| // Copyright 2023 Google LLC |
| // Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. |
| |
| #include "modules/bentleyottmann/include/Myers.h" |
| |
| #include "include/core/SkSpan.h" |
| #include "include/private/base/SkAssert.h" |
| #include "include/private/base/SkTo.h" |
| #include "modules/bentleyottmann/include/Int96.h" |
| |
| #include <algorithm> |
| #include <climits> |
| #include <cstdint> |
| #include <iterator> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| namespace myers { |
| |
| // -- Point ---------------------------------------------------------------------------------------- |
| Point operator-(const Point& p0, const Point& p1) { |
| return {p0.x - p1.x, p0.y - p1.y}; |
| } |
| |
| std::tuple<int64_t, int64_t> point_to_s64(Point p) { |
| return std::make_tuple(SkToS64(p.x), SkToS64(p.y)); |
| } |
| |
| // -- Segment -------------------------------------------------------------------------------------- |
| const Point& Segment::upper() const { |
| return fUpper; |
| } |
| |
| const Point& Segment::lower() const { |
| return fLower; |
| } |
| |
| std::tuple<int32_t, int32_t, int32_t, int32_t> Segment::bounds() const { |
| auto [left, right] = std::minmax(fUpper.x, fLower.x); |
| return std::make_tuple(left, fUpper.y, right, fLower.y); |
| } |
| |
| bool Segment::isHorizontal() const { |
| return fUpper.y == fLower.y; |
| } |
| |
| bool Segment::isVertical() const { |
| return fUpper.x == fLower.x; |
| } |
| |
| // Return: |
| // | d0x d1x | |
| // | d0y d1y | |
| int64_t cross(Point d0, Point d1) { |
| const auto [d0x, d0y] = point_to_s64(d0); |
| const auto [d1x, d1y] = point_to_s64(d1); |
| return d0x * d1y - d1x * d0y; |
| } |
| |
| // compare_slopes returns a comparison of the slope of s0 to the slope of s1 where |
| // slope(s) = dx / dy |
| // instead of the regular dy / dx, and neither s0 nor s1 are horizontal. |
| // |
| // The slope for non-horizontal segments monotonically increases from the smallest along the |
| // negative x-axis increasing counterclockwise to the largest along the positive x-axis. |
| int64_t compare_slopes(const Segment& s0, const Segment& s1) { |
| // Handle cases involving horizontal segments. |
| if (s0.isHorizontal() || s1.isHorizontal()) { |
| if (s0.isHorizontal() && s1.isHorizontal()) { |
| // slope(s0) == slope(s1) |
| return 0; |
| } |
| if (s0.isHorizontal()) { |
| // slope(s0) > slope(s1) |
| return 1; |
| } else { |
| // slope(s0) < slope(s1) |
| return -1; |
| } |
| } |
| |
| const auto [u0, l0] = s0; |
| const auto [u1, l1] = s1; |
| |
| const Point d0 = l0 - u0; |
| const Point d1 = l1 - u1; |
| |
| // Since horizontal lines are handled separately and because of the ordering of points for |
| // a segment, then d0y and d1y should always be positive. |
| SkASSERT(d0.y > 0 && d1.y > 0); |
| |
| // * slope(s0) = d0.x / d0.y |
| // * slope(s1) = d1.x / d1.y |
| // If we want to find d0.x / d0.y < d1.x / d1.y, then |
| // d0x * d1y < d1x * d0y |
| // d0x * d1y - d1x * d0y < 0. |
| // |
| // We know that d0.y and d1.y are both positive, therefore, we can do a cross multiply without |
| // worrying about changing the relation. |
| // We can define ==, and > in a similar way: |
| // * < - cross_of_slopes(s0, s1) < 0 |
| // * == - cross_of_slopes(s0, s1) == 0 |
| // * > - cross_of_slopes(s0, s1) > 0 |
| return cross(d0, d1); |
| } |
| |
| // Returns true of slope(s0) < slope(s1). See compare_slopes above for more information. |
| bool slope_s0_less_than_slope_s1(const Segment& s0, const Segment& s1) { |
| return compare_slopes(s0, s1) < 0; |
| } |
| |
| // compare_point_to_segment the relation between a point p and a segment s in the following way: |
| // * p < s if the cross product is negative. |
| // * p == s if the cross product is zero. |
| // * p > s if the cross product is positive. |
| int64_t compare_point_to_segment(Point p, const Segment& s) { |
| const auto [u, l] = s; |
| |
| // The segment must span p vertically. |
| SkASSERT(u.y <= p.y && p.y <= l.y); |
| |
| // Check horizontal extents. |
| { |
| const auto [left, right] = std::minmax(u.x, l.x); |
| if (p.x < left) { |
| return -1; |
| } |
| |
| if (right < p.x) { |
| return 1; |
| } |
| } |
| |
| // If s is horizontal, then p is on the interval [u.x, l.x]. |
| if (s.isHorizontal()) { |
| return 0; |
| } |
| |
| // The point p < s when: |
| // p.x < u.x + (l.x - u.x)(p.y - u.y) / (l.y - u.y), |
| // p.x - u.x < (l.x - u.x)(p.y - u.y) / (l.y - u.y), |
| // (p.x - u.x)(l.y - u.y) < (l.x - u.x)(p.y - u.y), |
| // (p.x - u.x)(l.y - u.y) - (l.x - u.x)(p.y - u.y) < 0, |
| // (p - u) x (l - u) < 0, |
| // dUtoP x dS < 0. |
| // The other relations can be implemented in a similar way. |
| const Point dUToP = p - u; |
| const Point dS = l - u; |
| |
| SkASSERT(dS.y > 0); |
| return cross(dUToP, dS); |
| } |
| |
| // segment_less_than_upper_to_insert is used with std::lower_bound to find the place to insert the |
| // segment to_insert in a vector. The signature of this function is crafted to work with |
| // lower_bound. |
| bool segment_less_than_upper_to_insert(const Segment& segment, const Segment& to_insert) { |
| const int64_t compare = compare_point_to_segment(to_insert.upper(), segment); |
| |
| // compare > 0 when segment < to_insert.upper(). |
| return (compare > 0) || ((compare == 0) && slope_s0_less_than_slope_s1(segment, to_insert)); |
| } |
| |
| // Return true if s0(y) < s1(y) else if s0(y) == s1(y) then slope(s0) < slope(s1) |
| bool s0_less_than_s1_at_y(const Segment& s0, const Segment& s1, int32_t y) { |
| // Neither s0 nor s1 are horizontal because this is used during the sorting phase |
| SkASSERT(!s0.isHorizontal() && !s1.isHorizontal()); |
| |
| const auto [u0, l0] = s0; |
| const auto [u1, l1] = s1; |
| |
| const auto [left0, right0] = std::minmax(u0.x, l0.x); |
| const auto [left1, right1] = std::minmax(u1.x, l1.x); |
| |
| if (right0 < left1) { |
| return true; |
| } else if (right1 < left0) { |
| return false; |
| } |
| |
| const Point d0 = l0 - u0; |
| const Point d1 = l1 - u1; |
| |
| // Since horizontal lines are handled separately and the ordering of points for the segment, |
| // then there should always be positive Dy. |
| SkASSERT(d0.y > 0 && d1.y > 0); |
| |
| namespace bo = bentleyottmann; |
| using Int96 = bo::Int96; |
| |
| // Defining s0(y) and s1(y), |
| // s0(y) = u0.x + (y - u0.y) * d0.x / d0.y |
| // s1(y) = u1.x + (y - u1.y) * d1.x / d1.y |
| // Find the following |
| // s0(y) < s1(y) |
| // Substituting s0(y) and s1(y) |
| // u0.x + (y - u0.y) * d0.x / d0.y < u1.x + (y - u1.y) * d1.x / d1.y |
| // Factoring out the denominator. |
| // (u0.x * d0.y + (y - u0.y) * d0.x) / d0.y < (u1.x * d1.y + (y - u1.y) * d1.x) / d1.y |
| // Cross-multiplying the denominators. The sign will not switch because d0.y and d1.y are |
| // always positive. |
| // d1.y * (u0.x * d0.y + (y - u0.y) * d0.x) < d0.y * (u1.x * d1.y + (y - u1.y) * d1.x) |
| // If these are equal, then we use the slope to break the tie. |
| // d0.x / d0.y < d1.x / d1.y |
| // Cross multiplying leaves. |
| // d0.x * d1.y < d1.x * d0.y |
| const Int96 lhs = bo::multiply(d1.y, u0.x * SkToS64(d0.y) + (y - u0.y) * SkToS64(d0.x)); |
| const Int96 rhs = bo::multiply(d0.y, u1.x * SkToS64(d1.y) + (y - u1.y) * SkToS64(d1.x)); |
| |
| return lhs < rhs || ((lhs == rhs) && slope_s0_less_than_slope_s1(s0, s1)); |
| } |
| |
| // -- Event ---------------------------------------------------------------------------------------- |
| // Events are horizontal lines at a given y where segments are added, or they contain one or |
| // more horizontal lines, or segments end. |
| struct Event { |
| const int32_t y; |
| |
| // The set of segments that begin at y. |
| SkSpan<const Segment> begin; |
| |
| // The set of segments that are horizontal on y. |
| SkSpan<const Segment> horizontal; |
| |
| // The set of segments that end on y. |
| SkSpan<const Segment> end; |
| }; |
| |
| // -- EventQueue ----------------------------------------------------------------------------------- |
| // The EventQueue produces Events. Events are never added to the queue after initial creation. |
| class EventQueue { |
| class Iterator { |
| public: |
| using value_type = Event; |
| using difference_type = ptrdiff_t; |
| using pointer = value_type*; |
| using reference = value_type; |
| using iterator_category = std::input_iterator_tag; |
| Iterator(const EventQueue& eventQueue, size_t index) |
| : fEventQueue{eventQueue} |
| , fIndex{index} { } |
| Iterator(const Iterator& that) : Iterator{ that.fEventQueue, that.fIndex } { } |
| Iterator& operator++() { ++fIndex; return *this; } |
| Iterator operator++(int) { Iterator tmp(*this); operator++(); return tmp; } |
| bool operator==(const Iterator& rhs) const { return fIndex == rhs.fIndex; } |
| bool operator!=(const Iterator& rhs) const { return fIndex != rhs.fIndex; } |
| value_type operator*() { return fEventQueue[fIndex]; } |
| friend difference_type operator-(Iterator lhs, Iterator rhs) { |
| return lhs.fIndex - rhs.fIndex; |
| } |
| |
| private: |
| const EventQueue& fEventQueue; |
| size_t fIndex = 0; |
| }; |
| |
| // Events are stored using CompactEvent, Events are only passed back from nextEvent. start, |
| // endOfBegin, etc. are all indexes into fSegmentStorage. The beginning segments for the event |
| // are from start to endOfBegin, the horizontal segments are from endOfBegin to endOfStart, and |
| // the end segments are from endOfHorizontal to endOfEnd. |
| class CompactEvent { |
| public: |
| const int32_t y; |
| const int32_t start; |
| const int32_t endOfBegin; |
| const int32_t endOfHorizontal; |
| const int32_t endOfEnd; |
| }; |
| |
| public: |
| // Given a list of segments make an EventQueue, and populate its queue with events. |
| static EventQueue Make(const SkSpan<const Segment> segments) { |
| SkASSERT(!segments.empty()); |
| SkASSERT(segments.size() < INT32_MAX); |
| |
| enum EventType { |
| kBegin = 0, |
| kHorizontal = 1, |
| kEnd = 2 |
| }; |
| |
| // A vector of SetupTuple when ordered will produce the events, and all the different |
| // sets of segments (beginning, etc.). |
| struct SetupTuple { |
| // The main ordering of events. |
| int32_t yOrdering; |
| |
| // Group together like event types together. |
| EventType type; |
| |
| // Break ties if yOrdering is the same. |
| int32_t xTieBreaker; |
| |
| // We want to sort the segments, but they are not part of the key. |
| Segment originalSegment; |
| |
| bool operator==(const SetupTuple& r) const { |
| return |
| std::tie(this->yOrdering, this->type, this->xTieBreaker, this->originalSegment) |
| == std::tie(r.yOrdering, r.type, r.xTieBreaker, r.originalSegment); |
| } |
| }; |
| |
| std::vector<SetupTuple> eventOrdering; |
| for (const auto& s : segments) { |
| |
| // Exclude zero length segments. |
| if (s.upper() == s.lower()) { |
| continue; |
| } |
| |
| if (s.isHorizontal()) { |
| // Tag for the horizontal set. |
| eventOrdering.push_back(SetupTuple{s.upper().y, kHorizontal, -s.upper().x, s}); |
| } else { |
| // Tag for the beginning and ending sets. |
| eventOrdering.push_back(SetupTuple{s.upper().y, kBegin, -s.upper().x, s}); |
| eventOrdering.push_back(SetupTuple{s.lower().y, kEnd, -s.lower().x, s}); |
| } |
| } |
| |
| // Order the tuples by y, then by set type, then by x value. |
| auto eventLess = [](const SetupTuple& l, const SetupTuple& r) { |
| return std::tie(l.yOrdering, l.type, l.xTieBreaker) < |
| std::tie(r.yOrdering, r.type, r.xTieBreaker); |
| }; |
| |
| // Sort the events. |
| std::sort(eventOrdering.begin(), eventOrdering.end(), eventLess); |
| |
| // Remove duplicate segments. |
| auto eraseFrom = std::unique(eventOrdering.begin(), eventOrdering.end()); |
| eventOrdering.erase(eraseFrom, eventOrdering.end()); |
| |
| std::vector<CompactEvent> events; |
| std::vector<Segment> segmentStorage; |
| segmentStorage.reserve(eventOrdering.size()); |
| |
| int32_t currentY = eventOrdering.front().yOrdering; |
| int32_t start = 0, |
| endOfBegin = 0, |
| endOfHorizontal = 0, |
| endOfEnd = 0; |
| for (const auto& [y, type, _, s] : eventOrdering) { |
| // If this is a new y then create the compact event. |
| if (currentY != y) { |
| events.push_back(CompactEvent{currentY, |
| start, |
| endOfBegin, |
| endOfHorizontal, |
| endOfEnd}); |
| start = endOfBegin = endOfHorizontal = endOfEnd = segmentStorage.size(); |
| currentY = y; |
| } |
| |
| segmentStorage.push_back(s); |
| |
| // Increment the various set indices. |
| const size_t segmentCount = segmentStorage.size(); |
| switch (type) { |
| case kBegin: endOfBegin = segmentCount; |
| [[fallthrough]]; |
| case kHorizontal: endOfHorizontal = segmentCount; |
| [[fallthrough]]; |
| case kEnd: endOfEnd = segmentCount; |
| } |
| } |
| |
| // Store the last event. |
| events.push_back(CompactEvent{currentY, |
| start, |
| endOfBegin, |
| endOfHorizontal, |
| endOfEnd}); |
| |
| return EventQueue{std::move(events), std::move(segmentStorage)}; |
| } |
| |
| Event operator[](size_t i) const { |
| SkASSERT(i < fEvents.size()); |
| auto& [y, start, endOfBegin, endOfHorizontal, endOfEnd] = fEvents[i]; |
| SkSpan<const Segment> begin{&fSegmentStorage[start], endOfBegin - start}; |
| SkSpan<const Segment> |
| horizontal{&fSegmentStorage[endOfBegin], endOfHorizontal - endOfBegin}; |
| SkSpan<const Segment> end{&fSegmentStorage[endOfHorizontal], endOfEnd - endOfHorizontal}; |
| return Event{y, begin, horizontal, end}; |
| } |
| |
| Iterator begin() const { |
| return Iterator{*this, 0}; |
| } |
| |
| Iterator end() const { |
| return Iterator{*this, fEvents.size()}; |
| } |
| |
| size_t size() const { |
| return fEvents.size(); |
| } |
| |
| bool empty() const { |
| return fEvents.empty(); |
| } |
| |
| private: |
| EventQueue(std::vector<CompactEvent>&& events, std::vector<Segment>&& segmentStorage) |
| : fEvents{std::move(events)} |
| , fSegmentStorage{std::move(segmentStorage)} {} |
| |
| const std::vector<CompactEvent> fEvents; |
| const std::vector<Segment> fSegmentStorage; |
| }; |
| |
| // -- CrossingAccumulator -------------------------------------------------------------------------- |
| // Collect all the crossings, and reject endpoint-to-endpoint crossings as those intersections |
| // are already represented in the data. |
| class CrossingAccumulator { |
| public: |
| void recordCrossing(const Segment& s0, const Segment& s1) { |
| // Endpoints with no possible interior overlap. |
| if (s0.upper() == s1.lower() || s0.lower() == s1.upper()) { |
| return; |
| } |
| |
| // Segments don't overlap if they are not collinear. |
| if ((s0.upper() == s1.upper() || s0.lower() == s1.lower()) && compare_slopes(s0, s1) != 0) { |
| return; |
| } |
| |
| fCrossings.emplace_back(s0, s1); |
| } |
| |
| std::vector<Crossing> finishAndReleaseCrossings() { |
| return std::move(fCrossings); |
| } |
| |
| private: |
| std::vector<Crossing> fCrossings; |
| }; |
| |
| class SweepLine { |
| static constexpr Segment kLeftStatusSentinel{{INT32_MIN, INT32_MIN}, {INT32_MIN, INT32_MAX}}; |
| static constexpr Segment kRightStatusSentinel{{INT32_MAX, INT32_MIN}, {INT32_MAX, INT32_MAX}}; |
| |
| public: |
| SweepLine() { |
| fStatus.push_back(kLeftStatusSentinel); |
| fStatus.push_back(kRightStatusSentinel); |
| } |
| |
| void handleEvent(Event e) { |
| auto& [y, beginnings, horizontals, endings] = e; |
| |
| // Things could be out of order from last event. |
| this->sortAndRecord(y); |
| |
| this->handleBeginnings(y, beginnings); |
| this->handleHorizontals(y, horizontals); |
| this->handleEndings(endings); |
| } |
| |
| std::vector<Crossing> finishAndReleaseCrossings() { |
| // Only the sentinels should be left. |
| SkASSERT(this->statusEmpty()); |
| return fCrossings.finishAndReleaseCrossings(); |
| } |
| |
| private: |
| using StatusLine = std::vector<Segment>; |
| |
| bool statusEmpty() const { |
| return fStatus.size() == 2; |
| } |
| |
| // Sort the status line, if items are swapped, then there is a crossing to record. |
| void sortAndRecord(int32_t y) { |
| // If there are only the sentinels or just 1 segment, then nothing to sort. |
| if (fStatus.size() <= 3) { |
| return; |
| } |
| |
| // Skip the first and last sentinels. |
| for (size_t i = 2; i < fStatus.size() - 1; ++i) { |
| const Segment t = fStatus[i]; |
| size_t j = i; |
| for (; j > 1 && s0_less_than_s1_at_y(t, fStatus[j - 1], y); --j) { |
| // While t < the thing before it move it down. |
| fCrossings.recordCrossing(t, fStatus[j-1]); |
| fStatus[j] = fStatus[j-1]; |
| } |
| fStatus[j] = t; |
| } |
| } |
| |
| // When inserting a starting point (either a beginning or a horizontal) check the segments to |
| // the left and the right checking nearby segments for crossings. |
| template <typename CrossingCheck> |
| void checkCrossingsLeftAndRight( |
| const Segment& segment, StatusLine::iterator insertionPoint, CrossingCheck check) { |
| |
| // Match to the left using the left sentinel to break the loop. |
| for (auto cursor = std::make_reverse_iterator(insertionPoint); check(*cursor); ++cursor) { |
| fCrossings.recordCrossing(segment, *cursor); |
| } |
| |
| // Match to the right using the right sentinel to break the loop. |
| for (auto cursor = insertionPoint; check(*cursor); ++cursor) { |
| fCrossings.recordCrossing(segment, *cursor); |
| } |
| } |
| |
| // Add segments that start on y excluding horizontals. |
| void handleBeginnings(int32_t y, SkSpan<const Segment> inserting) { |
| for (const Segment& s : inserting) { |
| auto insertionPoint = |
| std::lower_bound(fStatus.begin(), fStatus.end(), s, |
| segment_less_than_upper_to_insert); |
| |
| // Checking intersections left and right checks if the point s.upper() lies on |
| // the nearby segment. |
| auto checkIntersect = [&](const Segment& toCheck) { |
| return compare_point_to_segment(s.upper(), toCheck) == 0; |
| }; |
| this->checkCrossingsLeftAndRight(s, insertionPoint, checkIntersect); |
| |
| fStatus.insert(insertionPoint, s); |
| } |
| } |
| |
| // Horizontals on y are handled by checking for crossings by adding them, and then immediately |
| // removing them. |
| void handleHorizontals(int32_t y, SkSpan<const Segment> horizontals) { |
| for (const Segment& s : horizontals) { |
| auto insertionPoint = |
| std::lower_bound(fStatus.begin(), fStatus.end(), s, |
| segment_less_than_upper_to_insert); |
| |
| // Check if the nearby segment crosses the horizontal line. |
| auto checkIntersection = [&](const Segment& toCheck) { |
| return compare_point_to_segment(s.upper(), toCheck) <= 0 && |
| compare_point_to_segment(s.lower(), toCheck) >= 0; |
| }; |
| this->checkCrossingsLeftAndRight(s, insertionPoint, checkIntersection); |
| |
| fStatus.insert(insertionPoint, s); |
| } |
| |
| this->handleEndings(horizontals); |
| } |
| |
| // Remove all the segments ending on y. |
| void handleEndings(SkSpan<const Segment> removing) { |
| for (const Segment& s : removing) { |
| auto removedPoint = std::remove(fStatus.begin(), fStatus.end(), s); |
| SkASSERT(removedPoint != fStatus.end()); |
| fStatus.erase(removedPoint, fStatus.end()); |
| } |
| } |
| |
| StatusLine fStatus; |
| CrossingAccumulator fCrossings; |
| }; |
| |
| std::vector<Crossing> myers_find_crossings(const SkSpan<const Segment> segments) { |
| const EventQueue eventQueue = EventQueue::Make(segments); |
| SweepLine sweepLine; |
| |
| for (const Event& event : eventQueue) { |
| sweepLine.handleEvent(event); |
| } |
| |
| return sweepLine.finishAndReleaseCrossings(); |
| } |
| |
| // This intersection algorithm is from "Robust Plane Sweep for Intersecting Segments" page 10. |
| bool s0_intersects_s1(const Segment& s0, const Segment& s1) { |
| // Make sure that s0 upper is above s1 upper. |
| if (s1.upper().y < s0.upper().y |
| || ((s1.upper().y == s0.upper().y) && (s1.lower().y > s0.lower().y))) { |
| |
| // Swap to put in the right orientation. |
| return s0_intersects_s1(s1, s0); |
| } |
| |
| SkASSERT(s0.upper().y <= s1.upper().y); |
| |
| { // If extents don't overlap then there is no intersection. |
| auto [left0, top0, right0, bottom0] = s0.bounds(); |
| auto [left1, top1, right1, bottom1] = s1.bounds(); |
| if (right1 < left0 || right0 < left1 || bottom1 < top0 || bottom0 < top1) { |
| return false; |
| } |
| } |
| |
| auto [u0, l0] = s0; |
| auto [u1, l1] = s1; |
| |
| const Point D0 = l0 - u0, |
| D1 = l1 - u1; |
| |
| // If the vector from u0 to l0 (named D0) and the vector from u0 to u1 have an angle of 0 |
| // between them, then u1 is on the segment u0 to l0 (named s0). |
| const Point U0toU1 = (u1 - u0); |
| const int64_t D0xU0toU1 = cross(D0, U0toU1); |
| if (D0xU0toU1 == 0) { |
| // u1 is on s0. |
| return true; |
| } |
| |
| if (l1.y <= l0.y) { |
| // S1 is between the upper and lower points of S0. |
| const Point U0toL1 = (l1 - u0); |
| const int64_t D0xU0toL1 = cross(D0, U0toL1); |
| if (D0xU0toL1 == 0) { |
| // l1 is on s0. |
| return true; |
| } |
| |
| // If U1 and L1 are on opposite sides of D0 then the segments cross. |
| return (D0xU0toU1 ^ D0xU0toL1) < 0; |
| } else { |
| // S1 extends past S0. It could be that S1 crosses the line of S0 (not the bound segment) |
| // beyond the endpoints of S0. Make sure that it crosses on the segment and not beyond. |
| const Point U1toL0 = (l0 - u1); |
| const int64_t D1xU1toL0 = cross(D1, U1toL0); |
| if (D1xU1toL0 == 0) { |
| return true; |
| } |
| |
| // For D1 to cross D0, then D1 must be on the same side of U1toL0 as D0. D0xU0toU1 |
| // describes the orientation of U0 compared to D0. The angle from D1 to U1toL0 must |
| // have the same direction as the angle from U0toU1 to D0. |
| return (D0xU0toU1 ^ D1xU1toL0) >= 0; |
| } |
| } |
| |
| std::vector<Crossing> brute_force_crossings(SkSpan<Segment> segments) { |
| |
| auto isNonZeroSegment = [](const Segment& segment) { |
| return segment.upper() != segment.lower(); |
| }; |
| const auto zeroSegments = std::partition(segments.begin(), segments.end(), isNonZeroSegment); |
| |
| std::sort(segments.begin(), zeroSegments); |
| |
| const auto duplicateSegments = std::unique(segments.begin(), zeroSegments); |
| |
| SkSpan<const Segment> cleanSegments = |
| SkSpan{segments.data(), std::distance(segments.begin(), duplicateSegments)}; |
| |
| CrossingAccumulator crossings; |
| if (cleanSegments.size() >= 2) { |
| for (auto i = cleanSegments.begin(); i != std::prev(cleanSegments.end()); ++i) { |
| for (auto j = std::next(i); j != cleanSegments.end(); ++j) { |
| if (s0_intersects_s1(*i, *j)) { |
| crossings.recordCrossing(*i, *j); |
| } |
| } |
| } |
| } |
| return crossings.finishAndReleaseCrossings(); |
| } |
| } // namespace myers |