blob: 9bf5c9deed6510925f271a0ca5caf5e9df448e82 [file] [log] [blame]
// Copyright 2019 Google LLC.
// Use of this source code is governed by a BSD-style license that can be found in the LICENSE file.
#include "include/private/base/SkContainers.h"
#include "include/private/base/SkAlign.h"
#include "include/private/base/SkAssert.h"
#include "include/private/base/SkFeatures.h"
#include "include/private/base/SkMalloc.h"
#include "include/private/base/SkTo.h"
#include <algorithm>
#include <cstddef>
#if defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_IOS)
#include <malloc/malloc.h>
#elif defined(SK_BUILD_FOR_ANDROID) || defined(SK_BUILD_FOR_UNIX)
#include <malloc.h>
#elif defined(SK_BUILD_FOR_WIN)
#include <malloc.h>
#endif
namespace {
// Return at least as many bytes to keep malloc aligned.
constexpr size_t kMinBytes = alignof(max_align_t);
SkSpan<std::byte> complete_size(void* ptr, size_t size) {
if (ptr == nullptr) {
return {};
}
size_t completeSize = size;
// Use the OS specific calls to find the actual capacity.
#if defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_IOS)
// TODO: remove the max, when the chrome implementation of malloc_size doesn't return 0.
completeSize = std::max(malloc_size(ptr), size);
#elif defined(SK_BUILD_FOR_ANDROID) && __ANDROID_API__ >= 17
completeSize = malloc_usable_size(ptr);
SkASSERT(completeSize >= size);
#elif defined(SK_BUILD_FOR_UNIX)
completeSize = malloc_usable_size(ptr);
SkASSERT(completeSize >= size);
#elif defined(SK_BUILD_FOR_WIN)
completeSize = _msize(ptr);
SkASSERT(completeSize >= size);
#endif
return {static_cast<std::byte*>(ptr), completeSize};
}
} // namespace
SkSpan<std::byte> SkContainerAllocator::allocate(int capacity, double growthFactor) {
SkASSERT(capacity >= 0);
SkASSERT(growthFactor >= 1.0);
SkASSERT_RELEASE(capacity <= fMaxCapacity);
if (growthFactor > 1.0 && capacity > 0) {
capacity = this->growthFactorCapacity(capacity, growthFactor);
}
return sk_allocate_throw(capacity * fSizeOfT);
}
size_t SkContainerAllocator::roundUpCapacity(int64_t capacity) const {
SkASSERT(capacity >= 0);
// If round will not go above fMaxCapacity return rounded capacity.
if (capacity < fMaxCapacity - kCapacityMultiple) {
return SkAlignTo(capacity, kCapacityMultiple);
}
return SkToSizeT(fMaxCapacity);
}
size_t SkContainerAllocator::growthFactorCapacity(int capacity, double growthFactor) const {
SkASSERT(capacity >= 0);
SkASSERT(growthFactor >= 1.0);
// Multiply by the growthFactor. Remember this must be done in 64-bit ints and not
// size_t because size_t changes.
const int64_t capacityGrowth = static_cast<int64_t>(capacity * growthFactor);
// Notice that for small values of capacity, rounding up will provide most of the growth.
return this->roundUpCapacity(capacityGrowth);
}
SkSpan<std::byte> sk_allocate_canfail(size_t size) {
// Make sure to ask for at least the minimum number of bytes.
const size_t adjustedSize = std::max(size, kMinBytes);
void* ptr = sk_malloc_canfail(adjustedSize);
return complete_size(ptr, adjustedSize);
}
SkSpan<std::byte> sk_allocate_throw(size_t size) {
if (size == 0) {
return {};
}
// Make sure to ask for at least the minimum number of bytes.
const size_t adjustedSize = std::max(size, kMinBytes);
void* ptr = sk_malloc_throw(adjustedSize);
return complete_size(ptr, adjustedSize);
}
void sk_report_container_overflow_and_die() {
SK_ABORT("Requested capacity is too large.");
}