compatibility\n";
}
case k330_GrGLSLGeneration:
if (isCoreProfile) {
return "#version 330\n";
} else {
return "#version 330 compatibility\n";
}
case k400_GrGLSLGeneration:
if (isCoreProfile) {
return "#version 400\n";
} else {
return "#version 400 compatibility\n";
}
case k420_GrGLSLGeneration:
if (isCoreProfile) {
return "#version 420\n";
} else {
return "#version 420 compatibility\n";
}
default:
break;
}
} else if (GR_IS_GR_GL_ES(standard) || GR_IS_GR_WEBGL(standard)) {
switch (generation) {
case k110_GrGLSLGeneration:
// ES2s shader language is based on version 1.20 but is version
// 1.00 of the ES language.
return "#version 100\n";
case k330_GrGLSLGeneration:
return "#version 300 es\n";
case k310es_GrGLSLGeneration:
return "#version 310 es\n";
case k320es_GrGLSLGeneration:
return "#version 320 es\n";
default:
break;
}
}
return "<no version>";
}
bool is_float_fp32(const GrGLContextInfo& ctxInfo, const GrGLInterface* gli, GrGLenum precision) {
if (GR_IS_GR_GL(ctxInfo.standard()) &&
ctxInfo.version() < GR_GL_VER(4,1) &&
!ctxInfo.hasExtension("GL_ARB_ES2_compatibility")) {
// We're on a desktop GL that doesn't have precision info. Assume they're all 32bit float.
return true;
}
// glGetShaderPrecisionFormat doesn't accept GL_GEOMETRY_SHADER as a shader type. Hopefully the
// geometry shaders don't have lower precision than vertex and fragment.
for (GrGLenum shader : {GR_GL_FRAGMENT_SHADER, GR_GL_VERTEX_SHADER}) {
GrGLint range[2];
GrGLint bits;
GR_GL_GetShaderPrecisionFormat(gli, shader, precision, range, &bits);
if (range[0] < 127 || range[1] < 127 || bits < 23) {
return false;
}
}
return true;
}
void GrGLCaps::initGLSL(const GrGLContextInfo& ctxInfo, const GrGLInterface* gli) {
GrGLStandard standard = ctxInfo.standard();
GrGLVersion version = ctxInfo.version();
/**************************************************************************
* Caps specific to GrShaderCaps
**************************************************************************/
GrShaderCaps* shaderCaps = fShaderCaps.get();
shaderCaps->fGLSLGeneration = ctxInfo.glslGeneration();
if (GR_IS_GR_GL_ES(standard)) {
// fFBFetchRequiresEnablePerSample is not a shader cap but is initialized below to keep it
// with related FB fetch logic.
if (ctxInfo.hasExtension("GL_EXT_shader_framebuffer_fetch")) {
shaderCaps->fFBFetchNeedsCustomOutput = (version >= GR_GL_VER(3, 0));
shaderCaps->fFBFetchSupport = true;
shaderCaps->fFBFetchColorName = "gl_LastFragData[0]";
shaderCaps->fFBFetchExtensionString = "GL_EXT_shader_framebuffer_fetch";
fFBFetchRequiresEnablePerSample = false;
} else if (ctxInfo.hasExtension("GL_NV_shader_framebuffer_fetch")) {
// Actually, we haven't seen an ES3.0 device with this extension yet, so we don't know.
shaderCaps->fFBFetchNeedsCustomOutput = false;
shaderCaps->fFBFetchSupport = true;
shaderCaps->fFBFetchColorName = "gl_LastFragData[0]";
shaderCaps->fFBFetchExtensionString = "GL_NV_shader_framebuffer_fetch";
fFBFetchRequiresEnablePerSample = false;
} else if (ctxInfo.hasExtension("GL_ARM_shader_framebuffer_fetch")) {
// The arm extension also requires an additional flag which we will set onResetContext.
shaderCaps->fFBFetchNeedsCustomOutput = false;
shaderCaps->fFBFetchSupport = true;
shaderCaps->fFBFetchColorName = "gl_LastFragColorARM";
shaderCaps->fFBFetchExtensionString = "GL_ARM_shader_framebuffer_fetch";
fFBFetchRequiresEnablePerSample = true;
}
shaderCaps->fUsesPrecisionModifiers = true;
} else if (GR_IS_GR_GL(standard)) {
if (ctxInfo.hasExtension("GL_EXT_shader_framebuffer_fetch")) {
shaderCaps->fFBFetchNeedsCustomOutput = (version >= GR_GL_VER(3, 0));
shaderCaps->fFBFetchSupport = true;
shaderCaps->fFBFetchColorName = "gl_LastFragData[0]";
shaderCaps->fFBFetchExtensionString = "GL_EXT_shader_framebuffer_fetch";
fFBFetchRequiresEnablePerSample = false;
}
} else if (GR_IS_GR_WEBGL(standard)) {
shaderCaps->fUsesPrecisionModifiers = true;
}
if (GR_IS_GR_GL(standard)) {
shaderCaps->fFlatInterpolationSupport = ctxInfo.glslGeneration() >= k130_GrGLSLGeneration;
} else if (GR_IS_GR_GL_ES(standard) || GR_IS_GR_WEBGL(standard)) {
shaderCaps->fFlatInterpolationSupport =
ctxInfo.glslGeneration() >= k330_GrGLSLGeneration; // This is the value for GLSL ES 3.0.
} // not sure for WebGL
// Flat interpolation appears to be slow on Qualcomm GPUs (tested Adreno 405 and 530).
// Avoid on ANGLE too, it inserts a geometry shader into the pipeline to implement flat interp.
// Is this only true on ANGLE's D3D backends or also on the GL backend?
shaderCaps->fPreferFlatInterpolation = shaderCaps->fFlatInterpolationSupport &&
ctxInfo.vendor() != GrGLVendor::kQualcomm &&
ctxInfo.angleBackend() == GrGLANGLEBackend::kUnknown;
if (GR_IS_GR_GL(standard)) {
shaderCaps->fNoPerspectiveInterpolationSupport =
ctxInfo.glslGeneration() >= k130_GrGLSLGeneration;
} else if (GR_IS_GR_GL_ES(standard)) {
if (ctxInfo.hasExtension("GL_NV_shader_noperspective_interpolation") &&
ctxInfo.glslGeneration() >= k330_GrGLSLGeneration /* GLSL ES 3.0 */) {
shaderCaps->fNoPerspectiveInterpolationSupport = true;
shaderCaps->fNoPerspectiveInterpolationExtensionString =
"GL_NV_shader_noperspective_interpolation";
}
} // Not sure for WebGL
if (GR_IS_GR_GL(standard)) {
shaderCaps->fSampleMaskSupport = ctxInfo.glslGeneration() >= k400_GrGLSLGeneration;
} else if (GR_IS_GR_GL_ES(standard)) {
if (ctxInfo.glslGeneration() >= k320es_GrGLSLGeneration) {
shaderCaps->fSampleMaskSupport = true;
} else if (ctxInfo.hasExtension("GL_OES_sample_variables")) {
shaderCaps->fSampleMaskSupport = true;
shaderCaps->fSampleVariablesExtensionString = "GL_OES_sample_variables";
}
}
bool hasTessellationSupport = false;
if (GR_IS_GR_GL(standard)) {
hasTessellationSupport = version >= GR_GL_VER(4,0) ||
ctxInfo.hasExtension("GL_ARB_tessellation_shader");
} else if (version >= GR_GL_VER(3,2)) {
hasTessellationSupport = true;
} else if (ctxInfo.hasExtension("GL_OES_tessellation_shader")) {
hasTessellationSupport = true;
shaderCaps->fTessellationExtensionString = "GL_OES_tessellation_shader";
}
if (hasTessellationSupport) {
GR_GL_GetIntegerv(gli, GR_GL_MAX_TESS_GEN_LEVEL_OES,
&shaderCaps->fMaxTessellationSegments);
// Just in case a driver returns a negative number?
shaderCaps->fMaxTessellationSegments = std::max(0, shaderCaps->fMaxTessellationSegments);
}
shaderCaps->fVersionDeclString = get_glsl_version_decl_string(standard,
shaderCaps->fGLSLGeneration,
fIsCoreProfile);
if (GR_IS_GR_GL_ES(standard) || GR_IS_GR_WEBGL(standard)) {
if (k110_GrGLSLGeneration == shaderCaps->fGLSLGeneration) {
shaderCaps->fShaderDerivativeExtensionString = "GL_OES_standard_derivatives";
}
} // WebGL might have to check for OES_standard_derivatives
if (GR_IS_GR_GL_ES(standard)) {
shaderCaps->fSecondaryOutputExtensionString = "GL_EXT_blend_func_extended";
}
if (ctxInfo.hasExtension("GL_OES_EGL_image_external")) {
if (ctxInfo.glslGeneration() == k110_GrGLSLGeneration) {
shaderCaps->fExternalTextureSupport = true;
shaderCaps->fExternalTextureExtensionString = "GL_OES_EGL_image_external";
} else if (ctxInfo.hasExtension("GL_OES_EGL_image_external_essl3") ||
ctxInfo.hasExtension("OES_EGL_image_external_essl3")) {
// At least one driver has been found that has this extension without the "GL_" prefix.
shaderCaps->fExternalTextureSupport = true;
shaderCaps->fExternalTextureExtensionString = "GL_OES_EGL_image_external_essl3";
}
}
if (GR_IS_GR_GL(standard)) {
shaderCaps->fVertexIDSupport = true;
} else if (GR_IS_GR_GL_ES(standard) || GR_IS_GR_WEBGL(standard)) {
// Desktop GLSL 3.30 == ES GLSL 3.00.
shaderCaps->fVertexIDSupport = ctxInfo.glslGeneration() >= k330_GrGLSLGeneration;
}
if (GR_IS_GR_GL(standard)) {
shaderCaps->fInfinitySupport = true;
} else if (GR_IS_GR_GL_ES(standard) || GR_IS_GR_WEBGL(standard)) {
// Desktop GLSL 3.30 == ES GLSL 3.00.
shaderCaps->fInfinitySupport = ctxInfo.glslGeneration() >= k330_GrGLSLGeneration;
}
if (GR_IS_GR_GL(standard)) {
shaderCaps->fBitManipulationSupport = ctxInfo.glslGeneration() >= k400_GrGLSLGeneration;
} else if (GR_IS_GR_GL_ES(standard) || GR_IS_GR_WEBGL(standard)) {
shaderCaps->fBitManipulationSupport = ctxInfo.glslGeneration() >= k310es_GrGLSLGeneration;
}
shaderCaps->fFloatIs32Bits = is_float_fp32(ctxInfo, gli, GR_GL_HIGH_FLOAT);
shaderCaps->fHalfIs32Bits = is_float_fp32(ctxInfo, gli, GR_GL_MEDIUM_FLOAT);
shaderCaps->fHasLowFragmentPrecision = ctxInfo.renderer() == GrGLRenderer::kMali4xx;
if (GR_IS_GR_GL(standard)) {
shaderCaps->fBuiltinFMASupport = ctxInfo.glslGeneration() >= k400_GrGLSLGeneration;
} else if (GR_IS_GR_GL_ES(standard)) {
shaderCaps->fBuiltinFMASupport = ctxInfo.glslGeneration() >= k320es_GrGLSLGeneration;
}
shaderCaps->fBuiltinDeterminantSupport = ctxInfo.glslGeneration() >= k150_GrGLSLGeneration;
if (GR_IS_GR_WEBGL(standard)) {
// WebGL 1.0 doesn't support do-while loops.
shaderCaps->fCanUseDoLoops = version >= GR_GL_VER(2, 0);
}
}
void GrGLCaps::initFSAASupport(const GrContextOptions& contextOptions,
const GrGLContextInfo& ctxInfo, const GrGLInterface* gli) {
if (GR_IS_GR_GL(ctxInfo.standard())) {
if (ctxInfo.version() >= GR_GL_VER(3,0) ||
ctxInfo.hasExtension("GL_ARB_framebuffer_object")) {
fMSFBOType = kStandard_MSFBOType;
} else if (ctxInfo.hasExtension("GL_EXT_framebuffer_multisample") &&
ctxInfo.hasExtension("GL_EXT_framebuffer_blit")) {
fMSFBOType = kStandard_MSFBOType;
}
} else if (GR_IS_GR_GL_ES(ctxInfo.standard())) {
// We prefer multisampled-render-to-texture extensions over ES3 MSAA because we've observed
// ES3 driver bugs on at least one device with a tiled GPU (N10).
if (ctxInfo.hasExtension("GL_EXT_multisampled_render_to_texture")) {
fMSFBOType = kES_EXT_MsToTexture_MSFBOType;
fMSAAResolvesAutomatically = true;
} else if (ctxInfo.hasExtension("GL_IMG_multisampled_render_to_texture")) {
fMSFBOType = kES_IMG_MsToTexture_MSFBOType;
fMSAAResolvesAutomatically = true;
} else if (ctxInfo.version() >= GR_GL_VER(3,0)) {
fMSFBOType = kStandard_MSFBOType;
} else if (ctxInfo.hasExtension("GL_CHROMIUM_framebuffer_multisample")) {
fMSFBOType = kStandard_MSFBOType;
} else if (ctxInfo.hasExtension("GL_ANGLE_framebuffer_multisample")) {
fMSFBOType = kStandard_MSFBOType;
} else if (ctxInfo.hasExtension("GL_APPLE_framebuffer_multisample")) {
fMSFBOType = kES_Apple_MSFBOType;
}
} else if (GR_IS_GR_WEBGL(ctxInfo.standard())) {
// No support in WebGL 1, but there is for 2.0
if (ctxInfo.version() >= GR_GL_VER(2,0)) {
fMSFBOType = kStandard_MSFBOType;
} else {
fMSFBOType = kNone_MSFBOType;
}
}
}
void GrGLCaps::initBlendEqationSupport(const GrGLContextInfo& ctxInfo) {
GrShaderCaps* shaderCaps = static_cast<GrShaderCaps*>(fShaderCaps.get());
bool layoutQualifierSupport = false;
if ((GR_IS_GR_GL(fStandard) && shaderCaps->generation() >= k140_GrGLSLGeneration) ||
(GR_IS_GR_GL_ES(fStandard) && shaderCaps->generation() >= k330_GrGLSLGeneration)) {
layoutQualifierSupport = true;
} else if (GR_IS_GR_WEBGL(fStandard)) {
return;
}
if (ctxInfo.hasExtension("GL_NV_blend_equation_advanced_coherent")) {
fBlendEquationSupport = kAdvancedCoherent_BlendEquationSupport;
shaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kAutomatic_AdvBlendEqInteraction;
} else if (ctxInfo.hasExtension("GL_KHR_blend_equation_advanced_coherent") &&
layoutQualifierSupport) {
fBlendEquationSupport = kAdvancedCoherent_BlendEquationSupport;
shaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kGeneralEnable_AdvBlendEqInteraction;
} else if (ctxInfo.hasExtension("GL_NV_blend_equation_advanced")) {
fBlendEquationSupport = kAdvanced_BlendEquationSupport;
shaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kAutomatic_AdvBlendEqInteraction;
} else if (ctxInfo.hasExtension("GL_KHR_blend_equation_advanced") && layoutQualifierSupport) {
fBlendEquationSupport = kAdvanced_BlendEquationSupport;
shaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kGeneralEnable_AdvBlendEqInteraction;
}
}
void GrGLCaps::initStencilSupport(const GrGLContextInfo& ctxInfo) {
// Build up list of legal stencil formats (though perhaps not supported on
// the particular gpu/driver) from most preferred to least.
// We push back stencil formats onto the fStencilFormats array in order of most preferred to
// least preferred.
if (GR_IS_GR_GL(ctxInfo.standard())) {
bool supportsPackedDS =
ctxInfo.version() >= GR_GL_VER(3,0) ||
ctxInfo.hasExtension("GL_EXT_packed_depth_stencil") ||
ctxInfo.hasExtension("GL_ARB_framebuffer_object");
// S1 thru S16 formats are in GL 3.0+, EXT_FBO, and ARB_FBO since we
// require FBO support we can expect these are legal formats and don't
// check.
fStencilFormats.push_back() = GrGLFormat::kSTENCIL_INDEX8;
fStencilFormats.push_back() = GrGLFormat::kSTENCIL_INDEX16;
if (supportsPackedDS) {
fStencilFormats.push_back() = GrGLFormat::kDEPTH24_STENCIL8;
}
} else if (GR_IS_GR_GL_ES(ctxInfo.standard())) {
// ES2 has STENCIL_INDEX8 without extensions but requires extensions
// for other formats.
fStencilFormats.push_back() = GrGLFormat::kSTENCIL_INDEX8;
if (ctxInfo.version() >= GR_GL_VER(3,0) ||
ctxInfo.hasExtension("GL_OES_packed_depth_stencil")) {
fStencilFormats.push_back() = GrGLFormat::kDEPTH24_STENCIL8;
}
} else if (GR_IS_GR_WEBGL(ctxInfo.standard())) {
fStencilFormats.push_back() = GrGLFormat::kSTENCIL_INDEX8;
if (ctxInfo.version() >= GR_GL_VER(2,0)) {
fStencilFormats.push_back() = GrGLFormat::kDEPTH24_STENCIL8;
}
}
}
#ifdef SK_ENABLE_DUMP_GPU
static const char* multi_draw_type_name(GrGLCaps::MultiDrawType multiDrawType) {
switch (multiDrawType) {
case GrGLCaps::MultiDrawType::kNone : return "kNone";
case GrGLCaps::MultiDrawType::kMultiDrawIndirect : return "kMultiDrawIndirect";
case GrGLCaps::MultiDrawType::kANGLEOrWebGL : return "kMultiDrawIndirect";
}
SkUNREACHABLE;
}
void GrGLCaps::onDumpJSON(SkJSONWriter* writer) const {
// We are called by the base class, which has already called beginObject(). We choose to nest
// all of our caps information in a named sub-object.
writer->beginObject("GL caps");
writer->beginArray("Stencil Formats");
for (int i = 0; i < fStencilFormats.count(); ++i) {
writer->beginObject(nullptr, false);
writer->appendS32("stencil bits", GrGLFormatStencilBits(fStencilFormats[i]));
writer->appendS32("total bytes", GrGLFormatBytesPerBlock(fStencilFormats[i]));
writer->endObject();
}
writer->endArray();
static const char* kMSFBOExtStr[] = {
"None",
"Standard",
"Apple",
"IMG MS To Texture",
"EXT MS To Texture",
};
static_assert(0 == kNone_MSFBOType);
static_assert(1 == kStandard_MSFBOType);
static_assert(2 == kES_Apple_MSFBOType);
static_assert(3 == kES_IMG_MsToTexture_MSFBOType);
static_assert(4 == kES_EXT_MsToTexture_MSFBOType);
static_assert(SK_ARRAY_COUNT(kMSFBOExtStr) == kLast_MSFBOType + 1);
static const char* kInvalidateFBTypeStr[] = {
"None",
"Discard",
"Invalidate",
};
static_assert(0 == kNone_InvalidateFBType);
static_assert(1 == kDiscard_InvalidateFBType);
static_assert(2 == kInvalidate_InvalidateFBType);
static_assert(SK_ARRAY_COUNT(kInvalidateFBTypeStr) == kLast_InvalidateFBType + 1);
static const char* kMapBufferTypeStr[] = {
"None",
"MapBuffer",
"MapBufferRange",
"Chromium",
};
static_assert(0 == kNone_MapBufferType);
static_assert(1 == kMapBuffer_MapBufferType);
static_assert(2 == kMapBufferRange_MapBufferType);
static_assert(3 == kChromium_MapBufferType);
static_assert(SK_ARRAY_COUNT(kMapBufferTypeStr) == kLast_MapBufferType + 1);
writer->appendBool("Core Profile", fIsCoreProfile);
writer->appendString("MSAA Type", kMSFBOExtStr[fMSFBOType]);
writer->appendString("Invalidate FB Type", kInvalidateFBTypeStr[fInvalidateFBType]);
writer->appendString("Map Buffer Type", kMapBufferTypeStr[fMapBufferType]);
writer->appendString("Multi Draw Type", multi_draw_type_name(fMultiDrawType));
writer->appendS32("Max FS Uniform Vectors", fMaxFragmentUniformVectors);
writer->appendBool("Pack Flip Y support", fPackFlipYSupport);
writer->appendBool("Texture Usage support", fTextureUsageSupport);
writer->appendBool("GL_ARB_imaging support", fImagingSupport);
writer->appendBool("Vertex array object support", fVertexArrayObjectSupport);
writer->appendBool("Debug support", fDebugSupport);
writer->appendBool("ES2 compatibility support", fES2CompatibilitySupport);
writer->appendBool("drawRangeElements support", fDrawRangeElementsSupport);
writer->appendBool("Base (vertex base) instance support", fBaseVertexBaseInstanceSupport);
writer->appendBool("Bind uniform location support", fBindUniformLocationSupport);
writer->appendBool("Rectangle texture support", fRectangleTextureSupport);
writer->appendBool("Mipmap LOD control support", fMipmapLodControlSupport);
writer->appendBool("Mipmap level control support", fMipmapLevelControlSupport);
writer->appendBool("Use buffer data null hint", fUseBufferDataNullHint);
writer->appendBool("Clear texture support", fClearTextureSupport);
writer->appendBool("Program binary support", fProgramBinarySupport);
writer->appendBool("Program parameters support", fProgramParameterSupport);
writer->appendBool("Sampler object support", fSamplerObjectSupport);
writer->appendBool("Using sampler objects", fUseSamplerObjects);
writer->appendBool("Texture swizzle support", fTextureSwizzleSupport);
writer->appendBool("Tiled rendering support", fTiledRenderingSupport);
writer->appendBool("FB fetch requires enable per sample", fFBFetchRequiresEnablePerSample);
writer->appendBool("sRGB Write Control", fSRGBWriteControl);
writer->appendBool("Intermediate texture for partial updates of unorm textures ever bound to FBOs",
fDisallowTexSubImageForUnormConfigTexturesEverBoundToFBO);
writer->appendBool("Intermediate texture for all updates of textures bound to FBOs",
fUseDrawInsteadOfAllRenderTargetWrites);
writer->appendBool("Max instances per draw without crashing (or zero)",
fMaxInstancesPerDrawWithoutCrashing);
writer->beginArray("formats");
for (int i = 0; i < kGrGLColorFormatCount; ++i) {
writer->beginObject(nullptr, false);
writer->appendHexU32("flags", fFormatTable[i].fFlags);
writer->appendHexU32("f_type", (uint32_t)fFormatTable[i].fFormatType);
writer->appendHexU32("c_internal", fFormatTable[i].fCompressedInternalFormat);
writer->appendHexU32("i_for_teximage", fFormatTable[i].fInternalFormatForTexImageOrStorage);
writer->appendHexU32("i_for_renderbuffer", fFormatTable[i].fInternalFormatForRenderbuffer);
writer->appendHexU32("default_ex_format", fFormatTable[i].fDefaultExternalFormat);
writer->appendHexU32("default_ex_type", fFormatTable[i].fDefaultExternalType);
writer->appendHexU32("default_color_type", (uint32_t)fFormatTable[i].fDefaultColorType);
writer->beginArray("surface color types");
for (int j = 0; j < fFormatTable[i].fColorTypeInfoCount; ++j) {
const auto& ctInfo = fFormatTable[i].fColorTypeInfos[j];
writer->beginObject(nullptr, false);
writer->appendHexU32("colorType", (uint32_t)ctInfo.fColorType);
writer->appendHexU32("flags", ctInfo.fFlags);
writer->beginArray("data color types");
for (int k = 0; k < ctInfo.fExternalIOFormatCount; ++k) {
const auto& ioInfo = ctInfo.fExternalIOFormats[k];
writer->beginObject(nullptr, false);
writer->appendHexU32("colorType", (uint32_t)ioInfo.fColorType);
writer->appendHexU32("ex_type", ioInfo.fExternalType);
writer->appendHexU32("ex_teximage", ioInfo.fExternalTexImageFormat);
writer->appendHexU32("ex_read", ioInfo.fExternalReadFormat);
writer->endObject();
}
writer->endArray();
writer->endObject();
}
writer->endArray();
writer->endObject();
}
writer->endArray();
writer->endObject();
}
#else
void GrGLCaps::onDumpJSON(SkJSONWriter* writer) const { }
#endif
void GrGLCaps::getTexImageExternalFormatAndType(GrGLFormat surfaceFormat, GrGLenum* externalFormat,
GrGLenum* externalType) const {
const auto& info = this->getFormatInfo(surfaceFormat);
*externalType = info.fDefaultExternalType;
*externalFormat = info.fDefaultExternalFormat;
}
void GrGLCaps::getTexSubImageDefaultFormatTypeAndColorType(GrGLFormat format,
GrGLenum* externalFormat,
GrGLenum* externalType,
GrColorType* colorType) const {
const auto& info = this->getFormatInfo(format);
*externalType = info.fDefaultExternalType;
*externalFormat = info.fDefaultExternalFormat;
*colorType = info.fDefaultColorType;
}
void GrGLCaps::getTexSubImageExternalFormatAndType(GrGLFormat surfaceFormat,
GrColorType surfaceColorType,
GrColorType memoryColorType,
GrGLenum* externalFormat,
GrGLenum* externalType) const {
this->getExternalFormat(surfaceFormat, surfaceColorType, memoryColorType,
kTexImage_ExternalFormatUsage, externalFormat, externalType);
}
void GrGLCaps::getReadPixelsFormat(GrGLFormat surfaceFormat, GrColorType surfaceColorType,
GrColorType memoryColorType, GrGLenum* externalFormat,
GrGLenum* externalType) const {
this->getExternalFormat(surfaceFormat, surfaceColorType, memoryColorType,
kReadPixels_ExternalFormatUsage, externalFormat, externalType);
}
void GrGLCaps::getExternalFormat(GrGLFormat surfaceFormat, GrColorType surfaceColorType,
GrColorType memoryColorType, ExternalFormatUsage usage,
GrGLenum* externalFormat, GrGLenum* externalType) const {
SkASSERT(externalFormat && externalType);
*externalFormat = this->getFormatInfo(surfaceFormat).externalFormat(
surfaceColorType, memoryColorType, usage);
*externalType = this->getFormatInfo(surfaceFormat).externalType(
surfaceColorType, memoryColorType);
}
void GrGLCaps::setStencilFormatIndexForFormat(GrGLFormat format, int index) {
SkASSERT(!this->hasStencilFormatBeenDeterminedForFormat(format));
this->getFormatInfo(format).fStencilFormatIndex =
index < 0 ? FormatInfo::kUnsupported_StencilFormatIndex : index;
}
void GrGLCaps::setColorTypeFormat(GrColorType colorType, GrGLFormat format) {
int idx = static_cast<int>(colorType);
SkASSERT(fColorTypeToFormatTable[idx] == GrGLFormat::kUnknown);
fColorTypeToFormatTable[idx] = format;
}
void GrGLCaps::initFormatTable(const GrGLContextInfo& ctxInfo, const GrGLInterface* gli,
const FormatWorkarounds& formatWorkarounds) {
GrGLStandard standard = ctxInfo.standard();
// standard can be unused (optimized away) if SK_ASSUME_GL_ES is set
sk_ignore_unused_variable(standard);
GrGLVersion version = ctxInfo.version();
uint32_t nonMSAARenderFlags = FormatInfo::kFBOColorAttachment_Flag;
uint32_t msaaRenderFlags = nonMSAARenderFlags;
if (kNone_MSFBOType != fMSFBOType) {
msaaRenderFlags |= FormatInfo::kFBOColorAttachmentWithMSAA_Flag;
}
bool texStorageSupported = false;
if (GR_IS_GR_GL(standard)) {
// The EXT version can apply to either GL or GLES.
texStorageSupported = version >= GR_GL_VER(4,2) ||
ctxInfo.hasExtension("GL_ARB_texture_storage") ||
ctxInfo.hasExtension("GL_EXT_texture_storage");
} else if (GR_IS_GR_GL_ES(standard)) {
texStorageSupported = version >= GR_GL_VER(3,0) ||
ctxInfo.hasExtension("GL_EXT_texture_storage");
} else if (GR_IS_GR_WEBGL(standard)) {
texStorageSupported = version >= GR_GL_VER(2,0);
}
if (fDriverBugWorkarounds.disable_texture_storage) {
texStorageSupported = false;
}
#ifdef SK_BUILD_FOR_ANDROID
// crbug.com/945506. Telemetry reported a memory usage regression for Android Go Chrome/WebView
// when using glTexStorage2D. This appears to affect OOP-R (so not just over command buffer).
if (!formatWorkarounds.fDontDisableTexStorageOnAndroid) {
texStorageSupported = false;
}
#endif
// ES 2.0 requires that the internal/external formats match so we can't use sized internal
// formats for glTexImage until ES 3.0. TODO: Support sized internal formats in WebGL2.
bool texImageSupportsSizedInternalFormat =
(GR_IS_GR_GL(standard) || (GR_IS_GR_GL_ES(standard) && version >= GR_GL_VER(3,0)));
// for now we don't support floating point MSAA on ES
uint32_t fpRenderFlags = (GR_IS_GR_GL(standard)) ? msaaRenderFlags : nonMSAARenderFlags;
for (int i = 0; i < kGrColorTypeCnt; ++i) {
fColorTypeToFormatTable[i] = GrGLFormat::kUnknown;
}
///////////////////////////////////////////////////////////////////////////
GrGLenum halfFloatType = GR_GL_HALF_FLOAT;
if ((GR_IS_GR_GL_ES(standard) && version < GR_GL_VER(3, 0)) ||
(GR_IS_GR_WEBGL(standard) && version < GR_GL_VER(2, 0))) {
halfFloatType = GR_GL_HALF_FLOAT_OES;
}
// Format: RGBA8
{
FormatInfo& info = this->getFormatInfo(GrGLFormat::kRGBA8);
info.fFormatType = FormatType::kNormalizedFixedPoint;
info.fInternalFormatForRenderbuffer = GR_GL_RGBA8;
info.fDefaultExternalFormat = GR_GL_RGBA;
info.fDefaultExternalType = GR_GL_UNSIGNED_BYTE;
info.fDefaultColorType = GrColorType::kRGBA_8888;
info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag;
if (GR_IS_GR_GL(standard)) {
info.fFlags |= msaaRenderFlags;
} else if (GR_IS_GR_GL_ES(standard)) {
if (version >= GR_GL_VER(3,0) || ctxInfo.hasExtension("GL_OES_rgb8_rgba8") ||
ctxInfo.hasExtension("GL_ARM_rgba8")) {
info.fFlags |= msaaRenderFlags;
}
} else if (GR_IS_GR_WEBGL(standard)) {
info.fFlags |= msaaRenderFlags;
}
if (texStorageSupported) {
info.fFlags |= FormatInfo::kUseTexStorage_Flag;
info.fInternalFormatForTexImageOrStorage = GR_GL_RGBA8;
} else {
info.fInternalFormatForTexImageOrStorage =
texImageSupportsSizedInternalFormat ? GR_GL_RGBA8 : GR_GL_RGBA;
}
bool supportsBGRAColorType = GR_IS_GR_GL(standard) &&
(version >= GR_GL_VER(1, 2) || ctxInfo.hasExtension("GL_EXT_bgra"));
info.fColorTypeInfoCount = supportsBGRAColorType ? 3 : 2;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: RGBA8, Surface: kRGBA_8888
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kRGBA_8888;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
this->setColorTypeFormat(GrColorType::kRGBA_8888, GrGLFormat::kRGBA8);
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: RGBA8, Surface: kRGBA_8888, Data: kRGBA_8888
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_8888;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = GR_GL_RGBA;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
// Format: RGBA8, Surface: kRGBA_8888, Data: kBGRA_8888
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kBGRA_8888;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = 0; // TODO: Enable this on non-ES GL
ioFormat.fExternalReadFormat =
formatWorkarounds.fDisallowBGRA8ReadPixels ? 0 : GR_GL_BGRA;
// Not guaranteed by ES/WebGL.
ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard);
}
}
// Format: RGBA8, Surface: kBGRA_8888
if (supportsBGRAColorType) {
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kBGRA_8888;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
this->setColorTypeFormat(GrColorType::kBGRA_8888, GrGLFormat::kRGBA8);
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: RGBA8, Surface: kBGRA_8888, Data: kBGRA_8888
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kBGRA_8888;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = GR_GL_BGRA;
ioFormat.fExternalReadFormat =
formatWorkarounds.fDisallowBGRA8ReadPixels ? 0 : GR_GL_BGRA;
// Not guaranteed by ES/WebGL.
ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard);
}
// Format: RGBA8, Surface: kBGRA_8888, Data: kRGBA_8888
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_8888;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
// Format: RGBA8, Surface: kRGB_888x
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kRGB_888x;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
ctInfo.fReadSwizzle = GrSwizzle::RGB1();
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 1;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: RGBA8, Surface: kRGB_888x, Data: kRGBA_888x
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGB_888x;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = GR_GL_RGBA;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
}
// Format: R8
{
FormatInfo& info = this->getFormatInfo(GrGLFormat::kR8);
info.fFormatType = FormatType::kNormalizedFixedPoint;
info.fInternalFormatForRenderbuffer = GR_GL_R8;
info.fDefaultExternalFormat = GR_GL_RED;
info.fDefaultExternalType = GR_GL_UNSIGNED_BYTE;
info.fDefaultColorType = GrColorType::kR_8;
bool r8Support = false;
if (GR_IS_GR_GL(standard)) {
r8Support = version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_ARB_texture_rg");
} else if (GR_IS_GR_GL_ES(standard)) {
r8Support = version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_EXT_texture_rg");
} else if (GR_IS_GR_WEBGL(standard)) {
r8Support = ctxInfo.version() >= GR_GL_VER(2, 0);
}
if (formatWorkarounds.fDisallowR8ForPowerVRSGX54x) {
r8Support = false;
}
if (r8Support) {
info.fFlags |= FormatInfo::kTexturable_Flag
| FormatInfo::kTransfers_Flag
| msaaRenderFlags;
}
if (texStorageSupported) {
info.fFlags |= FormatInfo::kUseTexStorage_Flag;
info.fInternalFormatForTexImageOrStorage = GR_GL_R8;
} else {
info.fInternalFormatForTexImageOrStorage =
texImageSupportsSizedInternalFormat ? GR_GL_R8 : GR_GL_RED;
}
if (r8Support) {
info.fColorTypeInfoCount = 2;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: R8, Surface: kAlpha_8
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kAlpha_8;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
ctInfo.fReadSwizzle = GrSwizzle("000r");
ctInfo.fWriteSwizzle = GrSwizzle("a000");
this->setColorTypeFormat(GrColorType::kAlpha_8, GrGLFormat::kR8);
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: R8, Surface: kAlpha_8, Data: kAlpha_8
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kAlpha_8;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = GR_GL_RED;
ioFormat.fExternalReadFormat = GR_GL_RED;
// Not guaranteed by ES/WebGL.
ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard);
}
// Format: R8, Surface: kAlpha_8, Data: kAlpha_8xxx
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kAlpha_8xxx;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
// Format: R8, Surface: kGray_8
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kGray_8;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
ctInfo.fReadSwizzle = GrSwizzle("rrr1");
this->setColorTypeFormat(GrColorType::kGray_8, GrGLFormat::kR8);
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: R8, Surface: kGray_8, Data: kGray_8
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kGray_8;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = GR_GL_RED;
ioFormat.fExternalReadFormat = GR_GL_RED;
// Not guaranteed by ES/WebGL.
ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard);
}
// Format: R8, Surface: kGray_8, Data: kGray_8xxx
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kGray_8xxx;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
}
}
// Format: ALPHA8
{
bool alpha8IsValidForGL = GR_IS_GR_GL(standard) &&
(!fIsCoreProfile || version <= GR_GL_VER(3, 0));
bool alpha8IsValidForGLES = GR_IS_GR_GL_ES(standard);
bool alpha8IsValidForWebGL = GR_IS_GR_WEBGL(standard);
FormatInfo& info = this->getFormatInfo(GrGLFormat::kALPHA8);
info.fFormatType = FormatType::kNormalizedFixedPoint;
// GL_EXT_texture_storage adds GL_ALPHA8 for texture storage. However, ES3 has glTexStorage
// but does not have GL_ALPHA8 (and requires a sized internal format for glTexStorage).
// WebGL never has GL_ALPHA8.
bool alpha8SizedEnumSupported =
alpha8IsValidForGL ||
(alpha8IsValidForGLES && ctxInfo.hasExtension("GL_EXT_texture_storage"));
bool alpha8TexStorageSupported = alpha8SizedEnumSupported && texStorageSupported;
bool alpha8IsRenderable = false;
if (alpha8IsValidForGL) {
// Core profile removes ALPHA8 support.
// OpenGL 3.0+ (and GL_ARB_framebuffer_object) supports ALPHA8 as renderable.
alpha8IsRenderable = ctxInfo.version() >= GR_GL_VER(3, 0) ||
ctxInfo.hasExtension("GL_ARB_framebuffer_object");
}
info.fInternalFormatForRenderbuffer = GR_GL_ALPHA8;
info.fDefaultExternalFormat = GR_GL_ALPHA;
info.fDefaultExternalType = GR_GL_UNSIGNED_BYTE;
info.fDefaultColorType = GrColorType::kAlpha_8;
if (alpha8IsValidForGL || alpha8IsValidForGLES || alpha8IsValidForWebGL) {
info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag;
}
if (alpha8IsRenderable && alpha8IsValidForGL) {
// We will use ALPHA8 to create MSAA renderbuffers.
SkASSERT(alpha8SizedEnumSupported);
info.fFlags |= msaaRenderFlags;
}
if (alpha8TexStorageSupported) {
info.fFlags |= FormatInfo::kUseTexStorage_Flag;
info.fInternalFormatForTexImageOrStorage = GR_GL_ALPHA8;
} else {
// Even if GL_ALPHA8 is added to ES by GL_EXT_texture_storage it doesn't become legal
// for glTexImage2D.
if (!GR_IS_GR_GL_ES(standard) && texImageSupportsSizedInternalFormat &&
alpha8SizedEnumSupported) {
info.fInternalFormatForTexImageOrStorage = GR_GL_ALPHA8;
} else {
info.fInternalFormatForTexImageOrStorage = GR_GL_ALPHA;
}
}
if (alpha8IsValidForGL || alpha8IsValidForGLES || alpha8IsValidForWebGL) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: ALPHA8, Surface: kAlpha_8
{
if (alpha8IsValidForGL || alpha8IsValidForGLES || alpha8IsValidForWebGL) {
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kAlpha_8;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag |
ColorTypeInfo::kRenderable_Flag;
int idx = static_cast<int>(GrColorType::kAlpha_8);
if (fColorTypeToFormatTable[idx] == GrGLFormat::kUnknown) {
this->setColorTypeFormat(GrColorType::kAlpha_8, GrGLFormat::kALPHA8);
}
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: ALPHA8, Surface: kAlpha_8, Data: kAlpha_8
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kAlpha_8;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = GR_GL_ALPHA;
ioFormat.fExternalReadFormat = GR_GL_ALPHA;
// Not guaranteed by ES/WebGL.
ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard);
}
// Format: ALPHA8, Surface: kAlpha_8, Data: kRGBA_8888
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_8888;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
}
}
}
// Format: LUMINANCE8
{
FormatInfo& info = this->getFormatInfo(GrGLFormat::kLUMINANCE8);
info.fFormatType = FormatType::kNormalizedFixedPoint;
info.fInternalFormatForRenderbuffer = GR_GL_LUMINANCE8;
info.fDefaultExternalFormat = GR_GL_LUMINANCE;
info.fDefaultExternalType = GR_GL_UNSIGNED_BYTE;
info.fDefaultColorType = GrColorType::kGray_8;
bool lum8Supported = false;
bool lum8SizedFormatSupported = false;
if (GR_IS_GR_GL(standard) && !fIsCoreProfile) {
lum8Supported = true;
lum8SizedFormatSupported = true;
} else if (GR_IS_GR_GL_ES(standard)) {
lum8Supported = true;
// Even on ES3 this extension is required to define LUMINANCE8.
lum8SizedFormatSupported = ctxInfo.hasExtension("GL_EXT_texture_storage");
} else if (GR_IS_GR_WEBGL(standard)) {
lum8Supported = true;
}
if (lum8Supported) {
info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag;
}
if (texStorageSupported && lum8SizedFormatSupported) {
info.fFlags |= FormatInfo::kUseTexStorage_Flag;
info.fInternalFormatForTexImageOrStorage = GR_GL_LUMINANCE8;
} else if (texImageSupportsSizedInternalFormat && lum8SizedFormatSupported) {
info.fInternalFormatForTexImageOrStorage = GR_GL_LUMINANCE8;
} else {
info.fInternalFormatForTexImageOrStorage = GR_GL_LUMINANCE;
}
// We are not enabling attaching to an FBO for LUMINANCE8 mostly because of confusion in the
// spec. For GLES it does not seem to ever support LUMINANCE8 being color-renderable. For GL
// versions less than 3.0 it is provided by GL_ARB_framebuffer_object. However, the original
// version of that extension did not add LUMINANCE8, but was added in a later revsion. So
// even the presence of that extension does not guarantee support. GL 3.0 and higher (core
// or compatibility) do not list LUMINANCE8 as color-renderable (which is strange since the
// GL_ARB_framebuffer_object extension was meant to bring 3.0 functionality to lower
// versions).
if (lum8Supported) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: LUMINANCE8, Surface: kGray_8
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kGray_8;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
int idx = static_cast<int>(GrColorType::kGray_8);
if (fColorTypeToFormatTable[idx] == GrGLFormat::kUnknown) {
this->setColorTypeFormat(GrColorType::kGray_8, GrGLFormat::kLUMINANCE8);
}
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: LUMINANCE8, Surface: kGray_8, Data: kGray_8
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kGray_8;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = GR_GL_LUMINANCE;
ioFormat.fExternalReadFormat = 0;
}
// Format: LUMINANCE8, Surface: kGray_8, Data: kRGBA_8888
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_8888;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
}
}
// Format: LUMINANCE8_ALPHA8
{
FormatInfo& info = this->getFormatInfo(GrGLFormat::kLUMINANCE8_ALPHA8);
info.fFormatType = FormatType::kNormalizedFixedPoint;
info.fInternalFormatForRenderbuffer = GR_GL_LUMINANCE8_ALPHA8;
info.fDefaultExternalFormat = GR_GL_LUMINANCE_ALPHA;
info.fDefaultExternalType = GR_GL_UNSIGNED_BYTE;
info.fDefaultColorType = GrColorType::kGrayAlpha_88;
bool la8Supported = false;
bool la8SizedFormatSupported = false;
if (GR_IS_GR_GL(standard) && !fIsCoreProfile) {
la8Supported = true;
la8SizedFormatSupported = true;
} else if (GR_IS_GR_GL_ES(standard)) {
la8Supported = true;
// Even on ES3 this extension is required to define LUMINANCE8_ALPHA8.
la8SizedFormatSupported = ctxInfo.hasExtension("GL_EXT_texture_storage");
} else if (GR_IS_GR_WEBGL(standard)) {
la8Supported = true;
}
if (la8Supported) {
info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag;
}
if (texStorageSupported && la8SizedFormatSupported) {
info.fFlags |= FormatInfo::kUseTexStorage_Flag;
info.fInternalFormatForTexImageOrStorage = GR_GL_LUMINANCE8_ALPHA8;
} else if (texImageSupportsSizedInternalFormat && la8SizedFormatSupported) {
info.fInternalFormatForTexImageOrStorage = GR_GL_LUMINANCE8_ALPHA8;
} else {
info.fInternalFormatForTexImageOrStorage = GR_GL_LUMINANCE_ALPHA;
}
// See note in LUMINANCE8 section about not attaching to framebuffers.
if (la8Supported) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: LUMINANCE8_ALPHA8, Surface: kGrayAlpha_88
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kGrayAlpha_88;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
int idx = static_cast<int>(GrColorType::kGrayAlpha_88);
if (fColorTypeToFormatTable[idx] == GrGLFormat::kUnknown) {
this->setColorTypeFormat(GrColorType::kGrayAlpha_88,
GrGLFormat::kLUMINANCE8_ALPHA8);
}
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: LUMINANCE8, Surface: kGrayAlpha_88, Data: kGrayAlpha_88
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kGrayAlpha_88;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = GR_GL_LUMINANCE_ALPHA;
ioFormat.fExternalReadFormat = 0;
}
// Format: LUMINANCE8, Surface: kGrayAlpha_88, Data: kRGBA_8888
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_8888;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
}
}
// Format: BGRA8
{
FormatInfo& info = this->getFormatInfo(GrGLFormat::kBGRA8);
info.fFormatType = FormatType::kNormalizedFixedPoint;
// We currently only use the renderbuffer format when allocating msaa renderbuffers, so we
// are making decisions here based on that use case. The GL_EXT_texture_format_BGRA8888
// extension adds BGRA color renderbuffer support for ES 2.0, but this does not guarantee
// support for MSAA renderbuffers. Additionally, the renderable support was added in a later
// revision of the extension. So it is possible for older drivers to support the extension
// but only an early revision of it without renderable support. We have no way of
// distinguishing between the two. The GL_APPLE_texture_format_BGRA8888 does not add support
// for BGRA color renderbuffers at all. Ideally, for both cases we would use RGBA8 for our
// format for the MSAA buffer. In the GL_EXT_texture_format_BGRA8888 case we can still
// make the resolve BGRA and which will work for glBlitFramebuffer for resolving which just
// requires the src and dst be bindable to FBOs. However, we can't do this in the current
// world since some devices (e.g. chromium & angle) require the formats in glBlitFramebuffer
// to match. We don't have a way to really check this during resolve since we only actually
// have GrBackendFormat that is shared by the GrGLRenderTarget. We always set the
// renderbuffer format to RGBA8 but disable MSAA unless we have the APPLE extension.
// Once we break those up into different surface we can revisit doing this change.
info.fInternalFormatForRenderbuffer = GR_GL_RGBA8;
info.fDefaultExternalFormat = GR_GL_BGRA;
info.fDefaultExternalType = GR_GL_UNSIGNED_BYTE;
info.fDefaultColorType = GrColorType::kBGRA_8888;
GrGLenum bgraTexImageFormat;
// If BGRA is supported as an internal format it must always be specified to glTex[Sub]Image
// as a base format. Which base format depends on which extension is used.
if (ctxInfo.hasExtension("GL_APPLE_texture_format_BGRA8888")) {
// GL_APPLE_texture_format_BGRA8888:
// ES 2.0: the extension makes BGRA an external format but not an internal format.
// ES 3.0: the extension explicitly states GL_BGRA8 is not a valid internal format
// for glTexImage (just for glTexStorage).
bgraTexImageFormat = GR_GL_RGBA;
} else {
// GL_EXT_texture_format_BGRA8888:
// This extension adds GL_BGRA as an unsized internal format. However, it is
// written against ES 2.0 and therefore doesn't define a GL_BGRA8 as ES 2.0 doesn't
// have sized internal formats. See later where we check for tex storage BGRA8
// support.
bgraTexImageFormat = GR_GL_BGRA;
}
// TexStorage requires using a sized internal format and BGRA8 is only supported if we have
// the GL_APPLE_texture_format_BGRA8888 extension or if we have GL_EXT_texture_storage and
// GL_EXT_texture_format_BGRA8888.
bool supportsBGRATexStorage = false;
if (GR_IS_GR_GL_ES(standard)) {
if (ctxInfo.hasExtension("GL_EXT_texture_format_BGRA8888")) {
info.fFlags = FormatInfo::kTexturable_Flag
| FormatInfo::kTransfers_Flag
| nonMSAARenderFlags;
// GL_EXT_texture storage has defined interactions with
// GL_EXT_texture_format_BGRA8888. However, ES3 supports glTexStorage but
// without GL_EXT_texture_storage it does not allow the BGRA8 sized internal format.
if (ctxInfo.hasExtension("GL_EXT_texture_storage") &&
!formatWorkarounds.fDisableBGRATextureStorageForIntelWindowsES) {
supportsBGRATexStorage = true;
}
} else if (ctxInfo.hasExtension("GL_APPLE_texture_format_BGRA8888")) {
// This APPLE extension introduces complexity on ES2. It leaves the internal format
// as RGBA, but allows BGRA as the external format. From testing, it appears that
// the driver remembers the external format when the texture is created (with
// TexImage). If you then try to upload data in the other swizzle (with
// TexSubImage), it fails. We could work around this, but it adds even more state
// tracking to code that is already too tricky. Instead, we opt not to support BGRA
// on ES2 with this extension. This also side-steps some ambiguous interactions with
// the texture storage extension.
if (version >= GR_GL_VER(3,0)) {
// The APPLE extension doesn't explicitly make this renderable, but
// internally it appears to use RGBA8, which we'll patch up below.
info.fFlags = FormatInfo::kTexturable_Flag
| FormatInfo::kTransfers_Flag
| msaaRenderFlags;
supportsBGRATexStorage = true;
}
}
}
if (texStorageSupported && supportsBGRATexStorage) {
info.fFlags |= FormatInfo::kUseTexStorage_Flag;
info.fInternalFormatForTexImageOrStorage = GR_GL_BGRA8;
} else {
info.fInternalFormatForTexImageOrStorage = bgraTexImageFormat;
}
if (SkToBool(info.fFlags & FormatInfo::kTexturable_Flag)) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: BGRA8, Surface: kBGRA_8888
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kBGRA_8888;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
this->setColorTypeFormat(GrColorType::kBGRA_8888, GrGLFormat::kBGRA8);
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: BGRA8, Surface: kBGRA_8888, Data: kBGRA_8888
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kBGRA_8888;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = GR_GL_BGRA;
ioFormat.fExternalReadFormat = 0;
ioFormat.fExternalReadFormat =
formatWorkarounds.fDisallowBGRA8ReadPixels ? 0 : GR_GL_BGRA;
// Not guaranteed by ES/WebGL.
ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard);
}
// Format: BGRA8, Surface: kBGRA_8888, Data: kRGBA_8888
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_8888;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
}
}
// Format: RGB565
{
FormatInfo& info = this->getFormatInfo(GrGLFormat::kRGB565);
info.fFormatType = FormatType::kNormalizedFixedPoint;
info.fInternalFormatForRenderbuffer = GR_GL_RGB565;
info.fDefaultExternalFormat = GR_GL_RGB;
info.fDefaultExternalType = GR_GL_UNSIGNED_SHORT_5_6_5;
info.fDefaultColorType = GrColorType::kBGR_565;
if (GR_IS_GR_GL(standard)) {
if (version >= GR_GL_VER(4, 2) || ctxInfo.hasExtension("GL_ARB_ES2_compatibility")) {
info.fFlags = FormatInfo::kTexturable_Flag
| FormatInfo::kTransfers_Flag
| msaaRenderFlags;
}
} else if (GR_IS_GR_GL_ES(standard)) {
info.fFlags = FormatInfo::kTexturable_Flag
| FormatInfo::kTransfers_Flag
| msaaRenderFlags;
} else if (GR_IS_GR_WEBGL(standard)) {
info.fFlags = FormatInfo::kTexturable_Flag
| FormatInfo::kTransfers_Flag
| msaaRenderFlags;
}
// 565 is not a sized internal format on desktop GL. So on desktop with
// 565 we always use an unsized internal format to let the system pick
// the best sized format to convert the 565 data to. Since TexStorage
// only allows sized internal formats we disallow it.
//
// TODO: As of 4.2, regular GL supports 565. This logic is due for an
// update.
if (texStorageSupported && GR_IS_GR_GL_ES(standard)) {
info.fFlags |= FormatInfo::kUseTexStorage_Flag;
info.fInternalFormatForTexImageOrStorage = GR_GL_RGB565;
} else {
info.fInternalFormatForTexImageOrStorage =
texImageSupportsSizedInternalFormat ? GR_GL_RGB565 : GR_GL_RGB;
}
if (SkToBool(info.fFlags &FormatInfo::kTexturable_Flag)) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: RGB565, Surface: kBGR_565
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kBGR_565;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
this->setColorTypeFormat(GrColorType::kBGR_565, GrGLFormat::kRGB565);
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: RGB565, Surface: kBGR_565, Data: kBGR_565
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kBGR_565;
ioFormat.fExternalType = GR_GL_UNSIGNED_SHORT_5_6_5;
ioFormat.fExternalTexImageFormat = GR_GL_RGB;
ioFormat.fExternalReadFormat = GR_GL_RGB;
// Not guaranteed by ES/WebGL.
ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard);
}
// Format: RGB565, Surface: kBGR_565, Data: kRGBA_8888
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_8888;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
}
}
// Format: RGBA16F
{
FormatInfo& info = this->getFormatInfo(GrGLFormat::kRGBA16F);
info.fFormatType = FormatType::kFloat;
info.fInternalFormatForRenderbuffer = GR_GL_RGBA16F;
info.fDefaultExternalFormat = GR_GL_RGBA;
info.fDefaultExternalType = halfFloatType;
info.fDefaultColorType = GrColorType::kRGBA_F16;
bool rgba16FTextureSupport = false;
bool rgba16FRenderTargetSupport = false;
if (GR_IS_GR_GL(standard)) {
if (version >= GR_GL_VER(3, 0)) {
rgba16FTextureSupport = true;
rgba16FRenderTargetSupport = true;
} else if (ctxInfo.hasExtension("GL_ARB_texture_float")) {
rgba16FTextureSupport = true;
}
} else if (GR_IS_GR_GL_ES(standard)) {
if (version >= GR_GL_VER(3, 0)) {
rgba16FTextureSupport = true;
rgba16FRenderTargetSupport =
version >= GR_GL_VER(3, 2) ||
ctxInfo.hasExtension("GL_EXT_color_buffer_half_float") ||
ctxInfo.hasExtension("GL_EXT_color_buffer_float");
} else if (ctxInfo.hasExtension("GL_OES_texture_half_float") &&
ctxInfo.hasExtension("GL_OES_texture_half_float_linear")) {
rgba16FTextureSupport = true;
rgba16FRenderTargetSupport = ctxInfo.hasExtension("GL_EXT_color_buffer_half_float");
}
} else if (GR_IS_GR_WEBGL(standard)) {
if (version >= GR_GL_VER(2, 0)) {
rgba16FTextureSupport = true;
rgba16FRenderTargetSupport =
ctxInfo.hasExtension("GL_EXT_color_buffer_half_float") ||
ctxInfo.hasExtension("EXT_color_buffer_half_float") ||
ctxInfo.hasExtension("GL_EXT_color_buffer_float") ||
ctxInfo.hasExtension("EXT_color_buffer_float");
} else if ((ctxInfo.hasExtension("GL_OES_texture_half_float") ||
ctxInfo.hasExtension("OES_texture_half_float")) &&
(ctxInfo.hasExtension("GL_OES_texture_half_float_linear") ||
ctxInfo.hasExtension("OES_texture_half_float_linear"))) {
rgba16FTextureSupport = true;
// We don't check for EXT_color_buffer_float as it's only defined for WebGL 2.
rgba16FRenderTargetSupport =
ctxInfo.hasExtension("GL_EXT_color_buffer_half_float") ||
ctxInfo.hasExtension("EXT_color_buffer_half_float");
}
}
if (rgba16FTextureSupport) {
info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag;
if (rgba16FRenderTargetSupport) {
info.fFlags |= fpRenderFlags;
}
}
if (texStorageSupported && !formatWorkarounds.fDisableRGBA16FTexStorageForCrBug1008003) {
info.fFlags |= FormatInfo::kUseTexStorage_Flag;
info.fInternalFormatForTexImageOrStorage = GR_GL_RGBA16F;
} else {
info.fInternalFormatForTexImageOrStorage =
texImageSupportsSizedInternalFormat ? GR_GL_RGBA16F : GR_GL_RGBA;
}
if (rgba16FTextureSupport) {
uint32_t flags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
info.fColorTypeInfoCount = 2;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: RGBA16F, Surface: kRGBA_F16
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kRGBA_F16;
ctInfo.fFlags = flags;
this->setColorTypeFormat(GrColorType::kRGBA_F16, GrGLFormat::kRGBA16F);
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: RGBA16F, Surface: kRGBA_F16, Data: kRGBA_F16
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_F16;
ioFormat.fExternalType = halfFloatType;
ioFormat.fExternalTexImageFormat = GR_GL_RGBA;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
// Not guaranteed by ES/WebGL.
ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard);
}
// Format: RGBA16F, Surface: kRGBA_F16, Data: kRGBA_F32
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_F32;
ioFormat.fExternalType = GR_GL_FLOAT;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
// Format: RGBA16F, Surface: kRGBA_F16_Clamped
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kRGBA_F16_Clamped;
ctInfo.fFlags = flags;
this->setColorTypeFormat(GrColorType::kRGBA_F16_Clamped, GrGLFormat::kRGBA16F);
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: RGBA16F, Surface: kRGBA_F16_Clamped, Data: kRGBA_F16_Clamped
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_F16_Clamped;
ioFormat.fExternalType = halfFloatType;
ioFormat.fExternalTexImageFormat = GR_GL_RGBA;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
// Not guaranteed by ES/WebGL.
ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard);
}
// Format: RGBA16F, Surface: kRGBA_F16_Clamped, Data: kRGBA_F32
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_F32;
ioFormat.fExternalType = GR_GL_FLOAT;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
}
}
// Format: R16F
{
FormatInfo& info = this->getFormatInfo(GrGLFormat::kR16F);
info.fFormatType = FormatType::kFloat;
info.fInternalFormatForRenderbuffer = GR_GL_R16F;
info.fDefaultExternalFormat = GR_GL_RED;
info.fDefaultExternalType = halfFloatType;
info.fDefaultColorType = GrColorType::kR_F16;
bool r16FTextureSupport = false;
bool r16FRenderTargetSupport = false;
if (GR_IS_GR_GL(standard)) {
if (version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_ARB_texture_rg")) {
r16FTextureSupport = true;
r16FRenderTargetSupport = true;
}
} else if (GR_IS_GR_GL_ES(standard)) {
// It seems possible that a combination of GL_EXT_texture_rg and
// GL_EXT_color_buffer_half_float might add this format to ES 2.0 but it is not entirely
// clear. The latter mentions interaction but that may only be for renderbuffers as
// neither adds the texture format explicitly.
// GL_OES_texture_format_half_float makes no reference to RED formats.
if (version >= GR_GL_VER(3, 0)) {
r16FTextureSupport = true;
r16FRenderTargetSupport = version >= GR_GL_VER(3, 2) ||
ctxInfo.hasExtension("GL_EXT_color_buffer_float") ||
ctxInfo.hasExtension("GL_EXT_color_buffer_half_float");
}
} else if (GR_IS_GR_WEBGL(standard)) {
if (version >= GR_GL_VER(2, 0)) {
r16FTextureSupport = true;
r16FRenderTargetSupport = ctxInfo.hasExtension("GL_EXT_color_buffer_float") ||
ctxInfo.hasExtension("EXT_color_buffer_float");
}
}
if (r16FTextureSupport) {
info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag;
if (r16FRenderTargetSupport) {
info.fFlags |= fpRenderFlags;
}
}
if (texStorageSupported) {
info.fFlags |= FormatInfo::kUseTexStorage_Flag;
info.fInternalFormatForTexImageOrStorage = GR_GL_R16F;
} else {
info.fInternalFormatForTexImageOrStorage =
texImageSupportsSizedInternalFormat ? GR_GL_R16F : GR_GL_RED;
}
if (r16FTextureSupport) {
// Format: R16F, Surface: kAlpha_F16
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kAlpha_F16;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
ctInfo.fReadSwizzle = GrSwizzle("000r");
ctInfo.fWriteSwizzle = GrSwizzle("a000");
this->setColorTypeFormat(GrColorType::kAlpha_F16, GrGLFormat::kR16F);
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: R16F, Surface: kAlpha_F16, Data: kAlpha_F16
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kAlpha_F16;
ioFormat.fExternalType = halfFloatType;
ioFormat.fExternalTexImageFormat = GR_GL_RED;
ioFormat.fExternalReadFormat = GR_GL_RED;
// Not guaranteed by ES/WebGL.
ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard);
}
// Format: R16F, Surface: kAlpha_F16, Data: kAlpha_F32xxx
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kAlpha_F32xxx;
ioFormat.fExternalType = GR_GL_FLOAT;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
}
}
// Format: LUMINANCE16F
{
// NOTE: We disallow lum16f on ES devices if linear filtering modes are not
// supported. This is for simplicity, but a more granular approach is possible.
bool lum16FSupported = false;
bool lum16FSizedFormatSupported = false;
if (GR_IS_GR_GL(standard)) {
if (!fIsCoreProfile && ctxInfo.hasExtension("GL_ARB_texture_float")) {
lum16FSupported = true;
lum16FSizedFormatSupported = true;
}
} else if (GR_IS_GR_GL_ES(standard)) {
if (ctxInfo.hasExtension("GL_OES_texture_half_float_linear") &&
ctxInfo.hasExtension("GL_OES_texture_half_float")) {
lum16FSupported = true;
// Even on ES3 this extension is required to define LUMINANCE16F.
lum16FSizedFormatSupported = ctxInfo.hasExtension("GL_EXT_texture_storage");
}
} // No WebGL support
if (formatWorkarounds.fDisableLuminance16F) {
lum16FSupported = false;
}
FormatInfo& info = this->getFormatInfo(GrGLFormat::kLUMINANCE16F);
info.fFormatType = FormatType::kFloat;
info.fInternalFormatForRenderbuffer = GR_GL_LUMINANCE16F;
info.fDefaultExternalFormat = GR_GL_LUMINANCE;
info.fDefaultExternalType = halfFloatType;
info.fDefaultColorType = GrColorType::kGray_F16;
if (lum16FSupported) {
info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag;
if (texStorageSupported && lum16FSizedFormatSupported) {
info.fFlags |= FormatInfo::kUseTexStorage_Flag;
info.fInternalFormatForTexImageOrStorage = GR_GL_LUMINANCE16F;
} else if (texImageSupportsSizedInternalFormat && lum16FSizedFormatSupported) {
info.fInternalFormatForTexImageOrStorage = GR_GL_LUMINANCE16F;
} else {
info.fInternalFormatForTexImageOrStorage = GR_GL_LUMINANCE;
}
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: LUMINANCE16F, Surface: kAlpha_F16
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kAlpha_F16;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
ctInfo.fReadSwizzle = GrSwizzle("000r");
ctInfo.fWriteSwizzle = GrSwizzle("aaa0");
int idx = static_cast<int>(GrColorType::kAlpha_F16);
if (fColorTypeToFormatTable[idx] == GrGLFormat::kUnknown) {
this->setColorTypeFormat(GrColorType::kAlpha_F16, GrGLFormat::kLUMINANCE16F);
}
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: LUMINANCE16F, Surface: kAlpha_F16, Data: kAlpha_F16
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kAlpha_F16;
ioFormat.fExternalType = halfFloatType;
ioFormat.fExternalTexImageFormat = GR_GL_LUMINANCE;
ioFormat.fExternalReadFormat = 0;
}
// Format: LUMINANCE16F, Surface: kAlpha_F16, Data: kRGBA_F32
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_F32;
ioFormat.fExternalType = GR_GL_FLOAT;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
}
}
// Format: RGB8
{
FormatInfo& info = this->getFormatInfo(GrGLFormat::kRGB8);
info.fFormatType = FormatType::kNormalizedFixedPoint;
info.fInternalFormatForRenderbuffer = GR_GL_RGB8;
info.fDefaultExternalFormat = GR_GL_RGB;
info.fDefaultExternalType = GR_GL_UNSIGNED_BYTE;
info.fDefaultColorType = GrColorType::kRGB_888;
info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag;
if (GR_IS_GR_GL(standard)) {
// Even in OpenGL 4.6 GL_RGB8 is required to be color renderable but not required to be
// a supported render buffer format. Since we usually use render buffers for MSAA on
// non-ES GL we don't support MSAA for GL_RGB8. On 4.2+ we could check using
// glGetInternalFormativ(GL_RENDERBUFFER, GL_RGB8, GL_INTERNALFORMAT_SUPPORTED, ...) if
// this becomes an issue.
info.fFlags |= nonMSAARenderFlags;
} else if (GR_IS_GR_GL_ES(standard)) {
// 3.0 and the extension support this as a render buffer format.
if (version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_OES_rgb8_rgba8")) {
info.fFlags |= msaaRenderFlags;
}
} else if (GR_IS_GR_WEBGL(standard)) {
// WebGL seems to support RBG8
info.fFlags |= msaaRenderFlags;
}
if (texStorageSupported) {
info.fFlags |= FormatInfo::kUseTexStorage_Flag;
info.fInternalFormatForTexImageOrStorage = GR_GL_RGB8;
} else {
info.fInternalFormatForTexImageOrStorage =
texImageSupportsSizedInternalFormat ? GR_GL_RGB8 : GR_GL_RGB;
}
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: RGB8, Surface: kRGB_888x
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kRGB_888x;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
this->setColorTypeFormat(GrColorType::kRGB_888x, GrGLFormat::kRGB8);
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: RGB8, Surface: kRGB_888x, Data: kRGB_888
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGB_888;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = GR_GL_RGB;
ioFormat.fExternalReadFormat = 0;
}
// Format: RGB8, Surface: kRGB_888x, Data: kRGBA_8888
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_8888;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
}
// Format: RG8
{
FormatInfo& info = this->getFormatInfo(GrGLFormat::kRG8);
info.fFormatType = FormatType::kNormalizedFixedPoint;
info.fInternalFormatForRenderbuffer = GR_GL_RG8;
info.fDefaultExternalFormat = GR_GL_RG;
info.fDefaultExternalType = GR_GL_UNSIGNED_BYTE;
info.fDefaultColorType = GrColorType::kRG_88;
bool rg8Support = false;
if (GR_IS_GR_GL(standard)) {
rg8Support = version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_ARB_texture_rg");
} else if (GR_IS_GR_GL_ES(standard)) {
rg8Support = version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_EXT_texture_rg");
} else if (GR_IS_GR_WEBGL(standard)) {
rg8Support = version >= GR_GL_VER(2, 0);
}
if (rg8Support) {
info.fFlags |= FormatInfo::kTexturable_Flag
| FormatInfo::kTransfers_Flag
| msaaRenderFlags;
if (texStorageSupported) {
info.fFlags |= FormatInfo::kUseTexStorage_Flag;
info.fInternalFormatForTexImageOrStorage = GR_GL_RG8;
}
}
if (!(info.fFlags & FormatInfo::kUseTexStorage_Flag)) {
info.fInternalFormatForTexImageOrStorage =
texImageSupportsSizedInternalFormat ? GR_GL_RG8 : GR_GL_RG;
}
if (rg8Support) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: RG8, Surface: kRG_88
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kRG_88;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
this->setColorTypeFormat(GrColorType::kRG_88, GrGLFormat::kRG8);
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: RG8, Surface: kRG_88, Data: kRG_88
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRG_88;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = GR_GL_RG;
ioFormat.fExternalReadFormat = 0;
if (GR_IS_GR_GL(standard) && !formatWorkarounds.fDisallowDirectRG8ReadPixels) {
ioFormat.fExternalReadFormat = GR_GL_RG;
}
}
// Format: RG8, Surface: kRG_88, Data: kRGBA_8888
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_8888;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
}
}
// Format: RGB10_A2
{
FormatInfo& info = this->getFormatInfo(GrGLFormat::kRGB10_A2);
info.fFormatType = FormatType::kNormalizedFixedPoint;
info.fInternalFormatForRenderbuffer = GR_GL_RGB10_A2;
info.fDefaultExternalFormat = GR_GL_RGBA;
info.fDefaultExternalType = GR_GL_UNSIGNED_INT_2_10_10_10_REV;
info.fDefaultColorType = GrColorType::kRGBA_1010102;
if (GR_IS_GR_GL(standard) ||
(GR_IS_GR_GL_ES(standard) && version >= GR_GL_VER(3, 0))) {
info.fFlags = FormatInfo::kTexturable_Flag
| FormatInfo::kTransfers_Flag
| msaaRenderFlags;
} else if (GR_IS_GR_GL_ES(standard) &&
ctxInfo.hasExtension("GL_EXT_texture_type_2_10_10_10_REV")) {
info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag;
} // No WebGL support
if (texStorageSupported) {
info.fFlags |= FormatInfo::kUseTexStorage_Flag;
info.fInternalFormatForTexImageOrStorage = GR_GL_RGB10_A2;
} else {
info.fInternalFormatForTexImageOrStorage =
texImageSupportsSizedInternalFormat ? GR_GL_RGB10_A2 : GR_GL_RGBA;
}
if (SkToBool(info.fFlags & FormatInfo::kTexturable_Flag)) {
bool supportsBGRAColorType = GR_IS_GR_GL(standard) &&
(version >= GR_GL_VER(1, 2) || ctxInfo.hasExtension("GL_EXT_bgra"));
info.fColorTypeInfoCount = supportsBGRAColorType ? 2 : 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: RGB10_A2, Surface: kRGBA_1010102
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kRGBA_1010102;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
this->setColorTypeFormat(GrColorType::kRGBA_1010102, GrGLFormat::kRGB10_A2);
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: RGB10_A2, Surface: kRGBA_1010102, Data: kRGBA_1010102
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_1010102;
ioFormat.fExternalType = GR_GL_UNSIGNED_INT_2_10_10_10_REV;
ioFormat.fExternalTexImageFormat = GR_GL_RGBA;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
// Not guaranteed by ES/WebGL.
ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard);
}
// Format: RGB10_A2, Surface: kRGBA_1010102, Data: kRGBA_8888
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_8888;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
//------------------------------------------------------------------
// Format: RGB10_A2, Surface: kBGRA_1010102
if (supportsBGRAColorType) {
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kBGRA_1010102;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
this->setColorTypeFormat(GrColorType::kBGRA_1010102, GrGLFormat::kRGB10_A2);
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: RGB10_A2, Surface: kBGRA_1010102, Data: kBGRA_1010102
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kBGRA_1010102;
ioFormat.fExternalType = GR_GL_UNSIGNED_INT_2_10_10_10_REV;
ioFormat.fExternalTexImageFormat = GR_GL_BGRA;
ioFormat.fExternalReadFormat =
formatWorkarounds.fDisallowBGRA8ReadPixels ? 0 : GR_GL_BGRA;
// Not guaranteed by ES/WebGL.
ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard);
}
// Format: RGB10_A2, Surface: kBGRA_1010102, Data: kRGBA_8888
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_8888;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
}
}
// Format: RGBA4
{
FormatInfo& info = this->getFormatInfo(GrGLFormat::kRGBA4);
info.fFormatType = FormatType::kNormalizedFixedPoint;
info.fInternalFormatForRenderbuffer = GR_GL_RGBA4;
info.fDefaultExternalFormat = GR_GL_RGBA;
info.fDefaultExternalType = GR_GL_UNSIGNED_SHORT_4_4_4_4;
info.fDefaultColorType = GrColorType::kABGR_4444;
info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag;
if (GR_IS_GR_GL(standard)) {
if (version >= GR_GL_VER(4, 2)) {
info.fFlags |= msaaRenderFlags;
}
} else if (GR_IS_GR_GL_ES(standard)) {
info.fFlags |= msaaRenderFlags;
} else if (GR_IS_GR_WEBGL(standard)) {
info.fFlags |= msaaRenderFlags;
}
if (texStorageSupported) {
info.fFlags |= FormatInfo::kUseTexStorage_Flag;
info.fInternalFormatForTexImageOrStorage = GR_GL_RGBA4;
} else {
info.fInternalFormatForTexImageOrStorage =
texImageSupportsSizedInternalFormat ? GR_GL_RGBA4 : GR_GL_RGBA;
}
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: RGBA4, Surface: kABGR_4444
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kABGR_4444;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
this->setColorTypeFormat(GrColorType::kABGR_4444, GrGLFormat::kRGBA4);
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: RGBA4, Surface: kABGR_4444, Data: kABGR_4444
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kABGR_4444;
ioFormat.fExternalType = GR_GL_UNSIGNED_SHORT_4_4_4_4;
ioFormat.fExternalTexImageFormat = GR_GL_RGBA;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
// Not guaranteed by ES/WebGL.
ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard);
}
// Format: RGBA4, Surface: kABGR_4444, Data: kRGBA_8888
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_8888;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
}
// Format: SRGB8_ALPHA8
{
FormatInfo& info = this->getFormatInfo(GrGLFormat::kSRGB8_ALPHA8);
info.fFormatType = FormatType::kNormalizedFixedPoint;
info.fInternalFormatForRenderbuffer = GR_GL_SRGB8_ALPHA8;
info.fDefaultExternalType = GR_GL_UNSIGNED_BYTE;
info.fDefaultColorType = GrColorType::kRGBA_8888_SRGB;
// We may modify the default external format below.
info.fDefaultExternalFormat = GR_GL_RGBA;
bool srgb8Alpha8TexStorageSupported = texStorageSupported;
bool srgb8Alpha8TextureSupport = false;
bool srgb8Alpha8RenderTargetSupport = false;
if (GR_IS_GR_GL(standard)) {
if (version >= GR_GL_VER(3, 0)) {
srgb8Alpha8TextureSupport = true;
srgb8Alpha8RenderTargetSupport = true;
} else if (ctxInfo.hasExtension("GL_EXT_texture_sRGB")) {
srgb8Alpha8TextureSupport = true;
if (ctxInfo.hasExtension("GL_ARB_framebuffer_sRGB") ||
ctxInfo.hasExtension("GL_EXT_framebuffer_sRGB")) {
srgb8Alpha8RenderTargetSupport = true;
}
}
} else if (GR_IS_GR_GL_ES(standard)) {
if (version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_EXT_sRGB")) {
srgb8Alpha8TextureSupport = true;
srgb8Alpha8RenderTargetSupport = true;
}
if (version < GR_GL_VER(3, 0)) {
// ES 2.0 requires that the external format matches the internal format.
info.fDefaultExternalFormat = GR_GL_SRGB_ALPHA;
// There is no defined interaction between GL_EXT_sRGB and GL_EXT_texture_storage.
srgb8Alpha8TexStorageSupported = false;
}
} else if (GR_IS_GR_WEBGL(standard)) {
// sRGB extension should be on most WebGL 1.0 contexts, although sometimes under 2
// names.
if (version >= GR_GL_VER(2, 0) || ctxInfo.hasExtension("GL_EXT_sRGB") ||
ctxInfo.hasExtension("EXT_sRGB")) {
srgb8Alpha8TextureSupport = true;
srgb8Alpha8RenderTargetSupport = true;
}
if (version < GR_GL_VER(2, 0)) {
// WebGL 1.0 requires that the external format matches the internal format.
info.fDefaultExternalFormat = GR_GL_SRGB_ALPHA;
// There is no extension to WebGL 1 that adds glTexStorage.
SkASSERT(!srgb8Alpha8TexStorageSupported);
}
}
if (srgb8Alpha8TextureSupport) {
info.fFlags = FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag;
if (srgb8Alpha8RenderTargetSupport) {
info.fFlags |= formatWorkarounds.fDisableSRGBRenderWithMSAAForMacAMD
? nonMSAARenderFlags
: msaaRenderFlags;
}
}
if (srgb8Alpha8TexStorageSupported) {
info.fFlags |= FormatInfo::kUseTexStorage_Flag;
info.fInternalFormatForTexImageOrStorage = GR_GL_SRGB8_ALPHA8;
} else {
info.fInternalFormatForTexImageOrStorage =
texImageSupportsSizedInternalFormat ? GR_GL_SRGB8_ALPHA8 : GR_GL_SRGB_ALPHA;
}
if (srgb8Alpha8TextureSupport) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: SRGB8_ALPHA8, Surface: kRGBA_8888_SRGB
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kRGBA_8888_SRGB;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
this->setColorTypeFormat(GrColorType::kRGBA_8888_SRGB, GrGLFormat::kSRGB8_ALPHA8);
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 1;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: SRGB8_ALPHA8, Surface: kRGBA_8888_SRGB, Data: kRGBA_8888_SRGB
{
// GL does not do srgb<->rgb conversions when transferring between cpu and gpu.
// Thus, the external format is GL_RGBA. See below for note about ES2.0 and
// glTex[Sub]Image.
GrGLenum texImageExternalFormat = GR_GL_RGBA;
// OpenGL ES 2.0 + GL_EXT_sRGB allows GL_SRGB_ALPHA to be specified as the
// <format> param to Tex(Sub)Image. ES 2.0 requires the <internalFormat> and
// <format> params to match. Thus, on ES 2.0 we will use GL_SRGB_ALPHA as the
// <format> param. On OpenGL and ES 3.0+ GL_SRGB_ALPHA does not work for the
// <format> param to glTexImage.
if (GR_IS_GR_GL_ES(standard) && version == GR_GL_VER(2,0)) {
texImageExternalFormat = GR_GL_SRGB_ALPHA;
}
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_8888_SRGB;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = texImageExternalFormat;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
}
}
// Format: COMPRESSED_RGB8_BC1
{
FormatInfo& info = this->getFormatInfo(GrGLFormat::kCOMPRESSED_RGB8_BC1);
info.fFormatType = FormatType::kNormalizedFixedPoint;
info.fInternalFormatForTexImageOrStorage = GR_GL_COMPRESSED_RGB_S3TC_DXT1_EXT;
if (GR_IS_GR_GL(standard) || GR_IS_GR_GL_ES(standard)) {
if (ctxInfo.hasExtension("GL_EXT_texture_compression_s3tc")) {
info.fFlags = FormatInfo::kTexturable_Flag;
}
} // No WebGL support
// There are no support GrColorTypes for this format
}
// Format: COMPRESSED_RGBA8_BC1
{
FormatInfo& info = this->getFormatInfo(GrGLFormat::kCOMPRESSED_RGBA8_BC1);
info.fFormatType = FormatType::kNormalizedFixedPoint;
info.fInternalFormatForTexImageOrStorage = GR_GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
if (GR_IS_GR_GL(standard) || GR_IS_GR_GL_ES(standard)) {
if (ctxInfo.hasExtension("GL_EXT_texture_compression_s3tc")) {
info.fFlags = FormatInfo::kTexturable_Flag;
}
} // No WebGL support
// There are no support GrColorTypes for this format
}
// Format: COMPRESSED_RGB8_ETC2
{
FormatInfo& info = this->getFormatInfo(GrGLFormat::kCOMPRESSED_RGB8_ETC2);
info.fFormatType = FormatType::kNormalizedFixedPoint;
info.fInternalFormatForTexImageOrStorage = GR_GL_COMPRESSED_RGB8_ETC2;
if (!formatWorkarounds.fDisallowETC2Compression) {
if (GR_IS_GR_GL(standard)) {
if (version >= GR_GL_VER(4, 3) ||
ctxInfo.hasExtension("GL_ARB_ES3_compatibility")) {
info.fFlags = FormatInfo::kTexturable_Flag;
}
} else if (GR_IS_GR_GL_ES(standard)) {
if (version >= GR_GL_VER(3, 0) ||
ctxInfo.hasExtension("GL_OES_compressed_ETC2_RGB8_texture")) {
info.fFlags = FormatInfo::kTexturable_Flag;
}
} // No WebGL support
}
// There are no support GrColorTypes for this format
}
// Format: COMPRESSED_ETC1_RGB8
{
FormatInfo& info = this->getFormatInfo(GrGLFormat::kCOMPRESSED_ETC1_RGB8);
info.fFormatType = FormatType::kNormalizedFixedPoint;
info.fInternalFormatForTexImageOrStorage = GR_GL_COMPRESSED_ETC1_RGB8;
if (GR_IS_GR_GL_ES(standard)) {
if (ctxInfo.hasExtension("GL_OES_compressed_ETC1_RGB8_texture")) {
info.fFlags = FormatInfo::kTexturable_Flag;
}
} // No GL or WebGL support
// There are no support GrColorTypes for this format
}
// Format: R16
{
FormatInfo& info = this->getFormatInfo(GrGLFormat::kR16);
info.fFormatType = FormatType::kNormalizedFixedPoint;
info.fInternalFormatForRenderbuffer = GR_GL_R16;
info.fDefaultExternalFormat = GR_GL_RED;
info.fDefaultExternalType = GR_GL_UNSIGNED_SHORT;
info.fDefaultColorType = GrColorType::kR_16;
bool r16Supported = false;
if (!formatWorkarounds.fDisallowTextureUnorm16) {
if (GR_IS_GR_GL(standard)) {
r16Supported = version >= GR_GL_VER(3, 0) ||
ctxInfo.hasExtension("GL_ARB_texture_rg");
} else if (GR_IS_GR_GL_ES(standard)) {
r16Supported = ctxInfo.hasExtension("GL_EXT_texture_norm16");
} // No WebGL support
}
if (r16Supported) {
info.fFlags = FormatInfo::kTexturable_Flag | msaaRenderFlags;
if (!formatWorkarounds.fDisallowUnorm16Transfers) {
info.fFlags |= FormatInfo::kTransfers_Flag;
}
}
if (texStorageSupported) {
info.fFlags |= FormatInfo::kUseTexStorage_Flag;
info.fInternalFormatForTexImageOrStorage = GR_GL_R16;
} else {
info.fInternalFormatForTexImageOrStorage =
texImageSupportsSizedInternalFormat ? GR_GL_R16 : GR_GL_RED;
}
if (r16Supported) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: R16, Surface: kAlpha_16
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kAlpha_16;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
ctInfo.fReadSwizzle = GrSwizzle("000r");
ctInfo.fWriteSwizzle = GrSwizzle("a000");
this->setColorTypeFormat(GrColorType::kAlpha_16, GrGLFormat::kR16);
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: R16, Surface: kAlpha_16, Data: kAlpha_16
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kAlpha_16;
ioFormat.fExternalType = GR_GL_UNSIGNED_SHORT;
ioFormat.fExternalTexImageFormat = GR_GL_RED;
ioFormat.fExternalReadFormat = GR_GL_RED;
// Not guaranteed by ES/WebGL.
ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard);
}
// Format: R16, Surface: kAlpha_16, Data: kAlpha_8xxx
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kAlpha_8xxx;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
}
}
// Format: RG16
{
FormatInfo& info = this->getFormatInfo(GrGLFormat::kRG16);
info.fFormatType = FormatType::kNormalizedFixedPoint;
info.fInternalFormatForTexImageOrStorage =
texImageSupportsSizedInternalFormat ? GR_GL_RG16 : GR_GL_RG;
info.fInternalFormatForRenderbuffer = GR_GL_RG16;
info.fDefaultExternalFormat = GR_GL_RG;
info.fDefaultExternalType = GR_GL_UNSIGNED_SHORT;
info.fDefaultColorType = GrColorType::kRG_1616;
bool rg16Supported = false;
if (!formatWorkarounds.fDisallowTextureUnorm16) {
if (GR_IS_GR_GL(standard)) {
rg16Supported = version >= GR_GL_VER(3, 0) ||
ctxInfo.hasExtension("GL_ARB_texture_rg");
} else if (GR_IS_GR_GL_ES(standard)) {
rg16Supported = ctxInfo.hasExtension("GL_EXT_texture_norm16");
} // No WebGL support
}
if (rg16Supported) {
info.fFlags = FormatInfo::kTexturable_Flag | msaaRenderFlags;
if (!formatWorkarounds.fDisallowUnorm16Transfers) {
info.fFlags |= FormatInfo::kTransfers_Flag;
}
}
if (texStorageSupported) {
info.fFlags |= FormatInfo::kUseTexStorage_Flag;
info.fInternalFormatForTexImageOrStorage = GR_GL_RG16;
} else {
info.fInternalFormatForTexImageOrStorage =
texImageSupportsSizedInternalFormat ? GR_GL_RG16 : GR_GL_RG;
}
if (rg16Supported) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: GR_GL_RG16, Surface: kRG_1616
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kRG_1616;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
this->setColorTypeFormat(GrColorType::kRG_1616, GrGLFormat::kRG16);
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: GR_GL_RG16, Surface: kRG_1616, Data: kRG_1616
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRG_1616;
ioFormat.fExternalType = GR_GL_UNSIGNED_SHORT;
ioFormat.fExternalTexImageFormat = GR_GL_RG;
ioFormat.fExternalReadFormat = GR_GL_RG;
// Not guaranteed by ES/WebGL.
ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard);
}
// Format: GR_GL_RG16, Surface: kRG_1616, Data: kRGBA_8888
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_8888;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
}
}
// Format: RGBA16
{
bool rgba16Support = false;
if (!formatWorkarounds.fDisallowTextureUnorm16) {
if (GR_IS_GR_GL(standard)) {
rgba16Support = version >= GR_GL_VER(3, 0);
} else if (GR_IS_GR_GL_ES(standard)) {
rgba16Support = ctxInfo.hasExtension("GL_EXT_texture_norm16");
} // No WebGL support
}
FormatInfo& info = this->getFormatInfo(GrGLFormat::kRGBA16);
info.fFormatType = FormatType::kNormalizedFixedPoint;
info.fInternalFormatForRenderbuffer = GR_GL_RGBA16;
info.fDefaultExternalFormat = GR_GL_RGBA;
info.fDefaultExternalType = GR_GL_UNSIGNED_SHORT;
info.fDefaultColorType = GrColorType::kRGBA_16161616;
if (rgba16Support) {
info.fFlags = FormatInfo::kTexturable_Flag | msaaRenderFlags;
if (!formatWorkarounds.fDisallowUnorm16Transfers) {
info.fFlags |= FormatInfo::kTransfers_Flag;
}
}
if (texStorageSupported) {
info.fFlags |= FormatInfo::kUseTexStorage_Flag;
info.fInternalFormatForTexImageOrStorage = GR_GL_RGBA16;
} else {
info.fInternalFormatForTexImageOrStorage =
texImageSupportsSizedInternalFormat ? GR_GL_RGBA16 : GR_GL_RGBA;
}
if (rgba16Support) {
// Format: GR_GL_RGBA16, Surface: kRGBA_16161616
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kRGBA_16161616;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
this->setColorTypeFormat(GrColorType::kRGBA_16161616, GrGLFormat::kRGBA16);
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: GR_GL_RGBA16, Surface: kRGBA_16161616, Data: kRGBA_16161616
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_16161616;
ioFormat.fExternalType = GR_GL_UNSIGNED_SHORT;
ioFormat.fExternalTexImageFormat = GR_GL_RGBA;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
// Not guaranteed by ES/WebGL.
ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard);
}
// Format: GR_GL_RGBA16, Surface: kRGBA_16161616, Data: kRGBA_8888
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_8888;
ioFormat.fExternalType = GR_GL_UNSIGNED_BYTE;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
}
}
// Format:RG16F
{
bool rg16FTextureSupport = false;
bool rg16FRenderTargetSupport = false;
if (GR_IS_GR_GL(standard)) {
if (version >= GR_GL_VER(3, 0) || ctxInfo.hasExtension("GL_ARB_texture_float")) {
rg16FTextureSupport = true;
rg16FRenderTargetSupport = true;
}
} else if (GR_IS_GR_GL_ES(standard)) {
// It seems possible that a combination of GL_EXT_texture_rg and
// GL_EXT_color_buffer_half_float might add this format to ES 2.0 but it is not entirely
// clear. The latter mentions interaction but that may only be for renderbuffers as
// neither adds the texture format explicitly.
// GL_OES_texture_format_half_float makes no reference to RG formats.
if (version >= GR_GL_VER(3, 0)) {
rg16FTextureSupport = true;
rg16FRenderTargetSupport = version >= GR_GL_VER(3, 2) ||
ctxInfo.hasExtension("GL_EXT_color_buffer_float") ||
ctxInfo.hasExtension("GL_EXT_color_buffer_half_float");
}
} else if (GR_IS_GR_WEBGL(standard)) {
if (version >= GR_GL_VER(2, 0)) {
rg16FTextureSupport = true;
rg16FRenderTargetSupport = ctxInfo.hasExtension("GL_EXT_color_buffer_half_float") ||
ctxInfo.hasExtension("EXT_color_buffer_half_float") ||
ctxInfo.hasExtension("GL_EXT_color_buffer_float") ||
ctxInfo.hasExtension("EXT_color_buffer_float");
}
}
FormatInfo& info = this->getFormatInfo(GrGLFormat::kRG16F);
info.fFormatType = FormatType::kFloat;
info.fInternalFormatForRenderbuffer = GR_GL_RG16F;
info.fDefaultExternalFormat = GR_GL_RG;
info.fDefaultExternalType = halfFloatType;
info.fDefaultColorType = GrColorType::kRG_F16;
if (rg16FTextureSupport) {
info.fFlags |= FormatInfo::kTexturable_Flag | FormatInfo::kTransfers_Flag;
if (rg16FRenderTargetSupport) {
info.fFlags |= fpRenderFlags;
}
}
if (texStorageSupported) {
info.fFlags |= FormatInfo::kUseTexStorage_Flag;
info.fInternalFormatForTexImageOrStorage = GR_GL_RG16F;
} else {
info.fInternalFormatForTexImageOrStorage =
texImageSupportsSizedInternalFormat ? GR_GL_RG16F : GR_GL_RG;
}
if (rg16FTextureSupport) {
info.fColorTypeInfoCount = 1;
info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
int ctIdx = 0;
// Format: GR_GL_RG16F, Surface: kRG_F16
{
auto& ctInfo = info.fColorTypeInfos[ctIdx++];
ctInfo.fColorType = GrColorType::kRG_F16;
ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
this->setColorTypeFormat(GrColorType::kRG_F16, GrGLFormat::kRG16F);
// External IO ColorTypes:
ctInfo.fExternalIOFormatCount = 2;
ctInfo.fExternalIOFormats = std::make_unique<ColorTypeInfo::ExternalIOFormats[]>(
ctInfo.fExternalIOFormatCount);
int ioIdx = 0;
// Format: GR_GL_RG16F, Surface: kRG_F16, Data: kRG_F16
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRG_F16;
ioFormat.fExternalType = halfFloatType;
ioFormat.fExternalTexImageFormat = GR_GL_RG;
ioFormat.fExternalReadFormat = GR_GL_RG;
// Not guaranteed by ES/WebGL.
ioFormat.fRequiresImplementationReadQuery = !GR_IS_GR_GL(standard);
}
// Format: GR_GL_RG16F, Surface: kRG_F16, Data: kRGBA_F32
{
auto& ioFormat = ctInfo.fExternalIOFormats[ioIdx++];
ioFormat.fColorType = GrColorType::kRGBA_F32;
ioFormat.fExternalType = GR_GL_FLOAT;
ioFormat.fExternalTexImageFormat = 0;
ioFormat.fExternalReadFormat = GR_GL_RGBA;
}
}
}
}
this->setupSampleCounts(ctxInfo, gli);
#ifdef SK_DEBUG
for (int i = 0; i < kGrGLColorFormatCount; ++i) {
if (GrGLFormat::kUnknown == static_cast<GrGLFormat>(i)) {
continue;
}
const auto& formatInfo = fFormatTable[i];
// Make sure we didn't set fbo attachable with msaa and not fbo attachable.
SkASSERT(!((formatInfo.fFlags & FormatInfo::kFBOColorAttachmentWithMSAA_Flag) &&
!(formatInfo.fFlags & FormatInfo::kFBOColorAttachment_Flag)));
// Make sure we set all the formats' FormatType
SkASSERT(formatInfo.fFormatType != FormatType::kUnknown);
// Make sure if we added a ColorTypeInfo we filled it out
for (int j = 0; j < formatInfo.fColorTypeInfoCount; ++j) {
const auto& ctInfo = formatInfo.fColorTypeInfos[j];
SkASSERT(ctInfo.fColorType != GrColorType::kUnknown);
// Seems silly to add a color type if we don't support any flags on it.
SkASSERT(ctInfo.fFlags);
// Make sure if we added any ExternalIOFormats we filled it out
for (int k = 0; k < ctInfo.fExternalIOFormatCount; ++k) {
const auto& ioInfo = ctInfo.fExternalIOFormats[k];
SkASSERT(ioInfo.fColorType != GrColorType::kUnknown);
}
}
}
#endif
}
void GrGLCaps::setupSampleCounts(const GrGLContextInfo& ctxInfo, const GrGLInterface* gli) {
GrGLStandard standard = ctxInfo.standard();
// standard can be unused (optimized away) if SK_ASSUME_GL_ES is set
sk_ignore_unused_variable(standard);
GrGLVersion version = ctxInfo.version();
for (int i = 0; i < kGrGLColorFormatCount; ++i) {
if (FormatInfo::kFBOColorAttachmentWithMSAA_Flag & fFormatTable[i].fFlags) {
// We assume that MSAA rendering is supported only if we support non-MSAA rendering.
SkASSERT(FormatInfo::kFBOColorAttachment_Flag & fFormatTable[i].fFlags);
if ((GR_IS_GR_GL(standard) &&
(version >= GR_GL_VER(4,2) ||
ctxInfo.hasExtension("GL_ARB_internalformat_query"))) ||
(GR_IS_GR_GL_ES(standard) && version >= GR_GL_VER(3,0))) {
int count;
GrGLFormat grGLFormat = static_cast<GrGLFormat>(i);
GrGLenum glFormat = this->getRenderbufferInternalFormat(grGLFormat);
GR_GL_GetInternalformativ(gli, GR_GL_RENDERBUFFER, glFormat,
GR_GL_NUM_SAMPLE_COUNTS, 1, &count);
if (count) {
std::unique_ptr<int[]> temp(new int[count]);
GR_GL_GetInternalformativ(gli, GR_GL_RENDERBUFFER, glFormat, GR_GL_SAMPLES,
count, temp.get());
// GL has a concept of MSAA rasterization with a single sample but we do not.
if (count && temp[count - 1] == 1) {
--count;
SkASSERT(!count || temp[count -1] > 1);
}
fFormatTable[i].fColorSampleCounts.setCount(count+1);
// We initialize our supported values with 1 (no msaa) and reverse the order
// returned by GL so that the array is ascending.
fFormatTable[i].fColorSampleCounts[0] = 1;
for (int j = 0; j < count; ++j) {
#if defined(SK_BUILD_FOR_IOS) && TARGET_OS_SIMULATOR
// The iOS simulator is reporting incorrect values for sample counts,
// so force them to be a power of 2.
fFormatTable[i].fColorSampleCounts[j+1] = SkPrevPow2(temp[count - j - 1]);
#else
fFormatTable[i].fColorSampleCounts[j+1] = temp[count - j - 1];
#endif
}
}
} else {
// Fake out the table using some semi-standard counts up to the max allowed sample
// count.
int maxSampleCnt = 1;
if (GrGLCaps::kES_IMG_MsToTexture_MSFBOType == fMSFBOType) {
GR_GL_GetIntegerv(gli, GR_GL_MAX_SAMPLES_IMG, &maxSampleCnt);
} else if (GrGLCaps::kNone_MSFBOType != fMSFBOType) {
GR_GL_GetIntegerv(gli, GR_GL_MAX_SAMPLES, &maxSampleCnt);
}
// Chrome has a mock GL implementation that returns 0.
maxSampleCnt = std::max(1, maxSampleCnt);
static constexpr int kDefaultSamples[] = {1, 2, 4, 8};
int count = SK_ARRAY_COUNT(kDefaultSamples);
for (; count > 0; --count) {
if (kDefaultSamples[count - 1] <= maxSampleCnt) {
break;
}
}
if (count > 0) {
fFormatTable[i].fColorSampleCounts.append(count, kDefaultSamples);
}
}
} else if (FormatInfo::kFBOColorAttachment_Flag & fFormatTable[i].fFlags) {
fFormatTable[i].fColorSampleCounts.setCount(1);
fFormatTable[i].fColorSampleCounts[0] = 1;
}
}
}
bool GrGLCaps::canCopyTexSubImage(GrGLFormat dstFormat, bool dstHasMSAARenderBuffer,
const GrTextureType* dstTypeIfTexture,
GrGLFormat srcFormat, bool srcHasMSAARenderBuffer,
const GrTextureType* srcTypeIfTexture) const {
// When it comes to format types and component sizes the gl spec is fairly complex as
// requirements differ depending on many properties (e.g. if the internalFormat was created with
// a sized format or not). These affect the rules about which format types can be copied to
// which other types. For now we are being more restrictive and requiring that the types must
// match exactly.
if (this->getFormatDefaultExternalType(dstFormat) !=
this->getFormatDefaultExternalType(srcFormat)) {
return false;
}
// Either both the src and dst formats need to be SRGB or both need to not be SRGB
if (GrGLFormatIsSRGB(dstFormat) != GrGLFormatIsSRGB(srcFormat)) {
return false;
}
if (GR_IS_GR_GL_ES(fStandard)) {
// Table 3.9 of the ES2 spec indicates the supported formats with CopyTexSubImage
// and BGRA isn't in the spec. There doesn't appear to be any extension that adds it.
// ANGLE, for one, does not allow it. However, we've found it works on some drivers and
// avoids bugs with using glBlitFramebuffer.
if ((dstFormat == GrGLFormat::kBGRA8 || srcFormat == GrGLFormat::kBGRA8) &&
!fAllowBGRA8CopyTexSubImage) {
return false;
}
// Table 3.9 of the ES2 spec and 3.16 of ES3 spec indicates the supported internal base
// formats with CopyTexSubImage. Each base format can be copied to itself or formats with
// less channels.
uint32_t dstChannels = GrGLFormatChannels(dstFormat);
uint32_t srcChannels = GrGLFormatChannels(srcFormat);
if (!dstChannels || !srcChannels) {
// The formats don't represent color channels (i.e. may be depth stencil)
return false;
}
// The dst channels have to be a subset of the srcChannels, except R, RG, or RGB, channels
// can go to LUM. (See expansion of Table 3.9 in EXT_texture_rg).
if ((dstChannels & srcChannels) != srcChannels) {
if (dstChannels == kGray_SkColorChannelFlag ||
dstChannels == kGrayAlpha_SkColorChannelFlags) {
// The dst can't have gray if the src is alpha-only.
if (srcChannels == kAlpha_SkColorChannelFlag) {
return false;
}
} else {
return false;
}
}
}
// CopyTexSubImage is invalid or doesn't copy what we want when we have msaa render buffers.
if (dstHasMSAARenderBuffer || srcHasMSAARenderBuffer) {
return false;
}
// CopyTex(Sub)Image writes to a texture and we have no way of dynamically wrapping a RT in a
// texture.
if (!dstTypeIfTexture) {
return false;
}
// Check that we could wrap the source in an FBO, that the dst is not TEXTURE_EXTERNAL, that no
// mirroring is required
return this->canFormatBeFBOColorAttachment(srcFormat) &&
(!srcTypeIfTexture || *srcTypeIfTexture != GrTextureType::kExternal) &&
*dstTypeIfTexture != GrTextureType::kExternal;
}
bool GrGLCaps::canCopyAsBlit(GrGLFormat dstFormat, int dstSampleCnt,
const GrTextureType* dstTypeIfTexture,
GrGLFormat srcFormat, int srcSampleCnt,
const GrTextureType* srcTypeIfTexture,
const SkRect& srcBounds, bool srcBoundsExact,
const SkIRect& srcRect, const SkIPoint& dstPoint) const {
auto blitFramebufferFlags = fBlitFramebufferFlags;
if (!this->canFormatBeFBOColorAttachment(dstFormat) ||
!this->canFormatBeFBOColorAttachment(srcFormat)) {
return false;
}
if (dstTypeIfTexture && *dstTypeIfTexture == GrTextureType::kExternal) {
return false;
}
if (srcTypeIfTexture && *srcTypeIfTexture == GrTextureType::kExternal) {
return false;
}
if (GrGLCaps::kNoSupport_BlitFramebufferFlag & blitFramebufferFlags) {
return false;
}
if (GrGLCaps::kResolveMustBeFull_BlitFrambufferFlag & blitFramebufferFlags) {
if (srcSampleCnt > 1) {
if (1 == dstSampleCnt) {
return false;
}
if (SkRect::Make(srcRect) != srcBounds || !srcBoundsExact) {
return false;
}
}
}
if (GrGLCaps::kNoMSAADst_BlitFramebufferFlag & blitFramebufferFlags) {
if (dstSampleCnt > 1) {
return false;
}
}
if (GrGLCaps::kNoFormatConversion_BlitFramebufferFlag & blitFramebufferFlags) {
if (srcFormat != dstFormat) {
return false;
}
} else if (GrGLCaps::kNoFormatConversionForMSAASrc_BlitFramebufferFlag & blitFramebufferFlags) {
if (srcSampleCnt > 1 && srcFormat != dstFormat) {
return false;
}
}
if (GrGLCaps::kRectsMustMatchForMSAASrc_BlitFramebufferFlag & blitFramebufferFlags) {
if (srcSampleCnt > 1) {
if (dstPoint.fX != srcRect.fLeft || dstPoint.fY != srcRect.fTop) {
return false;
}
}
}
return true;
}
bool GrGLCaps::canCopyAsDraw(GrGLFormat dstFormat, bool srcIsTexturable) const {
return this->isFormatRenderable(dstFormat, 1) && srcIsTexturable;
}
static bool has_msaa_render_buffer(const GrSurfaceProxy* surf, const GrGLCaps& glCaps) {
const GrRenderTargetProxy* rt = surf->asRenderTargetProxy();
if (!rt) {
return false;
}
// A RT has a separate MSAA renderbuffer if:
// 1) It's multisampled
// 2) We're using an extension with separate MSAA renderbuffers
// 3) It's not FBO 0, which is special and always auto-resolves
return rt->numSamples() > 1 &&
glCaps.usesMSAARenderBuffers() &&
!rt->glRTFBOIDIs0();
}
bool GrGLCaps::onCanCopySurface(const GrSurfaceProxy* dst, const GrSurfaceProxy* src,
const SkIRect& srcRect, const SkIPoint& dstPoint) const {
int dstSampleCnt = 0;
int srcSampleCnt = 0;
if (const GrRenderTargetProxy* rtProxy = dst->asRenderTargetProxy()) {
dstSampleCnt = rtProxy->numSamples();
}
if (const GrRenderTargetProxy* rtProxy = src->asRenderTargetProxy()) {
srcSampleCnt = rtProxy->numSamples();
}
SkASSERT((dstSampleCnt > 0) == SkToBool(dst->asRenderTargetProxy()));
SkASSERT((srcSampleCnt > 0) == SkToBool(src->asRenderTargetProxy()));
const GrTextureProxy* dstTex = dst->asTextureProxy();
const GrTextureProxy* srcTex = src->asTextureProxy();
GrTextureType dstTexType;
GrTextureType* dstTexTypePtr = nullptr;
GrTextureType srcTexType;
GrTextureType* srcTexTypePtr = nullptr;
if (dstTex) {
dstTexType = dstTex->textureType();
dstTexTypePtr = &dstTexType;
}
if (srcTex) {
srcTexType = srcTex->textureType();
srcTexTypePtr = &srcTexType;
}
auto dstFormat = dst->backendFormat().asGLFormat();
auto srcFormat = src->backendFormat().asGLFormat();
return this->canCopyTexSubImage(dstFormat, has_msaa_render_buffer(dst, *this), dstTexTypePtr,
srcFormat, has_msaa_render_buffer(src, *this), srcTexTypePtr) ||
this->canCopyAsBlit(dstFormat, dstSampleCnt, dstTexTypePtr, srcFormat, srcSampleCnt,
srcTexTypePtr, src->getBoundsRect(), src->priv().isExact(), srcRect,
dstPoint) ||
this->canCopyAsDraw(dstFormat, SkToBool(srcTex));
}
GrCaps::DstCopyRestrictions GrGLCaps::getDstCopyRestrictions(const GrRenderTargetProxy* src,
GrColorType colorType) const {
// If the src is a texture, we can implement the blit as a draw assuming the config is
// renderable.
if (src->asTextureProxy() && !this->isFormatAsColorTypeRenderable(colorType,
src->backendFormat())) {
return {};
}
if (const auto* texProxy = src->asTextureProxy()) {
if (texProxy->textureType() == GrTextureType::kExternal) {
// Not supported for FBO blit or CopyTexSubImage. Caller will have to fall back to a
// draw (if the source is also a texture).
return {};
}
}
// We look for opportunities to use CopyTexSubImage, or fbo blit. If neither are
// possible and we return false to fallback to creating a render target dst for render-to-
// texture. This code prefers CopyTexSubImage to fbo blit and avoids triggering temporary fbo
// creation. It isn't clear that avoiding temporary fbo creation is actually optimal.
DstCopyRestrictions blitFramebufferRestrictions = {};
if (src->numSamples() > 1 &&
(fBlitFramebufferFlags & kResolveMustBeFull_BlitFrambufferFlag)) {
blitFramebufferRestrictions.fRectsMustMatch = GrSurfaceProxy::RectsMustMatch::kYes;
blitFramebufferRestrictions.fMustCopyWholeSrc = true;
// Mirroring causes rects to mismatch later, don't allow it.
} else if (src->numSamples() > 1 && (fBlitFramebufferFlags &
kRectsMustMatchForMSAASrc_BlitFramebufferFlag)) {
blitFramebufferRestrictions.fRectsMustMatch = GrSurfaceProxy::RectsMustMatch::kYes;
}
auto srcFormat = src->backendFormat().asGLFormat();
// Check for format issues with glCopyTexSubImage2D
if (srcFormat == GrGLFormat::kBGRA8) {
// glCopyTexSubImage2D doesn't work with this config. If the bgra can be used with fbo blit
// then we set up for that, otherwise fail.
if (this->canFormatBeFBOColorAttachment(srcFormat)) {
return blitFramebufferRestrictions;
}
// Caller will have to use a draw.
return {};
}
{
bool srcIsMSAARenderbuffer = src->numSamples() > 1 &&
this->usesMSAARenderBuffers();
if (srcIsMSAARenderbuffer) {
// It's illegal to call CopyTexSubImage2D on a MSAA renderbuffer. Set up for FBO
// blit or fail.
if (this->canFormatBeFBOColorAttachment(srcFormat)) {
return blitFramebufferRestrictions;
}
// Caller will have to use a draw.
return {};
}
}
// We'll do a CopyTexSubImage, no restrictions.
return {};
}
void GrGLCaps::applyDriverCorrectnessWorkarounds(const GrGLContextInfo& ctxInfo,
const GrContextOptions& contextOptions,
const GrGLInterface* glInterface,
GrShaderCaps* shaderCaps,
FormatWorkarounds* formatWorkarounds) {
// A driver bug on the nexus 6 causes incorrect dst copies when invalidate is called beforehand.
// Thus we are disabling this extension for now on Adreno4xx devices.
if (ctxInfo.renderer() == GrGLRenderer::kAdreno430 ||
ctxInfo.renderer() == GrGLRenderer::kAdreno4xx_other ||
fDriverBugWorkarounds.disable_discard_framebuffer) {
fInvalidateFBType = kNone_InvalidateFBType;
}
if (ctxInfo.renderer() == GrGLRenderer::kIntelCherryView) {
// When running DMSAA_dst_read_with_existing_barrier with DMSAA disabled on linux Intel
// HD405, the test fails when using texture barriers. Oddly the gpu doing the draw which
// uses the barrier correctly. It is the next draw, which does not use or need a barrier,
// that is blending with a dst as if the barrier draw didn't happen. Since this GPU is not
// that important to us and this driver bug could probably manifest itself in the wild, we
// are just disabling texture barrier support for the gpu.
fTextureBarrierSupport = false;
}
// glClearTexImage seems to have a bug in NVIDIA drivers that was fixed sometime between
// 340.96 and 367.57.
if (GR_IS_GR_GL(ctxInfo.standard()) && ctxInfo.driver() == GrGLDriver::kNVIDIA &&
ctxInfo.driverVersion() < GR_GL_DRIVER_VER(367, 57, 0)) {
fClearTextureSupport = false;
}
#ifdef SK_BUILD_FOR_MAC
// Radeon MacBooks hit a crash in glReadPixels() when using geometry shaders.
// http://skbug.com/8097
if (ctxInfo.vendor() == GrGLVendor::kATI) {
shaderCaps->fGeometryShaderSupport = false;
}
// On at least some MacBooks, GLSL 4.0 geometry shaders break if we use invocations.
shaderCaps->fGSInvocationsSupport = false;
#endif
// Qualcomm driver @103.0 has been observed to crash compiling ccpr geometry
// shaders. @127.0 is the earliest verified driver to not crash.
if (ctxInfo.driver() == GrGLDriver::kQualcomm &&
ctxInfo.driverVersion() < GR_GL_DRIVER_VER(127, 0, 0)) {
shaderCaps->fGeometryShaderSupport = false;
}
// glBlitFramebuffer seems to produce incorrect results on QC, Mali400, and Tegra3 but
// glCopyTexSubImage2D works (even though there is no extension that specifically allows it).
if (ctxInfo.vendor() == GrGLVendor::kQualcomm ||
ctxInfo.renderer() == GrGLRenderer::kMali4xx ||
ctxInfo.renderer() == GrGLRenderer::kTegra_PreK1) {
fAllowBGRA8CopyTexSubImage = true;
}
// http://anglebug.com/6030
if (fMSFBOType == kES_EXT_MsToTexture_MSFBOType &&
ctxInfo.angleBackend() == GrGLANGLEBackend::kD3D11) {
fDisallowDynamicMSAA = true;
}
// http://skbug.com/12081
if (GR_IS_GR_WEBGL(ctxInfo.standard())) {
fDisallowDynamicMSAA = true;
}
#if defined(__has_feature)
#if defined(SK_BUILD_FOR_MAC) && __has_feature(thread_sanitizer)
// See skbug.com/7058
fMapBufferType = kNone_MapBufferType;
fMapBufferFlags = kNone_MapFlags;
fTransferFromBufferToTextureSupport = false;
fTransferFromSurfaceToBufferSupport = false;
fTransferBufferType = TransferBufferType::kNone;
#endif
#endif
// We found that the Galaxy J5 with an Adreno 306 running 6.0.1 has a bug where
// GL_INVALID_OPERATION thrown by glDrawArrays when using a buffer that was mapped. The same bug
// did not reproduce on a Nexus7 2013 with a 320 running Android M with driver 127.0. It's
// unclear whether this really affects a wide range of devices.
if (ctxInfo.renderer() == GrGLRenderer::kAdreno3xx &&
ctxInfo.driverVersion() > GR_GL_DRIVER_VER(127, 0, 0)) {
fMapBufferType = kNone_MapBufferType;
fMapBufferFlags = kNone_MapFlags;
fTransferFromBufferToTextureSupport = false;
fTransferFromSurfaceToBufferSupport = false;
fTransferBufferType = TransferBufferType::kNone;
}
// The TransferPixelsToTexture test fails on ANGLE D3D9 and D3D11 if this is enabled.
// https://anglebug.com/5542
if (ctxInfo.angleBackend() == GrGLANGLEBackend::kD3D9 ||
ctxInfo.angleBackend() == GrGLANGLEBackend::kD3D11) {
fTransferPixelsToRowBytesSupport = false;
}
// Using MIPs on this GPU seems to be a source of trouble.
if (ctxInfo.renderer() == GrGLRenderer::kPowerVR54x) {
fMipmapSupport = false;
}
#ifdef SK_BUILD_FOR_ANDROID
if (ctxInfo.renderer() == GrGLRenderer::kPowerVR54x) {
// Flutter found glTexSubImage2D for GL_RED is much slower than GL_ALPHA on the
// "MC18 PERSONAL SHOPPER"
formatWorkarounds->fDisallowR8ForPowerVRSGX54x = true;
}
#endif
if (ctxInfo.isOverCommandBuffer() && ctxInfo.version() >= GR_GL_VER(3,0)) {
formatWorkarounds->fDisallowTextureUnorm16 = true; // http://crbug.com/1224108
formatWorkarounds->fDisallowETC2Compression = true; // http://crbug.com/1224111
fTransferFromSurfaceToBufferSupport = false; // http://crbug.com/1224138
// http://crbug.com/1224117
fMapBufferFlags = kNone_MapFlags;
fMapBufferType = kNone_MapBufferType;
}
// https://b.corp.google.com/issues/143074513
// https://skbug.com/11152
if (ctxInfo.renderer() == GrGLRenderer::kAdreno615 ||
ctxInfo.renderer() == GrGLRenderer::kAdreno620) {
fMSFBOType = kNone_MSFBOType;
fMSAAResolvesAutomatically = false;
}
#ifndef SK_BUILD_FOR_IOS
if (ctxInfo.renderer() == GrGLRenderer::kPowerVR54x ||
ctxInfo.renderer() == GrGLRenderer::kPowerVRRogue ||
(ctxInfo.renderer() == GrGLRenderer::kAdreno3xx && !ctxInfo.isOverCommandBuffer())) {
fPerformColorClearsAsDraws = true;
}
#endif
// A lot of GPUs have trouble with full screen clears (skbug.com/7195)
if (ctxInfo.renderer() == GrGLRenderer::kAMDRadeonHD7xxx ||
ctxInfo.renderer() == GrGLRenderer::kAMDRadeonR9M4xx) {
fPerformColorClearsAsDraws = true;
}
#ifdef SK_BUILD_FOR_MAC
// crbug.com/768134 - On MacBook Pros, the Intel Iris Pro doesn't always perform
// full screen clears
// crbug.com/773107 - On MacBook Pros, a wide range of Intel GPUs don't always
// perform full screen clears.
// Update on 4/4/2018 - This appears to be fixed on driver 10.30.12 on a macOS 10.13.2 on a
// Retina MBP Early 2015 with Iris 6100. It is possibly fixed on earlier drivers as well.
// crbug.com/1039912 - Crash rate in glClear spiked after OS update, affecting mostly
// Broadwell on 10.13+
if (ctxInfo.vendor() == GrGLVendor::kIntel &&
(ctxInfo.driverVersion() < GR_GL_DRIVER_VER(10, 30, 12) ||
ctxInfo.renderer() == GrGLRenderer::kIntelBroadwell)) {
fPerformColorClearsAsDraws = true;
}
// crbug.com/969609 - NVIDIA on Mac sometimes segfaults during glClear in chrome. It seems
// mostly concentrated in 10.13/14, GT 650Ms, driver 12+. But there are instances of older
// drivers and GTX 775s, so we'll start with a broader workaround.
if (ctxInfo.vendor() == GrGLVendor::kNVIDIA) {
fPerformColorClearsAsDraws = true;
}
#endif
// See crbug.com/755871. This could probably be narrowed to just partial clears as the driver
// bugs seems to involve clearing too much and not skipping the clear.
// See crbug.com/768134. This is also needed for full clears and was seen on an nVidia K620
// but only for D3D11 ANGLE.
if (ctxInfo.angleBackend() == GrGLANGLEBackend::kD3D11) {
fPerformColorClearsAsDraws = true;
}
if (ctxInfo.renderer() == GrGLRenderer::kAdreno430 ||
ctxInfo.renderer() == GrGLRenderer::kAdreno4xx_other) {
// This is known to be fixed sometime between driver 145.0 and 219.0
if (ctxInfo.driverVersion() <= GR_GL_DRIVER_VER(219, 0, 0)) {
fPerformStencilClearsAsDraws = true;
}
// This is known to be fixed sometime between driver 129.0 and 145.0 on Nexus 6P.
// On driver 129 on Android M it fails the unit tests called WritePixelsPendingIO without
// the workaround. It passes on Android N with driver 145 without the workaround.
// skbug.com/11834
if (ctxInfo.driverVersion() < GR_GL_DRIVER_VER(145, 0, 0)) {
fDisallowTexSubImageForUnormConfigTexturesEverBoundToFBO = true;
}
}
if (fDriverBugWorkarounds.gl_clear_broken) {
fPerformColorClearsAsDraws = true;
fPerformStencilClearsAsDraws = true;
}
if (ctxInfo.vendor() == GrGLVendor::kQualcomm) {
// It appears that all the Adreno GPUs have less than optimal performance when
// drawing w/ large index buffers.
fAvoidLargeIndexBufferDraws = true;
}
// This was reproduced on the following configurations:
// - A Galaxy J5 (Adreno 306) running Android 6 with driver 140.0
// - A Nexus 7 2013 (Adreno 320) running Android 5 with driver 104.0
// - A Nexus 7 2013 (Adreno 320) running Android 6 with driver 127.0
// - A Nexus 5 (Adreno 330) running Android 6 with driver 127.0
// and not produced on:
// - A Nexus 7 2013 (Adreno 320) running Android 4 with driver 53.0
// The particular lines that get dropped from test images varies across different devices.
if (ctxInfo.renderer() == GrGLRenderer::kAdreno3xx &&
ctxInfo.driverVersion() > GR_GL_DRIVER_VER(53, 0, 0)) {
fRequiresCullFaceEnableDisableWhenDrawingLinesAfterNonLines = true;
}
// TODO: Don't apply this on iOS?
if (ctxInfo.renderer() == GrGLRenderer::kPowerVRRogue) {
// Our Chromebook with GrGLRenderer::kPowerVRRogue crashes on large instanced draws. The
// current minimum number of instances observed to crash is somewhere between 2^14 and 2^15.
// Keep the number of instances below 1000, just to be safe.
fMaxInstancesPerDrawWithoutCrashing = 999;
} else if (fDriverBugWorkarounds.disallow_large_instanced_draw) {
fMaxInstancesPerDrawWithoutCrashing = 0x4000000;
}
#ifndef SK_BUILD_FOR_IOS
if (ctxInfo.renderer() == GrGLRenderer::kPowerVRRogue) {
// We saw this bug on a TecnoSpark 3 Pro with a PowerVR GE8300.
// GL_VERSION: "OpenGL ES 3.2 build 1.10@51309121"
// Possibly this could be more limited by driver version or HW generation.
// When using samplers, we are seeing a bug where the gpu is sometimes not sampling the
// correct mip level data. A workaround to this issue is that when binding a texture we also
// set some texture state, and it seems like any inividual state works (e.g. min/mag filter,
// base level, max level, etc.). Currently we just set the min filter level every time we
// bind a texture as the workaround.
fMustSetAnyTexParameterToEnableMipmapping = true;
// ColorTypeBackendAllocationTest failed for kAlpha_8 and kGray_8 when using
// GL_UNPACK_ROW_LENGTH. Perhaps this could be a more limited workaround by applying
// only to single channel 8 bit unorm formats but we only have a monolithic query for this
// support at present.
fWritePixelsRowBytesSupport = false;
// TransferPixelsToTextureTest fails for all color types on
// TecnoSpark 3 Pro with a PowerVR GE8300, GL_VERSION: "OpenGL ES 3.2 build 1.10@51309121"
// if GL_UNPACK_ROW_LENGTH is used.
fTransferPixelsToRowBytesSupport = false;
}
#endif
// Texture uploads sometimes seem to be ignored to textures bound to FBOS on Tegra3.
if (ctxInfo.renderer() == GrGLRenderer::kTegra_PreK1) {
fDisallowTexSubImageForUnormConfigTexturesEverBoundToFBO = true;
fUseDrawInsteadOfAllRenderTargetWrites = true;
}
#ifdef SK_BUILD_FOR_MAC
static constexpr bool isMAC = true;
#else
static constexpr bool isMAC = false;
#endif
#ifdef SK_BUILD_FOR_ANDROID
// Older versions of Android have problems with setting GL_TEXTURE_BASE_LEVEL or
// GL_TEXTURE_MAX_LEVEL on GL_TEXTURE_EXTERTNAL_OES textures. We just leave them as is and hope
// the client never changes them either.
fDontSetBaseOrMaxLevelForExternalTextures = true;
// PowerVR can crash setting the levels on Android up to Q for any texture?
// https://crbug.com/1123874
if (ctxInfo.vendor() == GrGLVendor::kImagination) {
fMipmapLevelControlSupport = false;
}
#endif
// We support manual mip-map generation (via iterative downsampling draw calls). This fixes
// bugs on some cards/drivers that produce incorrect mip-maps for sRGB textures when using
// glGenerateMipmap. Our implementation requires mip-level sampling control. Additionally,
// it can be much slower (especially on mobile GPUs), so we opt-in only when necessary:
if (fMipmapLevelControlSupport &&
!ctxInfo.isOverCommandBuffer() && // http://crbug.com/1224110
(contextOptions.fDoManualMipmapping ||
ctxInfo.vendor() == GrGLVendor::kIntel ||
(ctxInfo.driver() == GrGLDriver::kNVIDIA && isMAC) ||
ctxInfo.vendor() == GrGLVendor::kATI)) {
fDoManualMipmapping = true;
}
// See http://crbug.com/710443
#ifdef SK_BUILD_FOR_MAC
if (ctxInfo.renderer() == GrGLRenderer::kIntelBroadwell) {
fClearToBoundaryValuesIsBroken = true;
}
#endif
if (ctxInfo.vendor() == GrGLVendor::kQualcomm) {
fDrawArraysBaseVertexIsBroken = true;
}
// https://b.corp.google.com/issues/188410972
if (ctxInfo.renderer() == GrGLRenderer::kVirgl) {
fDrawInstancedSupport = false;
}
// http://anglebug.com/4538
if (fBaseVertexBaseInstanceSupport && !fDrawInstancedSupport) {
fBaseVertexBaseInstanceSupport = false;
fNativeDrawIndirectSupport = false;
fMultiDrawType = MultiDrawType::kNone;
}
// Currently the extension is advertised but fb fetch is broken on 500 series Adrenos like the
// Galaxy S7.
// TODO: Once this is fixed we can update the check here to look at a driver version number too.
if (ctxInfo.renderer() == GrGLRenderer::kAdreno530 ||
ctxInfo.renderer() == GrGLRenderer::kAdreno5xx_other) {
shaderCaps->fFBFetchSupport = false;
}
// On the NexusS and GalaxyNexus, the use of 'any' causes the compilation error "Calls to any
// function that may require a gradient calculation inside a conditional block may return
// undefined results". This appears to be an issue with the 'any' call since even the simple
// "result=black; if (any()) result=white;" code fails to compile.
shaderCaps->fCanUseAnyFunctionInShader = (ctxInfo.vendor() != GrGLVendor::kImagination);
if (ctxInfo.renderer() == GrGLRenderer::kTegra_PreK1) {
// The Tegra3 compiler will sometimes never return if we have min(abs(x), 1.0),
// so we must do the abs first in a separate expression.
shaderCaps->fCanUseMinAndAbsTogether = false;
// Tegra3 fract() seems to trigger undefined behavior for negative values, so we
// must avoid this condition.
shaderCaps->fCanUseFractForNegativeValues = false;
// Seeing crashes on Tegra3 with inlined functions that have early returns. Looks like the
// do { ... break; } while (false); construct is causing a crash in the driver.
shaderCaps->fCanUseDoLoops = false;
}
// On Intel GPU there is an issue where it reads the second argument to atan "- %s.x" as an int
// thus must us -1.0 * %s.x to work correctly
if (ctxInfo.vendor() == GrGLVendor::kIntel) {
shaderCaps->fMustForceNegatedAtanParamToFloat = true;
}
#if defined(SK_BUILD_FOR_MAC)
if (ctxInfo.vendor() == GrGLVendor::kATI) {
// The Radeon GLSL compiler on Mac gets confused by ldexp(..., -x).
// Convert to ldexp(..., x * -1).
// http://skbug.com/12076
shaderCaps->fMustForceNegatedLdexpParamToMultiply = true;
}
#endif
// On some Intel GPUs there is an issue where the driver outputs bogus values in the shader
// when floor and abs are called on the same line. Thus we must execute an Op between them to
// make sure the compiler doesn't re-inline them even if we break the calls apart.
if (ctxInfo.vendor() == GrGLVendor::kIntel) {
shaderCaps->fMustDoOpBetweenFloorAndAbs = true;
}
// On Adreno devices with framebuffer fetch support, there is a bug where they always return
// the original dst color when reading the outColor even after being written to. By using a
// local outColor we can work around this bug.
if (shaderCaps->fFBFetchSupport && ctxInfo.vendor() == GrGLVendor::kQualcomm) {
shaderCaps->fRequiresLocalOutputColorForFBFetch = true;
}
// Newer Mali GPUs do incorrect static analysis in specific situations: If there is uniform
// color, and that uniform contains an opaque color, and the output of the shader is only based
// on that uniform plus soemthing un-trackable (like a texture read), the compiler will deduce
// that the shader always outputs opaque values. In that case, it appears to remove the shader
// based blending code it normally injects, turning SrcOver into Src. To fix this, we always
// insert an extra bit of math on the uniform that confuses the compiler just enough...
if (ctxInfo.renderer() == GrGLRenderer::kMaliT) {
shaderCaps->fMustObfuscateUniformColor = true;
}
// On Mali G series GPUs, applying transfer functions in the fragment shader with half-floats
// produces answers that are much less accurate than expected/required. This forces full floats
// for some intermediate values to get acceptable results.
if (ctxInfo.renderer() == GrGLRenderer::kMaliG) {
fShaderCaps->fColorSpaceMathNeedsFloat = true;
}
// On Mali 400 there is a bug using dFd* in the x direction. So we avoid using it when possible.
if (ctxInfo.renderer() == GrGLRenderer::kMali4xx) {
fShaderCaps->fAvoidDfDxForGradientsWhenPossible = true;
}
#ifdef SK_BUILD_FOR_WIN
// Check for ANGLE on Windows, so we can workaround a bug in D3D itself (anglebug.com/2098).
//
// Basically, if a shader has a construct like:
//
// float x = someCondition ? someValue : 0;
// float2 result = (0 == x) ? float2(x, x)
// : float2(2 * x / x, 0);
//
// ... the compiler will produce an error 'NaN and infinity literals not allowed', even though
// we've explicitly guarded the division with a check against zero. This manifests in much
// more complex ways in some of our shaders, so we use this caps bit to add an epsilon value
// to the denominator of divisions, even when we've added checks that the denominator isn't 0.
if (ctxInfo.angleBackend() != GrGLANGLEBackend::kUnknown || ctxInfo.isOverCommandBuffer()) {
shaderCaps->fMustGuardDivisionEvenAfterExplicitZeroCheck = true;
}
#endif
if (ctxInfo.renderer() == GrGLRenderer::kAdreno615 ||
ctxInfo.renderer() == GrGLRenderer::kAdreno620 ||
ctxInfo.renderer() == GrGLRenderer::kAdreno630 ||
ctxInfo.renderer() == GrGLRenderer::kAdreno640 ||
ctxInfo.renderer() == GrGLRenderer::kAdreno6xx_other) {
shaderCaps->fInBlendModesFailRandomlyForAllZeroVec = true;
}
// The Adreno 5xx and 6xx produce incorrect results when comparing a pair of matrices.
if (ctxInfo.renderer() == GrGLRenderer::kAdreno530 ||
ctxInfo.renderer() == GrGLRenderer::kAdreno5xx_other ||
ctxInfo.renderer() == GrGLRenderer::kAdreno615 ||
ctxInfo.renderer() == GrGLRenderer::kAdreno620 ||
ctxInfo.renderer() == GrGLRenderer::kAdreno630 ||
ctxInfo.renderer() == GrGLRenderer::kAdreno640 ||
ctxInfo.renderer() == GrGLRenderer::kAdreno6xx_other) {
shaderCaps->fRewriteMatrixComparisons = true;
}
// We've seen Adreno 3xx devices produce incorrect (flipped) values for gl_FragCoord, in some
// (rare) situations. It's sporadic, and mostly on older drivers. Additionally, old Adreno
// compilers (see crbug.com/skia/4078) crash when accessing .zw of gl_FragCoord, so just bypass
// using gl_FragCoord at all to get around it.
if (ctxInfo.renderer() == GrGLRenderer::kAdreno3xx) {
shaderCaps->fCanUseFragCoord = false;
}
// gl_FragCoord has an incorrect subpixel offset on legacy Tegra hardware.
if (ctxInfo.renderer() == GrGLRenderer::kTegra_PreK1) {
shaderCaps->fCanUseFragCoord = false;
}
// On Mali G71, mediump ints don't appear capable of representing every integer beyond +/-2048.
// (Are they implemented with fp16?)
if (ctxInfo.vendor() == GrGLVendor::kARM) {
shaderCaps->fIncompleteShortIntPrecision = true;
}
if (fDriverBugWorkarounds.add_and_true_to_loop_condition) {
shaderCaps->fAddAndTrueToLoopCondition = true;
}
if (fDriverBugWorkarounds.unfold_short_circuit_as_ternary_operation) {
shaderCaps->fUnfoldShortCircuitAsTernary = true;
}
if (fDriverBugWorkarounds.emulate_abs_int_function) {
shaderCaps->fEmulateAbsIntFunction = true;
}
if (fDriverBugWorkarounds.rewrite_do_while_loops) {
shaderCaps->fRewriteDoWhileLoops = true;
}
if (fDriverBugWorkarounds.remove_pow_with_constant_exponent) {
shaderCaps->fRemovePowWithConstantExponent = true;
}
if (fDriverBugWorkarounds.disable_dual_source_blending_support) {
shaderCaps->fDualSourceBlendingSupport = false;
}
if (ctxInfo.renderer() == GrGLRenderer::kAdreno3xx ||
ctxInfo.renderer() == GrGLRenderer::kAdreno4xx_other) {
shaderCaps->fMustWriteToFragColor = true;
}
// Disabling advanced blend on various platforms with major known issues. We also block Chrome
// command buffer for now until its own denylists can be updated.
if (ctxInfo.renderer() == GrGLRenderer::kAdreno430 ||
ctxInfo.renderer() == GrGLRenderer::kAdreno4xx_other ||
ctxInfo.renderer() == GrGLRenderer::kAdreno530 ||
ctxInfo.renderer() == GrGLRenderer::kAdreno5xx_other ||
ctxInfo.driver() == GrGLDriver::kIntel ||
ctxInfo.isOverCommandBuffer() ||
ctxInfo.vendor() == GrGLVendor::kARM /* http://skbug.com/11906 */) {
fBlendEquationSupport = kBasic_BlendEquationSupport;
shaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kNotSupported_AdvBlendEqInteraction;
}
// Non-coherent advanced blend has an issue on NVIDIA pre 337.00.
if (ctxInfo.driver() == GrGLDriver::kNVIDIA &&
ctxInfo.driverVersion() < GR_GL_DRIVER_VER(337, 00, 0) &&
kAdvanced_BlendEquationSupport == fBlendEquationSupport) {
fBlendEquationSupport = kBasic_BlendEquationSupport;
shaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kNotSupported_AdvBlendEqInteraction;
}
if (fDriverBugWorkarounds.disable_blend_equation_advanced) {
fBlendEquationSupport = kBasic_BlendEquationSupport;
shaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kNotSupported_AdvBlendEqInteraction;
}
if (this->advancedBlendEquationSupport()) {
if (ctxInfo.driver() == GrGLDriver::kNVIDIA &&
ctxInfo.driverVersion() < GR_GL_DRIVER_VER(355, 00, 0)) {
// Disable color-dodge and color-burn on pre-355.00 NVIDIA.
fAdvBlendEqDisableFlags |= (1 << kColorDodge_GrBlendEquation) |
(1 << kColorBurn_GrBlendEquation);
}
if (ctxInfo.vendor() == GrGLVendor::kARM) {
// Disable color-burn on ARM until the fix is released.
fAdvBlendEqDisableFlags |= (1 << kColorBurn_GrBlendEquation);
}
}
// Many ES3 drivers only advertise the ES2 image_external extension, but support the _essl3
// extension, and require that it be enabled to work with ESSL3. Other devices require the ES2
// extension to be enabled, even when using ESSL3. Enabling both extensions fixes both cases.
// skbug.com/7713
if (ctxInfo.hasExtension("GL_OES_EGL_image_external") &&
ctxInfo.glslGeneration() >= k330_GrGLSLGeneration &&
!shaderCaps->fExternalTextureSupport) { // i.e. Missing the _essl3 extension
shaderCaps->fExternalTextureSupport = true;
shaderCaps->fExternalTextureExtensionString = "GL_OES_EGL_image_external";
shaderCaps->fSecondExternalTextureExtensionString = "GL_OES_EGL_image_external_essl3";
}
#ifdef SK_BUILD_FOR_IOS
// iOS drivers appear to implement TexSubImage by creating a staging buffer, and copying
// UNPACK_ROW_LENGTH * height bytes. That's unsafe in several scenarios, and the simplest fix
// is to just disable the feature.
// https://github.com/flutter/flutter/issues/16718
// https://bugreport.apple.com/web/?problemID=39948888
fWritePixelsRowBytesSupport = false;
// This affects all iOS devices for transfering from a PBO as well (presumably the issue is in
// the GL->Metal layer).
fTransferPixelsToRowBytesSupport = false;
#endif
if (ctxInfo.vendor() == GrGLVendor::kIntel || // IntelIris640 drops draws completely.
ctxInfo.renderer() == GrGLRenderer::kMaliT || // Some curves appear flat on GalaxyS6.
ctxInfo.renderer() == GrGLRenderer::kAdreno3xx ||
ctxInfo.renderer() == GrGLRenderer::kAdreno430 ||
ctxInfo.renderer() == GrGLRenderer::kAdreno4xx_other || // We get garbage on Adreno405.
ctxInfo.angleBackend() == GrGLANGLEBackend::kD3D9) { // D3D9 conic strokes fail.
fDisableTessellationPathRenderer = true;
}
// http://skbug.com/9739
bool isNVIDIAPascal =
ctxInfo.driver() == GrGLDriver::kNVIDIA &&
ctxInfo.hasExtension("GL_NV_conservative_raster_pre_snap_triangles") && // Pascal+.
!ctxInfo.hasExtension("GL_NV_conservative_raster_underestimation"); // Volta+.
if (isNVIDIAPascal && ctxInfo.driverVersion() < GR_GL_DRIVER_VER(440, 00, 0)) {
if (GR_IS_GR_GL(ctxInfo.standard())) {
// glMemoryBarrier wasn't around until version 4.2.
if (ctxInfo.version() >= GR_GL_VER(4,2)) {
fRequiresManualFBBarrierAfterTessellatedStencilDraw = true;
} else {
shaderCaps->fMaxTessellationSegments = 0;
}
} else {
// glMemoryBarrier wasn't around until es version 3.1.
if (ctxInfo.version() >= GR_GL_VER(3,1)) {
fRequiresManualFBBarrierAfterTessellatedStencilDraw = true;
} else {
shaderCaps->fMaxTessellationSegments = 0;
}
}
}
if (ctxInfo.driver() == GrGLDriver::kQualcomm) {
// Qualcomm fails to link programs with tessellation and does not give an error message.
// http://skbug.com/9740
shaderCaps->fMaxTessellationSegments = 0;
}
#ifdef SK_BUILD_FOR_WIN
// glDrawElementsIndirect fails GrMeshTest on every Win10 Intel bot.
if (ctxInfo.driver() == GrGLDriver::kIntel ||
(ctxInfo.angleVendor() == GrGLVendor::kIntel &&
ctxInfo.angleBackend() == GrGLANGLEBackend::kOpenGL)) {
fNativeDrawIndexedIndirectIsBroken = true;
fUseClientSideIndirectBuffers = true;
}
#endif
// PowerVRGX6250 drops every pixel if we modify the sample mask while color writes are disabled.
if (ctxInfo.renderer() == GrGLRenderer::kPowerVRRogue) {
fNeverDisableColorWrites = true;
shaderCaps->fMustWriteToFragColor = true;
}
// It appears that Qualcomm drivers don't actually support
// GL_NV_shader_noperspective_interpolation in ES 3.00 or 3.10 shaders, only 3.20.
// https://crbug.com/986581
if (ctxInfo.vendor() == GrGLVendor::kQualcomm &&
k320es_GrGLSLGeneration != ctxInfo.glslGeneration()) {
shaderCaps->fNoPerspectiveInterpolationSupport = false;
}
// We disable srgb write control for Adreno4xx devices.
// see: https://bug.skia.org/5329
if (ctxInfo.renderer() == GrGLRenderer::kAdreno430 ||
ctxInfo.renderer() == GrGLRenderer::kAdreno4xx_other) {
fSRGBWriteControl = false;
}
// MacPro devices with AMD cards fail to create MSAA sRGB render buffers.
#if defined(SK_BUILD_FOR_MAC)
if (ctxInfo.vendor() == GrGLVendor::kATI) {
formatWorkarounds->fDisableSRGBRenderWithMSAAForMacAMD = true;
}
#endif
// Command buffer fails glTexSubImage2D with type == GL_HALF_FLOAT_OES if a GL_RGBA16F texture
// is created with glTexStorage2D. See crbug.com/1008003.
formatWorkarounds->fDisableRGBA16FTexStorageForCrBug1008003 =
ctxInfo.isOverCommandBuffer() && ctxInfo.version() < GR_GL_VER(3, 0);
#if defined(SK_BUILD_FOR_WIN)
// On Intel Windows ES contexts it seems that using texture storage with BGRA causes
// problems with cross-context SkImages.
formatWorkarounds->fDisableBGRATextureStorageForIntelWindowsES =
ctxInfo.driver() == GrGLDriver::kIntel && GR_IS_GR_GL_ES(ctxInfo.standard());
#endif
// On the Intel Iris 6100, interacting with LUM16F seems to confuse the driver. After
// writing to/reading from a LUM16F texture reads from/writes to other formats behave
// erratically.
// All Adrenos claim to support LUM16F but don't appear to actually do so.
// The failing devices/gpus were: Nexus5/Adreno330, Nexus5x/Adreno418, Pixel/Adreno530,
// Pixel2XL/Adreno540 and Pixel3/Adreno630
formatWorkarounds->fDisableLuminance16F = ctxInfo.renderer() == GrGLRenderer::kIntelBroadwell ||
ctxInfo.vendor() == GrGLVendor::kQualcomm;
#ifdef SK_BUILD_FOR_MAC
// On a MacBookPro 11.5 running MacOS 10.13 with a Radeon M370X the TransferPixelsFrom test
// fails when transferring out from a GL_RG8 texture using GL_RG/GL_UNSIGNED_BYTE.
// The same error also occurs in MacOS 10.15 with a Radeon Pro 5300M.
formatWorkarounds->fDisallowDirectRG8ReadPixels =
ctxInfo.renderer() == GrGLRenderer::kAMDRadeonR9M3xx ||
ctxInfo.renderer() == GrGLRenderer::kAMDRadeonPro5xxx ||
ctxInfo.renderer() == GrGLRenderer::kAMDRadeonProVegaxx;
#endif
#ifdef SK_BUILD_FOR_ANDROID
// We don't usually use glTexStorage() on Android for performance reasons. (crbug.com/945506).
// On a NVIDIA Shield TV running Android 7.0 creating a texture with glTexImage2D() with
// internal format GL_LUMINANCE8 fails. However, it succeeds with glTexStorage2D().
//
// Additionally, on the Nexus 9 running Android 6.0.1 formats added by GL_EXT_texture_rg and
// GL_EXT_texture_norm16 cause errors if they are created with glTexImage2D() with
// an unsized internal format. We wouldn't normally do that but Chrome can limit us
// artificially to ES2. (crbug.com/1003481)
if (ctxInfo.vendor() == GrGLVendor::kNVIDIA) {
formatWorkarounds->fDontDisableTexStorageOnAndroid = true;
}
#endif
// https://github.com/flutter/flutter/issues/38700
if (ctxInfo.driver() == GrGLDriver::kAndroidEmulator) {
shaderCaps->fNoDefaultPrecisionForExternalSamplers = true;
}
// http://skbug.com/9491: Nexus5 produces rendering artifacts when we use QCOM_tiled_rendering.
if (ctxInfo.renderer() == GrGLRenderer::kAdreno3xx) {
fTiledRenderingSupport = false;
}
// https://github.com/flutter/flutter/issues/47164
// https://github.com/flutter/flutter/issues/47804
if (fTiledRenderingSupport && (!glInterface->fFunctions.fStartTiling ||
!glInterface->fFunctions.fEndTiling)) {
// Some devices expose the QCOM tiled memory extension string but don't actually provide the
// start and end tiling functions (see above flutter bugs). To work around this, the funcs
// are marked optional in the interface generator, but we turn off the tiled rendering cap
// if they aren't provided. This disabling is in driver workarounds so that SKQP will still
// fail on devices that advertise the extension w/o the functions.
fTiledRenderingSupport = false;
}
if (ctxInfo.angleBackend() == GrGLANGLEBackend::kD3D9) {
formatWorkarounds->fDisallowBGRA8ReadPixels = true;
}
// We disable MSAA for all Intel GPUs. Before Gen9, performance was very bad. Even with Gen9,
// we've seen driver crashes in the wild. We don't have data on Gen11 yet.
// (crbug.com/527565, crbug.com/983926)
if (ctxInfo.vendor() == GrGLVendor::kIntel) {
fMSFBOType = kNone_MSFBOType;
}
// ANGLE doesn't support do-while loops.
if (ctxInfo.angleBackend() != GrGLANGLEBackend::kUnknown) {
shaderCaps->fCanUseDoLoops = false;
}
// ANGLE's D3D9 backend + AMD GPUs are flaky with program binary caching (skbug.com/10395)
if (ctxInfo.angleBackend() == GrGLANGLEBackend::kD3D9 &&
ctxInfo.angleVendor() == GrGLVendor::kATI) {
fProgramBinarySupport = false;
}
// Two Adreno 530 devices (LG G6 and OnePlus 3T) appear to have driver bugs that are corrupting
// SkSL::Program memory. To get better/different crash reports, disable node-pooling, so that
// program allocations aren't reused. (crbug.com/1147008, crbug.com/1164271)
if (ctxInfo.renderer() == GrGLRenderer::kAdreno530) {
shaderCaps->fUseNodePools = false;
}
// skbug.com/11204. Avoid recursion issue in GrSurfaceContext::writePixels.
if (fDisallowTexSubImageForUnormConfigTexturesEverBoundToFBO) {
fReuseScratchTextures = false;
}
// skbug.com/11935. Don't reorder on these GPUs in GL on old drivers.
if ((ctxInfo.renderer() == GrGLRenderer::kAdreno620 ||
ctxInfo.renderer() == GrGLRenderer::kAdreno640) &&
ctxInfo.driverVersion() < GR_GL_DRIVER_VER(571, 0, 0)) {
fAvoidReorderingRenderTasks = true;
}
// http://skbug.com/11965
if (ctxInfo.renderer() == GrGLRenderer::kGoogleSwiftShader) {
fShaderCaps->fVertexIDSupport = false;
}
// http://crbug.com/1197152
// http://b/187364475
// We could limit this < 1.13 on ChromeOS but we don't really have a good way to detect
// ChromeOS from here.
if (ctxInfo.renderer() == GrGLRenderer::kPowerVRRogue &&
ctxInfo.driver() == GrGLDriver::kImagination &&
ctxInfo.driverVersion() < GR_GL_DRIVER_VER(1, 16, 0)) {
fShaderCaps->fShaderDerivativeSupport = false;
}
if (ctxInfo.driver() == GrGLDriver::kFreedreno) {
formatWorkarounds->fDisallowUnorm16Transfers = true;
}
}
void GrGLCaps::onApplyOptionsOverrides(const GrContextOptions& options) {
if (options.fDisableDriverCorrectnessWorkarounds) {
SkASSERT(!fDoManualMipmapping);
SkASSERT(!fClearToBoundaryValuesIsBroken);
SkASSERT(0 == fMaxInstancesPerDrawWithoutCrashing);
SkASSERT(!fDrawArraysBaseVertexIsBroken);
SkASSERT(!fDisallowTexSubImageForUnormConfigTexturesEverBoundToFBO);
SkASSERT(!fUseDrawInsteadOfAllRenderTargetWrites);
SkASSERT(!fRequiresCullFaceEnableDisableWhenDrawingLinesAfterNonLines);
SkASSERT(!fDontSetBaseOrMaxLevelForExternalTextures);
SkASSERT(!fNeverDisableColorWrites);
}
if (options.fShaderCacheStrategy < GrContextOptions::ShaderCacheStrategy::kBackendBinary) {
fProgramBinarySupport = false;
}
switch (options.fSkipGLErrorChecks) {
case GrContextOptions::Enable::kNo:
fSkipErrorChecks = false;
break;
case GrContextOptions::Enable::kYes:
fSkipErrorChecks = true;
break;
case GrContextOptions::Enable::kDefault:
break;
}
}
bool GrGLCaps::onSurfaceSupportsWritePixels(const GrSurface* surface) const {
if (fDisallowTexSubImageForUnormConfigTexturesEverBoundToFBO) {
if (auto tex = static_cast<const GrGLTexture*>(surface->asTexture())) {
if (tex->hasBaseLevelBeenBoundToFBO()) {
return false;
}
}
}
if (auto rt = surface->asRenderTarget()) {
if (fUseDrawInsteadOfAllRenderTargetWrites) {
return false;
}
if (rt->numSamples() > 1 && this->usesMSAARenderBuffers()) {
return false;
}
return SkToBool(surface->asTexture());
}
return true;
}
GrCaps::SurfaceReadPixelsSupport GrGLCaps::surfaceSupportsReadPixels(
const GrSurface* surface) const {
if (auto tex = static_cast<const GrGLTexture*>(surface->asTexture())) {
// We don't support reading pixels directly from EXTERNAL textures as it would require
// binding the texture to a FBO. For now we also disallow reading back directly
// from compressed textures.
if (tex->target() == GR_GL_TEXTURE_EXTERNAL || GrGLFormatIsCompressed(tex->format())) {
return SurfaceReadPixelsSupport::kCopyToTexture2D;
}
} else if (auto rt = static_cast<const GrGLRenderTarget*>(surface->asRenderTarget())) {
// glReadPixels does not allow reading back from a MSAA framebuffer. If the underlying
// GrSurface doesn't have a second FBO to resolve to then we must make a copy.
if (rt->numSamples() > 1 &&
rt->singleSampleFBOID() == GrGLRenderTarget::kUnresolvableFBOID) {
return SurfaceReadPixelsSupport::kCopyToTexture2D;
}
}
return SurfaceReadPixelsSupport::kSupported;
}
size_t offset_alignment_for_transfer_buffer(GrGLenum externalType) {
// This switch is derived from a table titled "Pixel data type parameter values and the
// corresponding GL data types" in the OpenGL spec (Table 8.2 in OpenGL 4.5).
switch (externalType) {
case GR_GL_UNSIGNED_BYTE: return sizeof(GrGLubyte);
case GR_GL_BYTE: return sizeof(GrGLbyte);
case GR_GL_UNSIGNED_SHORT: return sizeof(GrGLushort);
case GR_GL_SHORT: return sizeof(GrGLshort);
case GR_GL_UNSIGNED_INT: return sizeof(GrGLuint);
case GR_GL_INT: return sizeof(GrGLint);
case GR_GL_HALF_FLOAT: return sizeof(GrGLhalf);
case GR_GL_HALF_FLOAT_OES: return sizeof(GrGLhalf);
case GR_GL_FLOAT: return sizeof(GrGLfloat);
case GR_GL_UNSIGNED_SHORT_5_6_5: return sizeof(GrGLushort);
case GR_GL_UNSIGNED_SHORT_4_4_4_4: return sizeof(GrGLushort);
case GR_GL_UNSIGNED_SHORT_5_5_5_1: return sizeof(GrGLushort);
case GR_GL_UNSIGNED_INT_2_10_10_10_REV: return sizeof(GrGLuint);
#if 0 // GL types we currently don't use. Here for future reference.
case GR_GL_UNSIGNED_BYTE_3_3_2: return sizeof(GrGLubyte);
case GR_GL_UNSIGNED_BYTE_2_3_3_REV: return sizeof(GrGLubyte);
case GR_GL_UNSIGNED_SHORT_5_6_5_REV: return sizeof(GrGLushort);
case GR_GL_UNSIGNED_SHORT_4_4_4_4_REV: return sizeof(GrGLushort);
case GR_GL_UNSIGNED_SHORT_1_5_5_5_REV: return sizeof(GrGLushort);
case GR_GL_UNSIGNED_INT_8_8_8_8: return sizeof(GrGLuint);
case GR_GL_UNSIGNED_INT_8_8_8_8_REV: return sizeof(GrGLuint);
case GR_GL_UNSIGNED_INT_10_10_10_2: return sizeof(GrGLuint);
case GR_GL_UNSIGNED_INT_24_8: return sizeof(GrGLuint);
case GR_GL_UNSIGNED_INT_10F_11F_11F_REV: return sizeof(GrGLuint);
case GR_GL_UNSIGNED_INT_5_9_9_9_REV: return sizeof(GrGLuint);
// This one is not corresponding to a GL data type and the spec just says it is 4.
case GR_GL_FLOAT_32_UNSIGNED_INT_24_8_REV: return 4;
#endif
default: return 0;
}
}
GrCaps::SupportedRead GrGLCaps::onSupportedReadPixelsColorType(
GrColorType srcColorType, const GrBackendFormat& srcBackendFormat,
GrColorType dstColorType) const {
SkImage::CompressionType compression = GrBackendFormatToCompressionType(srcBackendFormat);
if (compression != SkImage::CompressionType::kNone) {
return {SkCompressionTypeIsOpaque(compression) ? GrColorType::kRGB_888x
: GrColorType::kRGBA_8888,
0};
}
// We first try to find a supported read pixels GrColorType that matches the requested
// dstColorType. If that doesn't exists we will use any valid read pixels GrColorType.
GrCaps::SupportedRead fallbackRead = {GrColorType::kUnknown, 0};
const auto& formatInfo = this->getFormatInfo(srcBackendFormat.asGLFormat());
bool foundSrcCT = false;
for (int i = 0; !foundSrcCT && i < formatInfo.fColorTypeInfoCount; ++i) {
if (formatInfo.fColorTypeInfos[i].fColorType == srcColorType) {
const ColorTypeInfo& ctInfo = formatInfo.fColorTypeInfos[i];
foundSrcCT = true;
for (int j = 0; j < ctInfo.fExternalIOFormatCount; ++j) {
const auto& ioInfo = ctInfo.fExternalIOFormats[j];
if (ioInfo.fExternalReadFormat != 0) {
if (formatInfo.fHaveQueriedImplementationReadSupport ||
!ioInfo.fRequiresImplementationReadQuery) {
GrGLenum transferOffsetAlignment = 0;
if (formatInfo.fFlags & FormatInfo::kTransfers_Flag) {
transferOffsetAlignment =
offset_alignment_for_transfer_buffer(ioInfo.fExternalType);
}
if (ioInfo.fColorType == dstColorType) {
return {dstColorType, transferOffsetAlignment};
}
// Currently we just pick the first supported format that we find as our
// fallback.
if (fallbackRead.fColorType == GrColorType::kUnknown) {
fallbackRead = {ioInfo.fColorType, transferOffsetAlignment};
}
}
}
}
}
}
return fallbackRead;
}
GrCaps::SupportedWrite GrGLCaps::supportedWritePixelsColorType(GrColorType surfaceColorType,
const GrBackendFormat& surfaceFormat,
GrColorType srcColorType) const {
// We first try to find a supported write pixels GrColorType that matches the data's
// srcColorType. If that doesn't exists we will use any supported GrColorType.
GrColorType fallbackCT = GrColorType::kUnknown;
const auto& formatInfo = this->getFormatInfo(surfaceFormat.asGLFormat());
bool foundSurfaceCT = false;
size_t transferOffsetAlignment = 0;
if (formatInfo.fFlags & FormatInfo::kTransfers_Flag) {
transferOffsetAlignment = 1;
}
for (int i = 0; !foundSurfaceCT && i < formatInfo.fColorTypeInfoCount; ++i) {
if (formatInfo.fColorTypeInfos[i].fColorType == surfaceColorType) {
const ColorTypeInfo& ctInfo = formatInfo.fColorTypeInfos[i];
foundSurfaceCT = true;
for (int j = 0; j < ctInfo.fExternalIOFormatCount; ++j) {
const auto& ioInfo = ctInfo.fExternalIOFormats[j];
if (ioInfo.fExternalTexImageFormat != 0) {
if (ioInfo.fColorType == srcColorType) {
return {srcColorType, transferOffsetAlignment};
}
// Currently we just pick the first supported format that we find as our
// fallback.
if (fallbackCT == GrColorType::kUnknown) {
fallbackCT = ioInfo.fColorType;
}
}
}
}
}
return {fallbackCT, transferOffsetAlignment};
}
bool GrGLCaps::onIsWindowRectanglesSupportedForRT(const GrBackendRenderTarget& backendRT) const {
GrGLFramebufferInfo fbInfo;
SkAssertResult(backendRT.getGLFramebufferInfo(&fbInfo));
// Window Rectangles are not supported for FBO 0;
return fbInfo.fFBOID != 0;
}
bool GrGLCaps::isFormatSRGB(const GrBackendFormat& format) const {
return format.asGLFormat() == GrGLFormat::kSRGB8_ALPHA8;
}
bool GrGLCaps::isFormatTexturable(const GrBackendFormat& format) const {
if (format.textureType() == GrTextureType::kRectangle && !this->rectangleTextureSupport()) {
return false;
}
return this->isFormatTexturable(format.asGLFormat());
}
bool GrGLCaps::isFormatTexturable(GrGLFormat format) const {
const FormatInfo& info = this->getFormatInfo(format);
return SkToBool(info.fFlags & FormatInfo::kTexturable_Flag);
}
bool GrGLCaps::isFormatAsColorTypeRenderable(GrColorType ct, const GrBackendFormat& format,
int sampleCount) const {
if (format.textureType() == GrTextureType::kRectangle && !this->rectangleTextureSupport()) {
return false;
}
if (format.textureType() == GrTextureType::kExternal) {
return false;
}
auto f = format.asGLFormat();
const FormatInfo& info = this->getFormatInfo(f);
if (!SkToBool(info.colorTypeFlags(ct) & ColorTypeInfo::kRenderable_Flag)) {
return false;
}
return this->isFormatRenderable(f, sampleCount);
}
bool GrGLCaps::isFormatRenderable(const GrBackendFormat& format, int sampleCount) const {
if (format.textureType() == GrTextureType::kRectangle && !this->rectangleTextureSupport()) {
return false;
}
if (format.textureType() == GrTextureType::kExternal) {
return false;
}
return this->isFormatRenderable(format.asGLFormat(), sampleCount);
}
int GrGLCaps::getRenderTargetSampleCount(int requestedCount, GrGLFormat format) const {
const FormatInfo& info = this->getFormatInfo(format);
int count = info.fColorSampleCounts.count();
if (!count) {
return 0;
}
requestedCount = std::max(1, requestedCount);
if (1 == requestedCount) {
return info.fColorSampleCounts[0] == 1 ? 1 : 0;
}
for (int sampleCount : info.fColorSampleCounts) {
if (sampleCount >= requestedCount) {
if (fDriverBugWorkarounds.max_msaa_sample_count_4) {
sampleCount = std::min(sampleCount, 4);
}
return sampleCount;
}
}
return 0;
}
int GrGLCaps::maxRenderTargetSampleCount(GrGLFormat format) const {
const FormatInfo& info = this->getFormatInfo(format);
const auto& table = info.fColorSampleCounts;
if (!table.count()) {
return 0;
}
int count = table[table.count() - 1];
if (fDriverBugWorkarounds.max_msaa_sample_count_4) {
count = std::min(count, 4);
}
return count;
}
bool GrGLCaps::canFormatBeFBOColorAttachment(GrGLFormat format) const {
return SkToBool(this->getFormatInfo(format).fFlags & FormatInfo::kFBOColorAttachment_Flag);
}
bool GrGLCaps::isFormatCopyable(const GrBackendFormat& format) const {
// In GL we have three ways to be able to copy. CopyTexImage, blit, and draw. CopyTexImage
// requires the src to be an FBO attachment, blit requires both src and dst to be FBO
// attachments, and draw requires the dst to be an FBO attachment. Thus to copy from and to
// the same config, we need that config to be bindable to an FBO.
return this->canFormatBeFBOColorAttachment(format.asGLFormat());
}
bool GrGLCaps::formatSupportsTexStorage(GrGLFormat format) const {
return SkToBool(this->getFormatInfo(format).fFlags & FormatInfo::kUseTexStorage_Flag);
}
bool GrGLCaps::shouldQueryImplementationReadSupport(GrGLFormat format) const {
const auto& formatInfo = const_cast<GrGLCaps*>(this)->getFormatInfo(format);
if (!formatInfo.fHaveQueriedImplementationReadSupport) {
// Check whether we will actually learn anything useful.
bool needQuery = false;
for (int i = 0; i < formatInfo.fColorTypeInfoCount && !needQuery; ++i) {
const auto& surfCTInfo = formatInfo.fColorTypeInfos[i];
for (int j = 0; j < surfCTInfo.fExternalIOFormatCount; ++j) {
if (surfCTInfo.fExternalIOFormats[j].fRequiresImplementationReadQuery) {
needQuery = true;
break;
}
}
}
if (!needQuery) {
// Pretend we already checked it.
const_cast<FormatInfo&>(formatInfo).fHaveQueriedImplementationReadSupport = true;
}
}
return !formatInfo.fHaveQueriedImplementationReadSupport;
}
void GrGLCaps::didQueryImplementationReadSupport(GrGLFormat format,
GrGLenum readFormat,
GrGLenum readType) const {
auto& formatInfo = const_cast<GrGLCaps*>(this)->getFormatInfo(format);
for (int i = 0; i < formatInfo.fColorTypeInfoCount; ++i) {
auto& surfCTInfo = formatInfo.fColorTypeInfos[i];
for (int j = 0; j < surfCTInfo.fExternalIOFormatCount; ++j) {
auto& readCTInfo = surfCTInfo.fExternalIOFormats[j];
if (readCTInfo.fRequiresImplementationReadQuery) {
if (readCTInfo.fExternalReadFormat != readFormat ||
readCTInfo.fExternalType != readType) {
// Don't zero out fExternalType. It's also used for writing data to the texture!
readCTInfo.fExternalReadFormat = 0;
}
}
}
}
formatInfo.fHaveQueriedImplementationReadSupport = true;
}
bool GrGLCaps::onAreColorTypeAndFormatCompatible(GrColorType ct,
const GrBackendFormat& format) const {
GrGLFormat glFormat = format.asGLFormat();
const auto& info = this->getFormatInfo(glFormat);
for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
if (info.fColorTypeInfos[i].fColorType == ct) {
return true;
}
}
return false;
}
GrBackendFormat GrGLCaps::onGetDefaultBackendFormat(GrColorType ct) const {
auto format = this->getFormatFromColorType(ct);
if (format == GrGLFormat::kUnknown) {
return {};
}
return GrBackendFormat::MakeGL(GrGLFormatToEnum(format), GR_GL_TEXTURE_2D);
}
GrBackendFormat GrGLCaps::getBackendFormatFromCompressionType(
SkImage::CompressionType compressionType) const {
switch (compressionType) {
case SkImage::CompressionType::kNone:
return {};
case SkImage::CompressionType::kETC2_RGB8_UNORM:
// if ETC2 is available default to that format
if (this->isFormatTexturable(GrGLFormat::kCOMPRESSED_RGB8_ETC2)) {
return GrBackendFormat::MakeGL(GR_GL_COMPRESSED_RGB8_ETC2, GR_GL_TEXTURE_2D);
}
if (this->isFormatTexturable(GrGLFormat::kCOMPRESSED_ETC1_RGB8)) {
return GrBackendFormat::MakeGL(GR_GL_COMPRESSED_ETC1_RGB8, GR_GL_TEXTURE_2D);
}
return {};
case SkImage::CompressionType::kBC1_RGB8_UNORM:
if (this->isFormatTexturable(GrGLFormat::kCOMPRESSED_RGB8_BC1)) {
return GrBackendFormat::MakeGL(GR_GL_COMPRESSED_RGB_S3TC_DXT1_EXT,
GR_GL_TEXTURE_2D);
}
return {};
case SkImage::CompressionType::kBC1_RGBA8_UNORM:
if (this->isFormatTexturable(GrGLFormat::kCOMPRESSED_RGBA8_BC1)) {
return GrBackendFormat::MakeGL(GR_GL_COMPRESSED_RGBA_S3TC_DXT1_EXT,
GR_GL_TEXTURE_2D);
}
return {};
}
SkUNREACHABLE;
}
GrSwizzle GrGLCaps::onGetReadSwizzle(const GrBackendFormat& format, GrColorType colorType) const {
GrGLFormat glFormat = format.asGLFormat();
const auto& info = this->getFormatInfo(glFormat);
for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
const auto& ctInfo = info.fColorTypeInfos[i];
if (ctInfo.fColorType == colorType) {
return ctInfo.fReadSwizzle;
}
}
SkDEBUGFAILF("Illegal color type (%d) and format (%d) combination.",
(int)colorType, (int)glFormat);
return {};
}
GrSwizzle GrGLCaps::getWriteSwizzle(const GrBackendFormat& format, GrColorType colorType) const {
const auto& info = this->getFormatInfo(format.asGLFormat());
for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
const auto& ctInfo = info.fColorTypeInfos[i];
if (ctInfo.fColorType == colorType) {
return ctInfo.fWriteSwizzle;
}
}
SkDEBUGFAILF("Illegal color type (%d) and format (%d) combination.",
(int)colorType, (int)format.asGLFormat());
return {};
}
GrDstSampleFlags GrGLCaps::onGetDstSampleFlagsForProxy(const GrRenderTargetProxy* rt) const {
if (rt->asTextureProxy()) {
return GrDstSampleFlags::kRequiresTextureBarrier;
}
return GrDstSampleFlags::kNone;
}
bool GrGLCaps::onSupportsDynamicMSAA(const GrRenderTargetProxy* rtProxy) const {
return !fDisallowDynamicMSAA;
}
uint64_t GrGLCaps::computeFormatKey(const GrBackendFormat& format) const {
auto glFormat = format.asGLFormat();
return (uint64_t)(glFormat);
}
GrProgramDesc GrGLCaps::makeDesc(GrRenderTarget* /* rt */,
const GrProgramInfo& programInfo,
ProgramDescOverrideFlags overrideFlags) const {
SkASSERT(overrideFlags == ProgramDescOverrideFlags::kNone);
GrProgramDesc desc;
GrProgramDesc::Build(&desc, programInfo, *this);
return desc;
}
#if GR_TEST_UTILS
std::vector<GrCaps::TestFormatColorTypeCombination> GrGLCaps::getTestingCombinations() const {
std::vector<GrCaps::TestFormatColorTypeCombination> combos = {
{ GrColorType::kAlpha_8,
GrBackendFormat::MakeGL(GR_GL_ALPHA8, GR_GL_TEXTURE_2D) },
{ GrColorType::kAlpha_8,
GrBackendFormat::MakeGL(GR_GL_R8, GR_GL_TEXTURE_2D) },
{ GrColorType::kBGR_565,
GrBackendFormat::MakeGL(GR_GL_RGB565, GR_GL_TEXTURE_2D) },
{ GrColorType::kABGR_4444,
GrBackendFormat::MakeGL(GR_GL_RGBA4, GR_GL_TEXTURE_2D) },
{ GrColorType::kRGBA_8888,
GrBackendFormat::MakeGL(GR_GL_RGBA8, GR_GL_TEXTURE_2D) },
{ GrColorType::kRGBA_8888_SRGB,
GrBackendFormat::MakeGL(GR_GL_SRGB8_ALPHA8, GR_GL_TEXTURE_2D) },
{ GrColorType::kRGB_888x,
GrBackendFormat::MakeGL(GR_GL_RGBA8, GR_GL_TEXTURE_2D) },
{ GrColorType::kRGB_888x,
GrBackendFormat::MakeGL(GR_GL_RGB8, GR_GL_TEXTURE_2D) },
{ GrColorType::kRGB_888x,
GrBackendFormat::MakeGL(GR_GL_COMPRESSED_RGB8_ETC2, GR_GL_TEXTURE_2D) },
{ GrColorType::kRGB_888x,
GrBackendFormat::MakeGL(GR_GL_COMPRESSED_ETC1_RGB8, GR_GL_TEXTURE_2D) },
{ GrColorType::kRGB_888x,
GrBackendFormat::MakeGL(GR_GL_COMPRESSED_RGB_S3TC_DXT1_EXT, GR_GL_TEXTURE_2D) },
{ GrColorType::kRGBA_8888,
GrBackendFormat::MakeGL(GR_GL_COMPRESSED_RGBA_S3TC_DXT1_EXT, GR_GL_TEXTURE_2D) },
{ GrColorType::kRG_88,
GrBackendFormat::MakeGL(GR_GL_RG8, GR_GL_TEXTURE_2D) },
{ GrColorType::kRGBA_1010102,
GrBackendFormat::MakeGL(GR_GL_RGB10_A2, GR_GL_TEXTURE_2D) },
{ GrColorType::kGray_8,
GrBackendFormat::MakeGL(GR_GL_LUMINANCE8, GR_GL_TEXTURE_2D) },
{ GrColorType::kGray_8,
GrBackendFormat::MakeGL(GR_GL_R8, GR_GL_TEXTURE_2D) },
{ GrColorType::kGrayAlpha_88,
GrBackendFormat::MakeGL(GR_GL_LUMINANCE8_ALPHA8, GR_GL_TEXTURE_2D) },
{ GrColorType::kAlpha_F16,
GrBackendFormat::MakeGL(GR_GL_R16F, GR_GL_TEXTURE_2D) },
{ GrColorType::kAlpha_F16,
GrBackendFormat::MakeGL(GR_GL_LUMINANCE16F, GR_GL_TEXTURE_2D) },
{ GrColorType::kRGBA_F16,
GrBackendFormat::MakeGL(GR_GL_RGBA16F, GR_GL_TEXTURE_2D) },
{ GrColorType::kRGBA_F16_Clamped,
GrBackendFormat::MakeGL(GR_GL_RGBA16F, GR_GL_TEXTURE_2D) },
{ GrColorType::kAlpha_16,
GrBackendFormat::MakeGL(GR_GL_R16, GR_GL_TEXTURE_2D) },
{ GrColorType::kRG_1616,
GrBackendFormat::MakeGL(GR_GL_RG16, GR_GL_TEXTURE_2D) },
{ GrColorType::kRGBA_16161616,
GrBackendFormat::MakeGL(GR_GL_RGBA16, GR_GL_TEXTURE_2D) },
{ GrColorType::kRG_F16,
GrBackendFormat::MakeGL(GR_GL_RG16F, GR_GL_TEXTURE_2D) },
};
if (GR_IS_GR_GL(fStandard)) {
combos.push_back({ GrColorType::kBGRA_8888,
GrBackendFormat::MakeGL(GR_GL_RGBA8, GR_GL_TEXTURE_2D) });
combos.push_back({ GrColorType::kBGRA_1010102,
GrBackendFormat::MakeGL(GR_GL_RGB10_A2, GR_GL_TEXTURE_2D) });
} else {
SkASSERT(GR_IS_GR_GL_ES(fStandard) || GR_IS_GR_WEBGL(fStandard));
combos.push_back({ GrColorType::kBGRA_8888,
GrBackendFormat::MakeGL(GR_GL_BGRA8, GR_GL_TEXTURE_2D) });
}
if (this->rectangleTextureSupport()) {
size_t count2D = combos.size();
for (size_t i = 0; i < count2D; ++i) {
auto combo2D = combos[i];
GrGLenum formatEnum = GrGLFormatToEnum(combo2D.fFormat.asGLFormat());
combos.push_back({combo2D.fColorType,
GrBackendFormat::MakeGL(formatEnum, GR_GL_TEXTURE_RECTANGLE)});
}
}
return combos;
}
#endif