blob: 6c578810fb7ae452e6e39e06c0a6393b7f2bd9c3 [file] [log] [blame]
/*
* Copyright 2019 Google LLC.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/tessellate/GrTessellatePathOp.h"
#include "src/gpu/GrEagerVertexAllocator.h"
#include "src/gpu/GrGpu.h"
#include "src/gpu/GrOpFlushState.h"
#include "src/gpu/GrTriangulator.h"
#include "src/gpu/tessellate/GrFillPathShader.h"
#include "src/gpu/tessellate/GrMiddleOutPolygonTriangulator.h"
#include "src/gpu/tessellate/GrMidpointContourParser.h"
#include "src/gpu/tessellate/GrResolveLevelCounter.h"
#include "src/gpu/tessellate/GrStencilPathShader.h"
constexpr static int kMaxResolveLevel = GrMiddleOutCubicShader::kMaxResolveLevel;
constexpr static float kTessellationIntolerance = 4; // 1/4 of a pixel.
GrTessellatePathOp::FixedFunctionFlags GrTessellatePathOp::fixedFunctionFlags() const {
auto flags = FixedFunctionFlags::kUsesStencil;
if (GrAAType::kNone != fAAType) {
flags |= FixedFunctionFlags::kUsesHWAA;
}
return flags;
}
void GrTessellatePathOp::onPrePrepare(GrRecordingContext*,
const GrSurfaceProxyView* writeView,
GrAppliedClip*,
const GrXferProcessor::DstProxyView&) {
}
void GrTessellatePathOp::onPrepare(GrOpFlushState* flushState) {
int numVerbs = fPath.countVerbs();
if (numVerbs <= 0) {
return;
}
// First check if the path is large and/or simple enough that we can actually triangulate the
// inner polygon(s) on the CPU. This is our fastest approach. It allows us to stencil only the
// curves, and then fill the internal polygons directly to the final render target, thus drawing
// the majority of pixels in a single render pass.
SkScalar scales[2];
SkAssertResult(fViewMatrix.getMinMaxScales(scales)); // Will fail if perspective.
const SkRect& bounds = fPath.getBounds();
float gpuFragmentWork = bounds.height() * scales[0] * bounds.width() * scales[1];
float cpuTessellationWork = (float)numVerbs * SkNextLog2(numVerbs); // N log N.
if (cpuTessellationWork * 500 + (256 * 256) < gpuFragmentWork) { // Don't try below 256x256.
int numCountedCubics;
// This will fail if the inner triangles do not form a simple polygon (e.g., self
// intersection, double winding).
if (this->prepareNonOverlappingInnerTriangles(flushState, &numCountedCubics)) {
if (!numCountedCubics) {
return;
}
// Always use indirect draws for cubics instead of tessellation here. Our goal in this
// mode is to maximize GPU performance, and the middle-out topology used by our indirect
// draws is easier on the rasterizer than a tessellated fan. There also seems to be a
// small amount of fixed tessellation overhead that this avoids.
//
// NOTE: This will count fewer cubics than above if it discards any for resolveLevel=0.
GrResolveLevelCounter resolveLevelCounter;
numCountedCubics = resolveLevelCounter.reset(fPath, fViewMatrix,
kTessellationIntolerance);
this->prepareIndirectOuterCubics(flushState, resolveLevelCounter);
return;
}
}
// When there are only a few verbs, it seems to always be fastest to make a single indirect draw
// that contains both the inner triangles and the outer cubics, instead of using hardware
// tessellation. Also take this path if tessellation is not supported.
bool drawTrianglesAsIndirectCubicDraw = (numVerbs < 50);
if (drawTrianglesAsIndirectCubicDraw ||
!flushState->caps().shaderCaps()->tessellationSupport()) {
// Prepare outer cubics with indirect draws.
GrResolveLevelCounter resolveLevelCounter;
this->prepareMiddleOutTrianglesAndCubics(flushState, &resolveLevelCounter,
drawTrianglesAsIndirectCubicDraw);
return;
}
// Next see if we can split up the inner triangles and outer cubics into two draw calls. This
// allows for a more efficient inner triangle topology that can reduce the rasterizer load by a
// large margin on complex paths, but also causes greater CPU overhead due to the extra shader
// switches and draw calls.
// NOTE: Raster-edge work is 1-dimensional, so we sum height and width instead of multiplying.
float rasterEdgeWork = (bounds.height() + bounds.width()) * scales[1] * fPath.countVerbs();
if (rasterEdgeWork > 300 * 300) {
this->prepareMiddleOutTrianglesAndCubics(flushState);
return;
}
// Fastest CPU approach: emit one cubic wedge per verb, fanning out from the center.
this->prepareTessellatedCubicWedges(flushState);
}
bool GrTessellatePathOp::prepareNonOverlappingInnerTriangles(GrMeshDrawOp::Target* target,
int* numCountedCurves) {
SkASSERT(!fTriangleBuffer);
SkASSERT(!fDoStencilTriangleBuffer);
SkASSERT(!fDoFillTriangleBuffer);
using GrTriangulator::Mode;
GrEagerDynamicVertexAllocator vertexAlloc(target, &fTriangleBuffer, &fBaseTriangleVertex);
fTriangleVertexCount = GrTriangulator::PathToTriangles(fPath, 0, SkRect::MakeEmpty(),
&vertexAlloc, Mode::kSimpleInnerPolygons,
numCountedCurves);
if (fTriangleVertexCount == 0) {
// Mode::kSimpleInnerPolygons causes PathToTriangles to fail if the inner polygon(s) are not
// simple.
return false;
}
if (((Flags::kStencilOnly | Flags::kWireframe) & fFlags) || GrAAType::kCoverage == fAAType ||
(target->appliedClip() && target->appliedClip()->hasStencilClip())) {
// If we have certain flags, mixed samples, or a stencil clip then we unfortunately
// can't fill the inner polygon directly. Indicate that these triangles need to be
// stencilled.
fDoStencilTriangleBuffer = true;
}
if (!(Flags::kStencilOnly & fFlags)) {
fDoFillTriangleBuffer = true;
}
return true;
}
void GrTessellatePathOp::prepareMiddleOutTrianglesAndCubics(
GrMeshDrawOp::Target* target, GrResolveLevelCounter* resolveLevelCounter,
bool drawTrianglesAsIndirectCubicDraw) {
SkASSERT(!fTriangleBuffer);
SkASSERT(!fDoStencilTriangleBuffer);
SkASSERT(!fDoFillTriangleBuffer);
SkASSERT(!fCubicBuffer);
SkASSERT(!fStencilCubicsShader);
SkASSERT(!fIndirectDrawBuffer);
// No initial moveTo, plus an implicit close at the end; n-2 triangles fill an n-gon.
int maxInnerTriangles = fPath.countVerbs() - 1;
int maxCubics = fPath.countVerbs();
SkPoint* vertexData;
int vertexAdvancePerTriangle;
if (drawTrianglesAsIndirectCubicDraw) {
// Allocate the triangles as 4-point instances at the beginning of the cubic buffer.
SkASSERT(resolveLevelCounter);
vertexAdvancePerTriangle = 4;
int baseTriangleInstance;
vertexData = static_cast<SkPoint*>(target->makeVertexSpace(
sizeof(SkPoint) * 4, maxInnerTriangles + maxCubics, &fCubicBuffer,
&baseTriangleInstance));
fBaseCubicVertex = baseTriangleInstance * 4;
} else {
// Allocate the triangles as normal 3-point instances in the triangle buffer.
vertexAdvancePerTriangle = 3;
vertexData = static_cast<SkPoint*>(target->makeVertexSpace(
sizeof(SkPoint), maxInnerTriangles * 3, &fTriangleBuffer, &fBaseTriangleVertex));
}
if (!vertexData) {
return;
}
GrVectorXform xform(fViewMatrix);
GrMiddleOutPolygonTriangulator middleOut(vertexData, vertexAdvancePerTriangle,
fPath.countVerbs());
if (resolveLevelCounter) {
resolveLevelCounter->reset();
}
int numCountedCurves = 0;
for (auto [verb, pts, w] : SkPathPriv::Iterate(fPath)) {
switch (verb) {
case SkPathVerb::kMove:
middleOut.closeAndMove(pts[0]);
break;
case SkPathVerb::kLine:
middleOut.pushVertex(pts[1]);
break;
case SkPathVerb::kQuad:
middleOut.pushVertex(pts[2]);
if (resolveLevelCounter) {
// Quadratics get converted to cubics before rendering.
resolveLevelCounter->countCubic(GrWangsFormula::quadratic_log2(
kTessellationIntolerance, pts, xform));
break;
}
++numCountedCurves;
break;
case SkPathVerb::kCubic:
middleOut.pushVertex(pts[3]);
if (resolveLevelCounter) {
resolveLevelCounter->countCubic(GrWangsFormula::cubic_log2(
kTessellationIntolerance, pts, xform));
break;
}
++numCountedCurves;
break;
case SkPathVerb::kClose:
middleOut.close();
break;
case SkPathVerb::kConic:
SkUNREACHABLE;
}
}
int triangleCount = middleOut.close();
SkASSERT(triangleCount <= maxInnerTriangles);
if (drawTrianglesAsIndirectCubicDraw) {
SkASSERT(resolveLevelCounter);
int totalInstanceCount = triangleCount + resolveLevelCounter->totalCubicInstanceCount();
SkASSERT(vertexAdvancePerTriangle == 4);
target->putBackVertices(maxInnerTriangles + maxCubics - totalInstanceCount,
sizeof(SkPoint) * 4);
if (totalInstanceCount) {
this->prepareIndirectOuterCubicsAndTriangles(target, *resolveLevelCounter, vertexData,
triangleCount);
}
} else {
SkASSERT(vertexAdvancePerTriangle == 3);
target->putBackVertices(maxInnerTriangles - triangleCount, sizeof(SkPoint) * 3);
fTriangleVertexCount = triangleCount * 3;
if (fTriangleVertexCount) {
fDoStencilTriangleBuffer = true;
}
if (resolveLevelCounter) {
this->prepareIndirectOuterCubics(target, *resolveLevelCounter);
} else {
this->prepareTessellatedOuterCubics(target, numCountedCurves);
}
}
}
static SkPoint lerp(const SkPoint& a, const SkPoint& b, float T) {
SkASSERT(1 != T); // The below does not guarantee lerp(a, b, 1) === b.
return (b - a) * T + a;
}
static void line2cubic(const SkPoint& p0, const SkPoint& p1, SkPoint* out) {
out[0] = p0;
out[1] = lerp(p0, p1, 1/3.f);
out[2] = lerp(p0, p1, 2/3.f);
out[3] = p1;
}
static void quad2cubic(const SkPoint pts[], SkPoint* out) {
out[0] = pts[0];
out[1] = lerp(pts[0], pts[1], 2/3.f);
out[2] = lerp(pts[1], pts[2], 1/3.f);
out[3] = pts[2];
}
void GrTessellatePathOp::prepareIndirectOuterCubics(
GrMeshDrawOp::Target* target, const GrResolveLevelCounter& resolveLevelCounter) {
SkASSERT(resolveLevelCounter.totalCubicInstanceCount() >= 0);
if (resolveLevelCounter.totalCubicInstanceCount() == 0) {
return;
}
// Allocate a buffer to store the cubic data.
SkPoint* cubicData;
int baseInstance;
cubicData = static_cast<SkPoint*>(target->makeVertexSpace(
sizeof(SkPoint) * 4, resolveLevelCounter.totalCubicInstanceCount(), &fCubicBuffer,
&baseInstance));
if (!cubicData) {
return;
}
fBaseCubicVertex = baseInstance * 4;
this->prepareIndirectOuterCubicsAndTriangles(target, resolveLevelCounter, cubicData,
/*numTrianglesAtBeginningOfData=*/0);
}
void GrTessellatePathOp::prepareIndirectOuterCubicsAndTriangles(
GrMeshDrawOp::Target* target, const GrResolveLevelCounter& resolveLevelCounter,
SkPoint* cubicData, int numTrianglesAtBeginningOfData) {
SkASSERT(numTrianglesAtBeginningOfData + resolveLevelCounter.totalCubicInstanceCount() > 0);
SkASSERT(!fStencilCubicsShader);
SkASSERT(cubicData);
// Here we treat fCubicBuffer as an instance buffer. It should have been prepared with the base
// vertex on an instance boundary in order to accommodate this.
SkASSERT(fBaseCubicVertex % 4 == 0);
int baseInstance = fBaseCubicVertex >> 2;
// Start preparing the indirect draw buffer.
fIndirectDrawCount = resolveLevelCounter.totalCubicIndirectDrawCount();
if (numTrianglesAtBeginningOfData) {
++fIndirectDrawCount; // Add an indirect draw for the triangles at the beginning.
}
// Allocate space for the GrDrawIndexedIndirectCommand structs.
GrDrawIndexedIndirectCommand* indirectData = target->makeDrawIndexedIndirectSpace(
fIndirectDrawCount, &fIndirectDrawBuffer, &fIndirectDrawOffset);
if (!indirectData) {
SkASSERT(!fIndirectDrawBuffer);
return;
}
// Fill out the GrDrawIndexedIndirectCommand structs and determine the starting instance data
// location at each resolve level.
SkPoint* instanceLocations[kMaxResolveLevel + 1];
int indirectIdx = 0;
int runningInstanceCount = 0;
if (numTrianglesAtBeginningOfData) {
// The caller has already packed "triangleInstanceCount" triangles into 4-point instances
// at the beginning of the instance buffer. Add a special-case indirect draw here that will
// emit the triangles [P0, P1, P2] from these 4-point instances.
indirectData[0] = GrMiddleOutCubicShader::MakeDrawTrianglesIndirectCmd(
numTrianglesAtBeginningOfData, baseInstance);
indirectIdx = 1;
runningInstanceCount = numTrianglesAtBeginningOfData;
}
for (int resolveLevel = 1; resolveLevel <= kMaxResolveLevel; ++resolveLevel) {
instanceLocations[resolveLevel] = cubicData + runningInstanceCount * 4;
if (int instanceCountAtCurrLevel = resolveLevelCounter[resolveLevel]) {
indirectData[indirectIdx++] = GrMiddleOutCubicShader::MakeDrawCubicsIndirectCmd(
resolveLevel, instanceCountAtCurrLevel, baseInstance + runningInstanceCount);
runningInstanceCount += instanceCountAtCurrLevel;
}
}
#ifdef SK_DEBUG
SkASSERT(indirectIdx == fIndirectDrawCount);
SkASSERT(runningInstanceCount == numTrianglesAtBeginningOfData +
resolveLevelCounter.totalCubicInstanceCount());
SkASSERT(fIndirectDrawCount > 0);
SkPoint* endLocations[kMaxResolveLevel + 1];
memcpy(endLocations, instanceLocations + 1, kMaxResolveLevel * sizeof(SkPoint*));
int totalInstanceCount = numTrianglesAtBeginningOfData +
resolveLevelCounter.totalCubicInstanceCount();
endLocations[kMaxResolveLevel] = cubicData + totalInstanceCount * 4;
#endif
fCubicVertexCount = numTrianglesAtBeginningOfData * 4;
if (resolveLevelCounter.totalCubicInstanceCount()) {
GrVectorXform xform(fViewMatrix);
for (auto [verb, pts, w] : SkPathPriv::Iterate(fPath)) {
int level;
switch (verb) {
default:
continue;
case SkPathVerb::kQuad:
level = GrWangsFormula::quadratic_log2(kTessellationIntolerance, pts, xform);
if (level == 0) {
continue;
}
level = std::min(level, kMaxResolveLevel);
quad2cubic(pts, instanceLocations[level]);
break;
case SkPathVerb::kCubic:
level = GrWangsFormula::cubic_log2(kTessellationIntolerance, pts, xform);
if (level == 0) {
continue;
}
level = std::min(level, kMaxResolveLevel);
memcpy(instanceLocations[level], pts, sizeof(SkPoint) * 4);
break;
}
instanceLocations[level] += 4;
fCubicVertexCount += 4;
}
}
#ifdef SK_DEBUG
for (int i = 1; i <= kMaxResolveLevel; ++i) {
SkASSERT(instanceLocations[i] == endLocations[i]);
}
SkASSERT(fCubicVertexCount == (numTrianglesAtBeginningOfData +
resolveLevelCounter.totalCubicInstanceCount()) * 4);
#endif
fStencilCubicsShader = target->allocator()->make<GrMiddleOutCubicShader>(fViewMatrix);
}
void GrTessellatePathOp::prepareTessellatedOuterCubics(GrMeshDrawOp::Target* target,
int numCountedCurves) {
SkASSERT(numCountedCurves >= 0);
SkASSERT(!fCubicBuffer);
SkASSERT(!fStencilCubicsShader);
if (numCountedCurves == 0) {
return;
}
auto* vertexData = static_cast<SkPoint*>(target->makeVertexSpace(
sizeof(SkPoint), numCountedCurves * 4, &fCubicBuffer, &fBaseCubicVertex));
if (!vertexData) {
return;
}
fCubicVertexCount = 0;
for (auto [verb, pts, w] : SkPathPriv::Iterate(fPath)) {
switch (verb) {
default:
continue;
case SkPathVerb::kQuad:
SkASSERT(fCubicVertexCount < numCountedCurves * 4);
quad2cubic(pts, vertexData + fCubicVertexCount);
break;
case SkPathVerb::kCubic:
SkASSERT(fCubicVertexCount < numCountedCurves * 4);
memcpy(vertexData + fCubicVertexCount, pts, sizeof(SkPoint) * 4);
break;
}
fCubicVertexCount += 4;
}
SkASSERT(fCubicVertexCount == numCountedCurves * 4);
fStencilCubicsShader = target->allocator()->make<GrTessellateCubicShader>(fViewMatrix);
}
void GrTessellatePathOp::prepareTessellatedCubicWedges(GrMeshDrawOp::Target* target) {
SkASSERT(!fCubicBuffer);
SkASSERT(!fStencilCubicsShader);
SkASSERT(target->caps().shaderCaps()->tessellationSupport());
// No initial moveTo, one wedge per verb, plus an implicit close at the end.
// Each wedge has 5 vertices.
int maxVertices = (fPath.countVerbs() + 1) * 5;
GrEagerDynamicVertexAllocator vertexAlloc(target, &fCubicBuffer, &fBaseCubicVertex);
auto* vertexData = vertexAlloc.lock<SkPoint>(maxVertices);
if (!vertexData) {
return;
}
fCubicVertexCount = 0;
GrMidpointContourParser parser(fPath);
while (parser.parseNextContour()) {
SkPoint midpoint = parser.currentMidpoint();
SkPoint startPoint = {0, 0};
SkPoint lastPoint = startPoint;
for (auto [verb, pts, w] : parser.currentContour()) {
switch (verb) {
case SkPathVerb::kMove:
startPoint = lastPoint = pts[0];
continue;
case SkPathVerb::kClose:
continue; // Ignore. We can assume an implicit close at the end.
case SkPathVerb::kLine:
line2cubic(pts[0], pts[1], vertexData + fCubicVertexCount);
lastPoint = pts[1];
break;
case SkPathVerb::kQuad:
quad2cubic(pts, vertexData + fCubicVertexCount);
lastPoint = pts[2];
break;
case SkPathVerb::kCubic:
memcpy(vertexData + fCubicVertexCount, pts, sizeof(SkPoint) * 4);
lastPoint = pts[3];
break;
case SkPathVerb::kConic:
SkUNREACHABLE;
}
vertexData[fCubicVertexCount + 4] = midpoint;
fCubicVertexCount += 5;
}
if (lastPoint != startPoint) {
line2cubic(lastPoint, startPoint, vertexData + fCubicVertexCount);
vertexData[fCubicVertexCount + 4] = midpoint;
fCubicVertexCount += 5;
}
}
vertexAlloc.unlock(fCubicVertexCount);
if (fCubicVertexCount) {
fStencilCubicsShader = target->allocator()->make<GrTessellateWedgeShader>(fViewMatrix);
}
}
void GrTessellatePathOp::onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) {
this->drawStencilPass(flushState);
if (!(Flags::kStencilOnly & fFlags)) {
this->drawCoverPass(flushState);
}
}
void GrTessellatePathOp::drawStencilPass(GrOpFlushState* flushState) {
// Increments clockwise triangles and decrements counterclockwise. Used for "winding" fill.
constexpr static GrUserStencilSettings kIncrDecrStencil(
GrUserStencilSettings::StaticInitSeparate<
0x0000, 0x0000,
GrUserStencilTest::kAlwaysIfInClip, GrUserStencilTest::kAlwaysIfInClip,
0xffff, 0xffff,
GrUserStencilOp::kIncWrap, GrUserStencilOp::kDecWrap,
GrUserStencilOp::kKeep, GrUserStencilOp::kKeep,
0xffff, 0xffff>());
// Inverts the bottom stencil bit. Used for "even/odd" fill.
constexpr static GrUserStencilSettings kInvertStencil(
GrUserStencilSettings::StaticInit<
0x0000,
GrUserStencilTest::kAlwaysIfInClip,
0xffff,
GrUserStencilOp::kInvert,
GrUserStencilOp::kKeep,
0x0001>());
GrPipeline::InitArgs initArgs;
if (GrAAType::kNone != fAAType) {
initArgs.fInputFlags |= GrPipeline::InputFlags::kHWAntialias;
}
if (flushState->caps().wireframeSupport() && (Flags::kWireframe & fFlags)) {
initArgs.fInputFlags |= GrPipeline::InputFlags::kWireframe;
}
SkASSERT(SkPathFillType::kWinding == fPath.getFillType() ||
SkPathFillType::kEvenOdd == fPath.getFillType());
initArgs.fUserStencil = (SkPathFillType::kWinding == fPath.getFillType()) ?
&kIncrDecrStencil : &kInvertStencil;
initArgs.fCaps = &flushState->caps();
GrPipeline pipeline(initArgs, GrDisableColorXPFactory::MakeXferProcessor(),
flushState->appliedHardClip());
if (fDoStencilTriangleBuffer) {
SkASSERT(fTriangleBuffer);
GrStencilTriangleShader stencilTriangleShader(fViewMatrix);
GrPathShader::ProgramInfo programInfo(flushState->writeView(), &pipeline,
&stencilTriangleShader);
flushState->bindPipelineAndScissorClip(programInfo, this->bounds());
flushState->bindBuffers(nullptr, nullptr, fTriangleBuffer.get());
flushState->draw(fTriangleVertexCount, fBaseTriangleVertex);
}
if (fStencilCubicsShader) {
SkASSERT(fCubicBuffer);
GrPathShader::ProgramInfo programInfo(flushState->writeView(), &pipeline,
fStencilCubicsShader);
flushState->bindPipelineAndScissorClip(programInfo, this->bounds());
if (fIndirectDrawBuffer) {
auto indexBuffer = GrMiddleOutCubicShader::FindOrMakeMiddleOutIndexBuffer(
flushState->resourceProvider());
flushState->bindBuffers(indexBuffer.get(), fCubicBuffer.get(), nullptr);
flushState->drawIndexedIndirect(fIndirectDrawBuffer.get(), fIndirectDrawOffset,
fIndirectDrawCount);
} else {
flushState->bindBuffers(nullptr, nullptr, fCubicBuffer.get());
flushState->draw(fCubicVertexCount, fBaseCubicVertex);
if (flushState->caps().requiresManualFBBarrierAfterTessellatedStencilDraw()) {
flushState->gpu()->insertManualFramebufferBarrier(); // http://skbug.com/9739
}
}
}
}
void GrTessellatePathOp::drawCoverPass(GrOpFlushState* flushState) {
// Allows non-zero stencil values to pass and write a color, and resets the stencil value back
// to zero; discards immediately on stencil values of zero.
// NOTE: It's ok to not check the clip here because the previous stencil pass only wrote to
// samples already inside the clip.
constexpr static GrUserStencilSettings kTestAndResetStencil(
GrUserStencilSettings::StaticInit<
0x0000,
GrUserStencilTest::kNotEqual,
0xffff,
GrUserStencilOp::kZero,
GrUserStencilOp::kKeep,
0xffff>());
GrPipeline::InitArgs initArgs;
if (GrAAType::kNone != fAAType) {
initArgs.fInputFlags |= GrPipeline::InputFlags::kHWAntialias;
if (1 == flushState->proxy()->numSamples()) {
SkASSERT(GrAAType::kCoverage == fAAType);
// We are mixed sampled. Use conservative raster to make the sample coverage mask 100%
// at every fragment. This way we will still get a double hit on shared edges, but
// whichever side comes first will cover every sample and will clear the stencil. The
// other side will then be discarded and not cause a double blend.
initArgs.fInputFlags |= GrPipeline::InputFlags::kConservativeRaster;
}
}
initArgs.fCaps = &flushState->caps();
initArgs.fDstProxyView = flushState->drawOpArgs().dstProxyView();
initArgs.fWriteSwizzle = flushState->drawOpArgs().writeSwizzle();
GrPipeline pipeline(initArgs, std::move(fProcessors), flushState->detachAppliedClip());
if (fDoFillTriangleBuffer) {
SkASSERT(fTriangleBuffer);
// These are a twist on the standard red book stencil settings that allow us to fill the
// inner polygon directly to the final render target. At this point, the curves are already
// stencilled in. So if the stencil value is zero, then it means the path at our sample is
// not affected by any curves and we fill the path in directly. If the stencil value is
// nonzero, then we don't fill and instead continue the standard red book stencil process.
//
// NOTE: These settings are currently incompatible with a stencil clip.
constexpr static GrUserStencilSettings kFillOrIncrDecrStencil(
GrUserStencilSettings::StaticInitSeparate<
0x0000, 0x0000,
GrUserStencilTest::kEqual, GrUserStencilTest::kEqual,
0xffff, 0xffff,
GrUserStencilOp::kKeep, GrUserStencilOp::kKeep,
GrUserStencilOp::kIncWrap, GrUserStencilOp::kDecWrap,
0xffff, 0xffff>());
constexpr static GrUserStencilSettings kFillOrInvertStencil(
GrUserStencilSettings::StaticInit<
0x0000,
GrUserStencilTest::kEqual,
0xffff,
GrUserStencilOp::kKeep,
GrUserStencilOp::kZero,
0xffff>());
if (fDoStencilTriangleBuffer) {
// The path was already stencilled. Here we just need to do a cover pass.
pipeline.setUserStencil(&kTestAndResetStencil);
} else if (!fStencilCubicsShader) {
// There are no stencilled curves. We can ignore stencil and fill the path directly.
pipeline.setUserStencil(&GrUserStencilSettings::kUnused);
} else if (SkPathFillType::kWinding == fPath.getFillType()) {
// Fill in the path pixels not touched by curves, incr/decr stencil otherwise.
SkASSERT(!pipeline.hasStencilClip());
pipeline.setUserStencil(&kFillOrIncrDecrStencil);
} else {
// Fill in the path pixels not touched by curves, invert stencil otherwise.
SkASSERT(!pipeline.hasStencilClip());
pipeline.setUserStencil(&kFillOrInvertStencil);
}
GrFillTriangleShader fillTriangleShader(fViewMatrix, fColor);
GrPathShader::ProgramInfo programInfo(flushState->writeView(), &pipeline,
&fillTriangleShader);
flushState->bindPipelineAndScissorClip(programInfo, this->bounds());
flushState->bindTextures(fillTriangleShader, nullptr, pipeline);
flushState->bindBuffers(nullptr, nullptr, fTriangleBuffer.get());
flushState->draw(fTriangleVertexCount, fBaseTriangleVertex);
if (fStencilCubicsShader) {
SkASSERT(fCubicBuffer);
// At this point, every pixel is filled in except the ones touched by curves. Issue a
// final cover pass over the curves by drawing their convex hulls. This will fill in any
// remaining samples and reset the stencil buffer.
pipeline.setUserStencil(&kTestAndResetStencil);
GrFillCubicHullShader fillCubicHullShader(fViewMatrix, fColor);
GrPathShader::ProgramInfo programInfo(flushState->writeView(), &pipeline,
&fillCubicHullShader);
flushState->bindPipelineAndScissorClip(programInfo, this->bounds());
flushState->bindTextures(fillCubicHullShader, nullptr, pipeline);
// Here we treat fCubicBuffer as an instance buffer. It should have been prepared with
// the base vertex on an instance boundary in order to accommodate this.
SkASSERT((fCubicVertexCount % 4) == 0);
SkASSERT((fBaseCubicVertex % 4) == 0);
flushState->bindBuffers(nullptr, fCubicBuffer.get(), nullptr);
flushState->drawInstanced(fCubicVertexCount >> 2, fBaseCubicVertex >> 2, 4, 0);
}
return;
}
// There are no triangles to fill. Just draw a bounding box.
pipeline.setUserStencil(&kTestAndResetStencil);
GrFillBoundingBoxShader fillBoundingBoxShader(fViewMatrix, fColor, fPath.getBounds());
GrPathShader::ProgramInfo programInfo(flushState->writeView(), &pipeline,
&fillBoundingBoxShader);
flushState->bindPipelineAndScissorClip(programInfo, this->bounds());
flushState->bindTextures(fillBoundingBoxShader, nullptr, pipeline);
flushState->bindBuffers(nullptr, nullptr, nullptr);
flushState->draw(4, 0);
}