blob: d1a78e20d0f0ae8a74d757c0e8ab30983c4b983b [file] [log] [blame]
// Copyright 2023 Google LLC
// Use of this source code is governed by a BSD-style license that can be found in the LICENSE file.
#include "modules/bentleyottmann/include/Segment.h"
#include "include/private/base/SkAssert.h"
#include "include/private/base/SkTo.h"
#include "modules/bentleyottmann/include/Int96.h"
#include <algorithm>
#include <cmath>
namespace bentleyottmann {
// -- Segment --------------------------------------------------------------------------------------
Point Segment::upper() const {
return std::min(p0, p1);
}
Point Segment::lower() const {
return std::max(p0, p1);
}
// Use auto [l, t, r, b] = s.bounds();
std::tuple<int32_t, int32_t, int32_t, int32_t> Segment::bounds() const {
auto [l, r] = std::minmax(p0.x, p1.x);
auto [t, b] = std::minmax(p0.y, p1.y);
return std::make_tuple(l, t, r, b);
}
bool operator==(const Segment& s0, const Segment& s1) {
return s0.upper() == s1.upper() && s0.lower() == s1.lower();
}
bool operator<(const Segment& s0, const Segment& s1) {
return std::make_tuple(s0.upper(), s0.lower()) < std::make_tuple(s1.upper(), s1.lower());
}
bool no_intersection_by_bounding_box(const Segment& s0, const Segment& s1) {
auto [left0, top0, right0, bottom0] = s0.bounds();
auto [left1, top1, right1, bottom1] = s1.bounds();
// If the sides of the box touch, then there is no new intersection.
return right0 <= left1 || right1 <= left0 || bottom0 <= top1 || bottom1 <= top0;
}
// Derivation of Intersection
// The intersection point I = (X, Y) of the two segments (x0, y0) -> (x1, y1)
// and (x2, y2) -> (x3, y3).
// X = x0 + s(x1 - x0) = x2 + t(x3 - x2)
// Y = y0 + s(y1 - y0) = y2 + t(y3 - y2)
//
// Solve for s in terms of x.
// x0 + s(x1 - x0) = x2 + t(x3 - x2)
// s(x1 - x0) = x2 - x0 + t(x3 - x2)
// s = (x2 - x0 + t(x3 - x2)) / (x1 - x0)
//
// Back substitute s into the equation for Y.
// y0 + ((x2 - x0 + t(x3 - x2)) / (x1 - x0))(y1 - y0) = y2 + t(y3 - y2)
// (x2 - x0 + t(x3 - x2)) / (x1 - x0) = (y2 - y0 + t(y3 - y2)) / (y1 - y0)
// (y1 - y0)(x2 - x0 + t(x3 - x2)) = (x1 - x0)(y2 - y0 + t(y3 - y2))
// (y1 - y0)(x2 - x0) + t(y1 - y0)(x3 - x2) = (x1 - x0)(y2 - y0) + t(x1 - x0)(y3 - y2)
// Collecting t's on one side, and constants on the other.
// t((y1 - y0)(x3 - x2) - (x1 - x0)(y3 - y2)) = (x1 - x0)(y2 - y0) - (y1 - y0)(x2 - x0)
//
// Solve for t in terms of x.
// x0 + s(x1 - x0) = x2 + t(x3 - x2)
// x0 - x2 + s(x1 - x0) = t(x3 - x2)
// (x0 - x2 + s(x1 - x0)) / (x3 - x2) = t
// Back substitute t into the equation for Y.
// y0 + s(y1 - y0) = y2 + ((x0 - x2 + s(x1 - x0)) / (x3 - x2))(y3 - y2)
// (y0 - y2 + s(y1 - y0)) / (y3 - y2) = (x0 - x2 + s(x1 - x0)) / (x3 - x2)
// (x3 - x2)(y0 - y2 + s(y1 - y0)) = (y3 - y2)(x0 - x2 + s(x1 - x0))
// (x3 - x2)(y0 - y2) + s(x3 - x2)(y1 - y0) = (y3 - y2)(x0 - x2) + s(y3 - y2)(x1 - x0)
// Collecting s's on on side and constants on the other.
// s((x3 - x2)(y1 - y0) - (y3 - y2)(x1 - x0)) = (y3 - y2)(x0 - x2) - (x3 - x2)(y0 - y2)
// Assign names and vectors to extract the cross products. The vector (x0, y0) -> (x1, y1) is
// P0 -> P1, and is named Q = (x1 - x0, y1 - y0) = P1 - P0. The following vectors are defined in
// a similar way.
// * Q: P1 - P0
// * R: P2 - P0
// * T: P3 - P2
// Extracting cross products from above for t.
// t((P3 - P2) x (P1 - P0)) = (P1 - P0) x (P2 - P0)
// t(T x Q) = Q x R
// t = (Q x R) / (T x Q)
// Extracting cross products from above for t.
// s((P3 - P2) x (P1 - P0)) = (P0 - P2) x (P3 - P2)
// s(T x Q) = -R x T
// s = (T x R) / (T x Q)
//
// There is an intersection only if t and s are on [0, 1].
//
// This method of calculating the intersection only uses 8 multiplies, and 1 division. It also
// determines if the two segments cross with no round-off error and is always correct using 6
// multiplies. However, the actual crossing point is rounded to fit back into the int32_t.
std::optional<Point> intersect(const Segment& s0, const Segment& s1) {
// Check if the bounds intersect.
if (no_intersection_by_bounding_box(s0, s1)) {
return std::nullopt;
}
// Create the end Points for s0 and s1
const Point P0 = s0.upper(),
P1 = s0.lower(),
P2 = s1.upper(),
P3 = s1.lower();
if (P0 == P2 || P1 == P3 || P1 == P2 || P3 == P0) {
// Lines don't intersect if they share an end point.
return std::nullopt;
}
// Create the Q, R, and T.
const Point Q = P1 - P0,
R = P2 - P0,
T = P3 - P2;
// 64-bit cross product.
auto cross = [](const Point& v0, const Point& v1) {
int64_t x0 = SkToS64(v0.x),
y0 = SkToS64(v0.y),
x1 = SkToS64(v1.x),
y1 = SkToS64(v1.y);
return x0 * y1 - y0 * x1;
};
// Calculate the cross products needed for calculating s and t.
const int64_t QxR = cross(Q, R),
TxR = cross(T, R),
TxQ = cross(T, Q);
if (TxQ == 0) {
// Both t and s are either < 0 or > 1 because the denominator is 0.
return std::nullopt;
}
// t = (Q x R) / (T x Q). s = (T x R) / (T x Q). Check that t & s are on [0, 1]
if ((QxR ^ TxQ) < 0 || (TxR ^ TxQ) < 0) {
// The division is negative and t or s < 0.
return std::nullopt;
}
if (TxQ > 0) {
if (QxR > TxQ || TxR > TxQ) {
// t or s is greater than 1.
return std::nullopt;
}
} else {
if (QxR < TxQ || TxR < TxQ) {
// t or s is greater than 1.
return std::nullopt;
}
}
// Calculate the intersection using doubles.
// TODO: This is just a placeholder approximation for calculating x and y should use big math
// above.
const double t = static_cast<double>(QxR) / static_cast<double>(TxQ);
SkASSERT(0 <= t && t <= 1);
const int32_t x = std::round(t * (P3.x - P2.x) + P2.x),
y = std::round(t * (P3.y - P2.y) + P2.y);
return Point{x, y};
}
// The comparison is:
// x0 + (y - y0)(x1 - x0) / (y1 - y0) <? x2 + (y - y2)(x3 - x2) / (y3 - y2)
// Factor out numerators:
// [x0(y1 - y0) + (y - y0)(x1 - x0)] / (y1 - y0) <? [x2(y3 - y2) + (y - y2)(x3 -x 2)] / (y3 - y2)
// Removing the divides by cross multiplying.
// [x0(y1 - y0) + (y - y0)(x1 - x0)] (y3 - y2) <? [x2(y3 - y2) + (y - y2)(x3 - x2)] (y1 - y0)
// This is a 64-bit int x0 + (y - y0) (x1 - x0) times a 32-int (y3 - y2) resulting in a 96-bit int,
// and the same applies to the other side of the <?. Because y0 <= y1 and y2 <= y3, then the
// differences of (y1 - y0) and (y3 - y2) are positive allowing us to multiply through without
// worrying about sign changes.
bool less_than_at(const Segment& s0, const Segment& s1, int32_t y) {
auto [l0, t0, r0, b0] = s0.bounds();
auto [l1, t1, r1, b1] = s1.bounds();
SkASSERT(t0 <= y && y <= b0);
SkASSERT(t1 <= y && y <= b1);
// Return true if the bounding box of s0 is fully to the left of s1.
if (r0 < l1) {
return true;
}
// Return false if the bounding box of s0 is fully to the right of s1.
if (r1 < l0) {
return false;
}
// Check the x intercepts along the horizontal line at y.
// Make s0 be (x0, y0) -> (x1, y1) and s1 be (x2, y2) -> (x3, y3).
auto [x0, y0] = s0.upper();
auto [x1, y1] = s0.lower();
auto [x2, y2] = s1.upper();
auto [x3, y3] = s1.lower();
int64_t s0YDiff = y - y0,
s1YDiff = y - y2,
s0YDelta = y1 - y0,
s1YDelta = y3 - y2,
x0Offset = x0 * s0YDelta + s0YDiff * (x1 - x0),
x2Offset = x2 * s1YDelta + s1YDiff * (x3 - x2);
Int96 s0Factor = multiply(x0Offset, y3 - y2),
s1Factor = multiply(x2Offset, y1 - y0);
return s0Factor < s1Factor;
}
bool point_less_than_segment_in_x(Point p, const Segment& segment) {
auto [l, t, r, b] = segment.bounds();
// Ensure that the segment intersects the horizontal sweep line
SkASSERT(t <= p.y && p.y <= b);
// Fast answers using bounding boxes.
if (p.x < l) {
return true;
} else if (p.x >= r) {
return false;
}
auto [x0, y0] = segment.upper();
auto [x1, y1] = segment.lower();
auto [x2, y2] = p;
// For a point and a segment the comparison is:
// x2 < x0 + (y2 - y0)(x1 - x0) / (y1 - y0)
// becomes
// (x2 - x0)(y1 - y0) < (x1 - x0)(y2 - y0)
// We don't need to worry about the signs changing in the cross multiply because (y1 - y0) is
// always positive. Manipulating a little further derives predicate 2 from "Robust Plane
// Sweep for Intersecting Segments" page 9.
// 0 < (x1 - x0)(y2 - y0) - (x2 - x0)(y1 - y0)
// becomes
// | x1-x0 x2-x0 |
// 0 < | y1-y0 y2-y0 |
return SkToS64(x2 - x0) * SkToS64(y1 - y0) < SkToS64(y2 - y0) * SkToS64(x1 - x0);
}
// The design of this function allows its use with std::lower_bound. lower_bound returns the
// iterator to the first segment where rounded_point_less_than_segment_in_x_lower returns false.
// Therefore, we want s(y) < (x - ½) to return true, then start returning false when s(y) ≥ (x - ½).
bool rounded_point_less_than_segment_in_x_lower(const Segment& s, Point p) {
const auto [l, t, r, b] = s.bounds();
const auto [x, y] = p;
// Ensure that the segment intersects the horizontal sweep line
SkASSERT(t <= y && y <= b);
// In the comparisons below, x is really x - ½
if (r < x) {
// s is entirely < p.
return true;
} else if (x <= l) {
// s is entirely > p. This also handles vertical lines, so we don't have to handle them
// below.
return false;
}
const auto [x0, y0] = s.upper();
const auto [x1, y1] = s.lower();
// Horizontal - from the guards above we know that p is on s.
if (y0 == y1) {
return false;
}
// s is not horizontal or vertical.
SkASSERT(x0 != x1 && y0 != y1);
// Given the segment upper = (x0, y0) and lower = (x1, y1)
// x0 + (x1 - x0)(y - y0) / (y1 - y0) < x - ½
// (x1 - x0)(y - y0) / (y1 - y0) < x - x0 - ½
// Because (y1 - y0) is always positive we can multiply through the inequality without
// worrying about sign changes.
// (x1 - x0)(y - y0) < (x - x0 - ½)(y1 - y0)
// (x1 - x0)(y - y0) < ½(2x - 2x0 - 1)(y1 - y0)
// 2(x1 - x0)(y - y0) < (2(x - x0) - 1)(y1 - y0)
return 2 * SkToS64(x1 - x0) * SkToS64(y - y0) < (2 * SkToS64(x - x0) - 1) * SkToS64(y1 - y0);
}
// The design of this function allows use with std::lower_bound. lower_bound returns the iterator
// to the first segment where rounded_point_less_than_segment_in_x_upper is false. This function
// implements s(y) < (x + ½).
bool rounded_point_less_than_segment_in_x_upper(const Segment& s, Point p) {
const auto [l, t, r, b] = s.bounds();
const auto [x, y] = p;
// Ensure that the segment intersects the horizontal sweep line
SkASSERT(t <= y && y <= b);
// In the comparisons below, x is really x + ½
if (r <= x) {
// s is entirely < p.
return true;
} else if (x < l) {
// s is entirely > p. This also handles vertical lines, so we don't have to handle them
// below.
return false;
}
const auto [x0, y0] = s.upper();
const auto [x1, y1] = s.lower();
// Horizontal - from the guards above we know that p is on s.
if (y0 == y1) {
return false;
}
// s is not horizontal or vertical.
SkASSERT(x0 != x1 && y0 != y1);
// Given the segment upper = (x0, y0) and lower = (x1, y1)
// x0 + (x1 - x0)(y - y0) / (y1 - y0) < x + ½
// (x1 - x0)(y - y0) / (y1 - y0) < x - x0 + ½
// Because (y1 - y0) is always positive we can multiply through the inequality without
// worrying about sign changes.
// (x1 - x0)(y - y0) < (x - x0 + ½)(y1 - y0)
// (x1 - x0)(y - y0) < ½(2x - 2x0 + 1)(y1 - y0)
// 2(x1 - x0)(y - y0) < (2(x - x0) + 1)(y1 - y0)
return 2 * SkToS64(x1 - x0) * SkToS64(y - y0) < (2 * SkToS64(x - x0) + 1) * SkToS64(y1 - y0);
}
int compare_slopes(const Segment& s0, const Segment& s1) {
Point s0Delta = s0.lower() - s0.upper(),
s1Delta = s1.lower() - s1.upper();
// Handle the horizontal cases to avoid dealing with infinities.
if (s0Delta.y == 0 || s1Delta.y == 0) {
if (s0Delta.y != 0) {
return -1;
} else if (s1Delta.y != 0) {
return 1;
} else {
return 0;
}
}
// Compare s0Delta.x / s0Delta.y ? s1Delta.x / s1Delta.y. I used the alternate slope form for
// two reasons.
// * no change of sign - since the delta ys are always positive, then I don't need to worry
// about the change in sign with the cross-multiply.
// * proper slope ordering - the slope monotonically increases from the smallest along the
// negative x-axis increasing counterclockwise to the largest along
// the positive x-axis.
int64_t lhs = SkToS64(s0Delta.x) * SkToS64(s1Delta.y),
rhs = SkToS64(s1Delta.x) * SkToS64(s0Delta.y);
if (lhs < rhs) {
return -1;
} else if (lhs > rhs) {
return 1;
} else {
return 0;
}
}
} // namespace bentleyottmann