blob: 47f5047587b1a9528316f6c3cf861f9725688d30 [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrAAConvexPathRenderer.h"
#include "GrCaps.h"
#include "GrDrawOpTest.h"
#include "GrGeometryProcessor.h"
#include "GrPathUtils.h"
#include "GrProcessor.h"
#include "GrRenderTargetContext.h"
#include "GrShape.h"
#include "GrSimpleMeshDrawOpHelper.h"
#include "GrVertexWriter.h"
#include "SkGeometry.h"
#include "SkPathPriv.h"
#include "SkPointPriv.h"
#include "SkString.h"
#include "SkTypes.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLGeometryProcessor.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"
#include "glsl/GrGLSLVarying.h"
#include "glsl/GrGLSLVertexGeoBuilder.h"
#include "ops/GrMeshDrawOp.h"
GrAAConvexPathRenderer::GrAAConvexPathRenderer() {
}
struct Segment {
enum {
// These enum values are assumed in member functions below.
kLine = 0,
kQuad = 1,
} fType;
// line uses one pt, quad uses 2 pts
SkPoint fPts[2];
// normal to edge ending at each pt
SkVector fNorms[2];
// is the corner where the previous segment meets this segment
// sharp. If so, fMid is a normalized bisector facing outward.
SkVector fMid;
int countPoints() {
GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
return fType + 1;
}
const SkPoint& endPt() const {
GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
return fPts[fType];
}
const SkPoint& endNorm() const {
GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
return fNorms[fType];
}
};
typedef SkTArray<Segment, true> SegmentArray;
static bool center_of_mass(const SegmentArray& segments, SkPoint* c) {
SkScalar area = 0;
SkPoint center = {0, 0};
int count = segments.count();
SkPoint p0 = {0, 0};
if (count > 2) {
// We translate the polygon so that the first point is at the origin.
// This avoids some precision issues with small area polygons far away
// from the origin.
p0 = segments[0].endPt();
SkPoint pi;
SkPoint pj;
// the first and last iteration of the below loop would compute
// zeros since the starting / ending point is (0,0). So instead we start
// at i=1 and make the last iteration i=count-2.
pj = segments[1].endPt() - p0;
for (int i = 1; i < count - 1; ++i) {
pi = pj;
pj = segments[i + 1].endPt() - p0;
SkScalar t = SkPoint::CrossProduct(pi, pj);
area += t;
center.fX += (pi.fX + pj.fX) * t;
center.fY += (pi.fY + pj.fY) * t;
}
}
// If the poly has no area then we instead return the average of
// its points.
if (SkScalarNearlyZero(area)) {
SkPoint avg;
avg.set(0, 0);
for (int i = 0; i < count; ++i) {
const SkPoint& pt = segments[i].endPt();
avg.fX += pt.fX;
avg.fY += pt.fY;
}
SkScalar denom = SK_Scalar1 / count;
avg.scale(denom);
*c = avg;
} else {
area *= 3;
area = SkScalarInvert(area);
center.scale(area);
// undo the translate of p0 to the origin.
*c = center + p0;
}
return !SkScalarIsNaN(c->fX) && !SkScalarIsNaN(c->fY) && c->isFinite();
}
static bool compute_vectors(SegmentArray* segments,
SkPoint* fanPt,
SkPathPriv::FirstDirection dir,
int* vCount,
int* iCount) {
if (!center_of_mass(*segments, fanPt)) {
return false;
}
int count = segments->count();
// Make the normals point towards the outside
SkPointPriv::Side normSide;
if (dir == SkPathPriv::kCCW_FirstDirection) {
normSide = SkPointPriv::kRight_Side;
} else {
normSide = SkPointPriv::kLeft_Side;
}
int64_t vCount64 = 0;
int64_t iCount64 = 0;
// compute normals at all points
for (int a = 0; a < count; ++a) {
Segment& sega = (*segments)[a];
int b = (a + 1) % count;
Segment& segb = (*segments)[b];
const SkPoint* prevPt = &sega.endPt();
int n = segb.countPoints();
for (int p = 0; p < n; ++p) {
segb.fNorms[p] = segb.fPts[p] - *prevPt;
segb.fNorms[p].normalize();
segb.fNorms[p] = SkPointPriv::MakeOrthog(segb.fNorms[p], normSide);
prevPt = &segb.fPts[p];
}
if (Segment::kLine == segb.fType) {
vCount64 += 5;
iCount64 += 9;
} else {
vCount64 += 6;
iCount64 += 12;
}
}
// compute mid-vectors where segments meet. TODO: Detect shallow corners
// and leave out the wedges and close gaps by stitching segments together.
for (int a = 0; a < count; ++a) {
const Segment& sega = (*segments)[a];
int b = (a + 1) % count;
Segment& segb = (*segments)[b];
segb.fMid = segb.fNorms[0] + sega.endNorm();
segb.fMid.normalize();
// corner wedges
vCount64 += 4;
iCount64 += 6;
}
if (vCount64 > SK_MaxS32 || iCount64 > SK_MaxS32) {
return false;
}
*vCount = vCount64;
*iCount = iCount64;
return true;
}
struct DegenerateTestData {
DegenerateTestData() { fStage = kInitial; }
bool isDegenerate() const { return kNonDegenerate != fStage; }
enum {
kInitial,
kPoint,
kLine,
kNonDegenerate
} fStage;
SkPoint fFirstPoint;
SkVector fLineNormal;
SkScalar fLineC;
};
static const SkScalar kClose = (SK_Scalar1 / 16);
static const SkScalar kCloseSqd = kClose * kClose;
static void update_degenerate_test(DegenerateTestData* data, const SkPoint& pt) {
switch (data->fStage) {
case DegenerateTestData::kInitial:
data->fFirstPoint = pt;
data->fStage = DegenerateTestData::kPoint;
break;
case DegenerateTestData::kPoint:
if (SkPointPriv::DistanceToSqd(pt, data->fFirstPoint) > kCloseSqd) {
data->fLineNormal = pt - data->fFirstPoint;
data->fLineNormal.normalize();
data->fLineNormal = SkPointPriv::MakeOrthog(data->fLineNormal);
data->fLineC = -data->fLineNormal.dot(data->fFirstPoint);
data->fStage = DegenerateTestData::kLine;
}
break;
case DegenerateTestData::kLine:
if (SkScalarAbs(data->fLineNormal.dot(pt) + data->fLineC) > kClose) {
data->fStage = DegenerateTestData::kNonDegenerate;
}
case DegenerateTestData::kNonDegenerate:
break;
default:
SK_ABORT("Unexpected degenerate test stage.");
}
}
static inline bool get_direction(const SkPath& path, const SkMatrix& m,
SkPathPriv::FirstDirection* dir) {
if (!SkPathPriv::CheapComputeFirstDirection(path, dir)) {
return false;
}
// check whether m reverses the orientation
SkASSERT(!m.hasPerspective());
SkScalar det2x2 = m.get(SkMatrix::kMScaleX) * m.get(SkMatrix::kMScaleY) -
m.get(SkMatrix::kMSkewX) * m.get(SkMatrix::kMSkewY);
if (det2x2 < 0) {
*dir = SkPathPriv::OppositeFirstDirection(*dir);
}
return true;
}
static inline void add_line_to_segment(const SkPoint& pt,
SegmentArray* segments) {
segments->push_back();
segments->back().fType = Segment::kLine;
segments->back().fPts[0] = pt;
}
static inline void add_quad_segment(const SkPoint pts[3],
SegmentArray* segments) {
if (SkPointPriv::DistanceToLineSegmentBetweenSqd(pts[1], pts[0], pts[2]) < kCloseSqd) {
if (pts[0] != pts[2]) {
add_line_to_segment(pts[2], segments);
}
} else {
segments->push_back();
segments->back().fType = Segment::kQuad;
segments->back().fPts[0] = pts[1];
segments->back().fPts[1] = pts[2];
}
}
static inline void add_cubic_segments(const SkPoint pts[4],
SkPathPriv::FirstDirection dir,
SegmentArray* segments) {
SkSTArray<15, SkPoint, true> quads;
GrPathUtils::convertCubicToQuadsConstrainToTangents(pts, SK_Scalar1, dir, &quads);
int count = quads.count();
for (int q = 0; q < count; q += 3) {
add_quad_segment(&quads[q], segments);
}
}
static bool get_segments(const SkPath& path,
const SkMatrix& m,
SegmentArray* segments,
SkPoint* fanPt,
int* vCount,
int* iCount) {
SkPath::Iter iter(path, true);
// This renderer over-emphasizes very thin path regions. We use the distance
// to the path from the sample to compute coverage. Every pixel intersected
// by the path will be hit and the maximum distance is sqrt(2)/2. We don't
// notice that the sample may be close to a very thin area of the path and
// thus should be very light. This is particularly egregious for degenerate
// line paths. We detect paths that are very close to a line (zero area) and
// draw nothing.
DegenerateTestData degenerateData;
SkPathPriv::FirstDirection dir;
// get_direction can fail for some degenerate paths.
if (!get_direction(path, m, &dir)) {
return false;
}
for (;;) {
SkPoint pts[4];
SkPath::Verb verb = iter.next(pts, true, true);
switch (verb) {
case SkPath::kMove_Verb:
m.mapPoints(pts, 1);
update_degenerate_test(&degenerateData, pts[0]);
break;
case SkPath::kLine_Verb: {
m.mapPoints(&pts[1], 1);
update_degenerate_test(&degenerateData, pts[1]);
add_line_to_segment(pts[1], segments);
break;
}
case SkPath::kQuad_Verb:
m.mapPoints(pts, 3);
update_degenerate_test(&degenerateData, pts[1]);
update_degenerate_test(&degenerateData, pts[2]);
add_quad_segment(pts, segments);
break;
case SkPath::kConic_Verb: {
m.mapPoints(pts, 3);
SkScalar weight = iter.conicWeight();
SkAutoConicToQuads converter;
const SkPoint* quadPts = converter.computeQuads(pts, weight, 0.25f);
for (int i = 0; i < converter.countQuads(); ++i) {
update_degenerate_test(&degenerateData, quadPts[2*i + 1]);
update_degenerate_test(&degenerateData, quadPts[2*i + 2]);
add_quad_segment(quadPts + 2*i, segments);
}
break;
}
case SkPath::kCubic_Verb: {
m.mapPoints(pts, 4);
update_degenerate_test(&degenerateData, pts[1]);
update_degenerate_test(&degenerateData, pts[2]);
update_degenerate_test(&degenerateData, pts[3]);
add_cubic_segments(pts, dir, segments);
break;
}
case SkPath::kDone_Verb:
if (degenerateData.isDegenerate()) {
return false;
} else {
return compute_vectors(segments, fanPt, dir, vCount, iCount);
}
default:
break;
}
}
}
struct Draw {
Draw() : fVertexCnt(0), fIndexCnt(0) {}
int fVertexCnt;
int fIndexCnt;
};
typedef SkTArray<Draw, true> DrawArray;
static void create_vertices(const SegmentArray& segments,
const SkPoint& fanPt,
const GrVertexColor& color,
DrawArray* draws,
GrVertexWriter& verts,
uint16_t* idxs,
size_t vertexStride) {
Draw* draw = &draws->push_back();
// alias just to make vert/index assignments easier to read.
int* v = &draw->fVertexCnt;
int* i = &draw->fIndexCnt;
const size_t uvOffset = sizeof(SkPoint) + color.size();
int count = segments.count();
for (int a = 0; a < count; ++a) {
const Segment& sega = segments[a];
int b = (a + 1) % count;
const Segment& segb = segments[b];
// Check whether adding the verts for this segment to the current draw would cause index
// values to overflow.
int vCount = 4;
if (Segment::kLine == segb.fType) {
vCount += 5;
} else {
vCount += 6;
}
if (draw->fVertexCnt + vCount > (1 << 16)) {
idxs += *i;
draw = &draws->push_back();
v = &draw->fVertexCnt;
i = &draw->fIndexCnt;
}
const SkScalar negOneDists[2] = { -SK_Scalar1, -SK_Scalar1 };
// FIXME: These tris are inset in the 1 unit arc around the corner
SkPoint p0 = sega.endPt();
// Position, Color, UV, D0, D1
verts.write(p0, color, SkPoint{0, 0}, negOneDists);
verts.write(p0 + sega.endNorm(), color, SkPoint{0, -SK_Scalar1}, negOneDists);
verts.write(p0 + segb.fMid, color, SkPoint{0, -SK_Scalar1}, negOneDists);
verts.write(p0 + segb.fNorms[0], color, SkPoint{0, -SK_Scalar1}, negOneDists);
idxs[*i + 0] = *v + 0;
idxs[*i + 1] = *v + 2;
idxs[*i + 2] = *v + 1;
idxs[*i + 3] = *v + 0;
idxs[*i + 4] = *v + 3;
idxs[*i + 5] = *v + 2;
*v += 4;
*i += 6;
if (Segment::kLine == segb.fType) {
// we draw the line edge as a degenerate quad (u is 0, v is the
// signed distance to the edge)
SkPoint v1Pos = sega.endPt();
SkPoint v2Pos = segb.fPts[0];
SkScalar dist = SkPointPriv::DistanceToLineBetween(fanPt, v1Pos, v2Pos);
verts.write(fanPt, color, SkPoint{0, dist}, negOneDists);
verts.write(v1Pos, color, SkPoint{0, 0}, negOneDists);
verts.write(v2Pos, color, SkPoint{0, 0}, negOneDists);
verts.write(v1Pos + segb.fNorms[0], color, SkPoint{0, -SK_Scalar1}, negOneDists);
verts.write(v2Pos + segb.fNorms[0], color, SkPoint{0, -SK_Scalar1}, negOneDists);
idxs[*i + 0] = *v + 3;
idxs[*i + 1] = *v + 1;
idxs[*i + 2] = *v + 2;
idxs[*i + 3] = *v + 4;
idxs[*i + 4] = *v + 3;
idxs[*i + 5] = *v + 2;
*i += 6;
// Draw the interior fan if it exists.
// TODO: Detect and combine colinear segments. This will ensure we catch every case
// with no interior, and that the resulting shared edge uses the same endpoints.
if (count >= 3) {
idxs[*i + 0] = *v + 0;
idxs[*i + 1] = *v + 2;
idxs[*i + 2] = *v + 1;
*i += 3;
}
*v += 5;
} else {
void* quadVertsBegin = verts.fPtr;
SkPoint qpts[] = {sega.endPt(), segb.fPts[0], segb.fPts[1]};
SkScalar c0 = segb.fNorms[0].dot(qpts[0]);
SkScalar c1 = segb.fNorms[1].dot(qpts[2]);
GrVertexWriter::Skip<SkPoint> skipUVs;
verts.write(fanPt,
color, skipUVs,
-segb.fNorms[0].dot(fanPt) + c0,
-segb.fNorms[1].dot(fanPt) + c1);
verts.write(qpts[0],
color, skipUVs,
0.0f,
-segb.fNorms[1].dot(qpts[0]) + c1);
verts.write(qpts[2],
color, skipUVs,
-segb.fNorms[0].dot(qpts[2]) + c0,
0.0f);
verts.write(qpts[0] + segb.fNorms[0],
color, skipUVs,
-SK_ScalarMax/100,
-SK_ScalarMax/100);
verts.write(qpts[2] + segb.fNorms[1],
color, skipUVs,
-SK_ScalarMax/100,
-SK_ScalarMax/100);
SkVector midVec = segb.fNorms[0] + segb.fNorms[1];
midVec.normalize();
verts.write(qpts[1] + midVec,
color, skipUVs,
-SK_ScalarMax/100,
-SK_ScalarMax/100);
GrPathUtils::QuadUVMatrix toUV(qpts);
toUV.apply(quadVertsBegin, 6, vertexStride, uvOffset);
idxs[*i + 0] = *v + 3;
idxs[*i + 1] = *v + 1;
idxs[*i + 2] = *v + 2;
idxs[*i + 3] = *v + 4;
idxs[*i + 4] = *v + 3;
idxs[*i + 5] = *v + 2;
idxs[*i + 6] = *v + 5;
idxs[*i + 7] = *v + 3;
idxs[*i + 8] = *v + 4;
*i += 9;
// Draw the interior fan if it exists.
// TODO: Detect and combine colinear segments. This will ensure we catch every case
// with no interior, and that the resulting shared edge uses the same endpoints.
if (count >= 3) {
idxs[*i + 0] = *v + 0;
idxs[*i + 1] = *v + 2;
idxs[*i + 2] = *v + 1;
*i += 3;
}
*v += 6;
}
}
}
///////////////////////////////////////////////////////////////////////////////
/*
* Quadratic specified by 0=u^2-v canonical coords. u and v are the first
* two components of the vertex attribute. Coverage is based on signed
* distance with negative being inside, positive outside. The edge is specified in
* window space (y-down). If either the third or fourth component of the interpolated
* vertex coord is > 0 then the pixel is considered outside the edge. This is used to
* attempt to trim to a portion of the infinite quad.
* Requires shader derivative instruction support.
*/
class QuadEdgeEffect : public GrGeometryProcessor {
public:
static sk_sp<GrGeometryProcessor> Make(const SkMatrix& localMatrix, bool usesLocalCoords,
bool wideColor) {
return sk_sp<GrGeometryProcessor>(
new QuadEdgeEffect(localMatrix, usesLocalCoords, wideColor));
}
~QuadEdgeEffect() override {}
const char* name() const override { return "QuadEdge"; }
class GLSLProcessor : public GrGLSLGeometryProcessor {
public:
GLSLProcessor() {}
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
const QuadEdgeEffect& qe = args.fGP.cast<QuadEdgeEffect>();
GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
// emit attributes
varyingHandler->emitAttributes(qe);
GrGLSLVarying v(kHalf4_GrSLType);
varyingHandler->addVarying("QuadEdge", &v);
vertBuilder->codeAppendf("%s = %s;", v.vsOut(), qe.fInQuadEdge.name());
// Setup pass through color
varyingHandler->addPassThroughAttribute(qe.fInColor, args.fOutputColor);
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
// Setup position
this->writeOutputPosition(vertBuilder, gpArgs, qe.fInPosition.name());
// emit transforms
this->emitTransforms(vertBuilder,
varyingHandler,
uniformHandler,
qe.fInPosition.asShaderVar(),
qe.fLocalMatrix,
args.fFPCoordTransformHandler);
fragBuilder->codeAppendf("half edgeAlpha;");
// keep the derivative instructions outside the conditional
fragBuilder->codeAppendf("half2 duvdx = half2(dFdx(%s.xy));", v.fsIn());
fragBuilder->codeAppendf("half2 duvdy = half2(dFdy(%s.xy));", v.fsIn());
fragBuilder->codeAppendf("if (%s.z > 0.0 && %s.w > 0.0) {", v.fsIn(), v.fsIn());
// today we know z and w are in device space. We could use derivatives
fragBuilder->codeAppendf("edgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);", v.fsIn(),
v.fsIn());
fragBuilder->codeAppendf ("} else {");
fragBuilder->codeAppendf("half2 gF = half2(2.0*%s.x*duvdx.x - duvdx.y,"
" 2.0*%s.x*duvdy.x - duvdy.y);",
v.fsIn(), v.fsIn());
fragBuilder->codeAppendf("edgeAlpha = (%s.x*%s.x - %s.y);", v.fsIn(), v.fsIn(),
v.fsIn());
fragBuilder->codeAppendf("edgeAlpha = "
"saturate(0.5 - edgeAlpha / length(gF));}");
fragBuilder->codeAppendf("%s = half4(edgeAlpha);", args.fOutputCoverage);
}
static inline void GenKey(const GrGeometryProcessor& gp,
const GrShaderCaps&,
GrProcessorKeyBuilder* b) {
const QuadEdgeEffect& qee = gp.cast<QuadEdgeEffect>();
b->add32(SkToBool(qee.fUsesLocalCoords && qee.fLocalMatrix.hasPerspective()));
}
void setData(const GrGLSLProgramDataManager& pdman,
const GrPrimitiveProcessor& gp,
FPCoordTransformIter&& transformIter) override {
const QuadEdgeEffect& qe = gp.cast<QuadEdgeEffect>();
this->setTransformDataHelper(qe.fLocalMatrix, pdman, &transformIter);
}
private:
typedef GrGLSLGeometryProcessor INHERITED;
};
void getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override {
GLSLProcessor::GenKey(*this, caps, b);
}
GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const override {
return new GLSLProcessor();
}
private:
QuadEdgeEffect(const SkMatrix& localMatrix, bool usesLocalCoords, bool wideColor)
: INHERITED(kQuadEdgeEffect_ClassID)
, fLocalMatrix(localMatrix)
, fUsesLocalCoords(usesLocalCoords) {
fInPosition = {"inPosition", kFloat2_GrVertexAttribType, kFloat2_GrSLType};
fInColor = MakeColorAttribute("inColor", wideColor);
fInQuadEdge = {"inQuadEdge", kFloat4_GrVertexAttribType, kHalf4_GrSLType};
this->setVertexAttributes(&fInPosition, 3);
}
Attribute fInPosition;
Attribute fInColor;
Attribute fInQuadEdge;
SkMatrix fLocalMatrix;
bool fUsesLocalCoords;
GR_DECLARE_GEOMETRY_PROCESSOR_TEST
typedef GrGeometryProcessor INHERITED;
};
GR_DEFINE_GEOMETRY_PROCESSOR_TEST(QuadEdgeEffect);
#if GR_TEST_UTILS
sk_sp<GrGeometryProcessor> QuadEdgeEffect::TestCreate(GrProcessorTestData* d) {
// Doesn't work without derivative instructions.
return d->caps()->shaderCaps()->shaderDerivativeSupport()
? QuadEdgeEffect::Make(GrTest::TestMatrix(d->fRandom), d->fRandom->nextBool(),
d->fRandom->nextBool())
: nullptr;
}
#endif
///////////////////////////////////////////////////////////////////////////////
GrPathRenderer::CanDrawPath
GrAAConvexPathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
if (args.fCaps->shaderCaps()->shaderDerivativeSupport() &&
(AATypeFlags::kCoverage & args.fAATypeFlags) && args.fShape->style().isSimpleFill() &&
!args.fShape->inverseFilled() && args.fShape->knownToBeConvex()) {
return CanDrawPath::kYes;
}
return CanDrawPath::kNo;
}
namespace {
class AAConvexPathOp final : public GrMeshDrawOp {
private:
using Helper = GrSimpleMeshDrawOpHelperWithStencil;
public:
DEFINE_OP_CLASS_ID
static std::unique_ptr<GrDrawOp> Make(GrRecordingContext* context,
GrPaint&& paint,
const SkMatrix& viewMatrix,
const SkPath& path,
const GrUserStencilSettings* stencilSettings) {
return Helper::FactoryHelper<AAConvexPathOp>(context, std::move(paint), viewMatrix, path,
stencilSettings);
}
AAConvexPathOp(const Helper::MakeArgs& helperArgs, const SkPMColor4f& color,
const SkMatrix& viewMatrix, const SkPath& path,
const GrUserStencilSettings* stencilSettings)
: INHERITED(ClassID()), fHelper(helperArgs, GrAAType::kCoverage, stencilSettings) {
fPaths.emplace_back(PathData{viewMatrix, path, color});
this->setTransformedBounds(path.getBounds(), viewMatrix, HasAABloat::kYes, IsZeroArea::kNo);
}
const char* name() const override { return "AAConvexPathOp"; }
void visitProxies(const VisitProxyFunc& func, VisitorType) const override {
fHelper.visitProxies(func);
}
#ifdef SK_DEBUG
SkString dumpInfo() const override {
SkString string;
string.appendf("Count: %d\n", fPaths.count());
string += fHelper.dumpInfo();
string += INHERITED::dumpInfo();
return string;
}
#endif
FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); }
GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip,
GrFSAAType fsaaType, GrClampType clampType) override {
return fHelper.finalizeProcessors(
caps, clip, fsaaType, clampType, GrProcessorAnalysisCoverage::kSingleChannel,
&fPaths.back().fColor, &fWideColor);
}
private:
void onPrepareDraws(Target* target) override {
int instanceCount = fPaths.count();
SkMatrix invert;
if (fHelper.usesLocalCoords() && !fPaths.back().fViewMatrix.invert(&invert)) {
return;
}
// Setup GrGeometryProcessor
sk_sp<GrGeometryProcessor> quadProcessor(
QuadEdgeEffect::Make(invert, fHelper.usesLocalCoords(), fWideColor));
const size_t kVertexStride = quadProcessor->vertexStride();
// TODO generate all segments for all paths and use one vertex buffer
for (int i = 0; i < instanceCount; i++) {
const PathData& args = fPaths[i];
// We use the fact that SkPath::transform path does subdivision based on
// perspective. Otherwise, we apply the view matrix when copying to the
// segment representation.
const SkMatrix* viewMatrix = &args.fViewMatrix;
// We avoid initializing the path unless we have to
const SkPath* pathPtr = &args.fPath;
SkTLazy<SkPath> tmpPath;
if (viewMatrix->hasPerspective()) {
SkPath* tmpPathPtr = tmpPath.init(*pathPtr);
tmpPathPtr->setIsVolatile(true);
tmpPathPtr->transform(*viewMatrix);
viewMatrix = &SkMatrix::I();
pathPtr = tmpPathPtr;
}
int vertexCount;
int indexCount;
enum {
kPreallocSegmentCnt = 512 / sizeof(Segment),
kPreallocDrawCnt = 4,
};
SkSTArray<kPreallocSegmentCnt, Segment, true> segments;
SkPoint fanPt;
if (!get_segments(*pathPtr, *viewMatrix, &segments, &fanPt, &vertexCount,
&indexCount)) {
continue;
}
sk_sp<const GrBuffer> vertexBuffer;
int firstVertex;
GrVertexWriter verts{target->makeVertexSpace(kVertexStride, vertexCount,
&vertexBuffer, &firstVertex)};
if (!verts.fPtr) {
SkDebugf("Could not allocate vertices\n");
return;
}
sk_sp<const GrBuffer> indexBuffer;
int firstIndex;
uint16_t *idxs = target->makeIndexSpace(indexCount, &indexBuffer, &firstIndex);
if (!idxs) {
SkDebugf("Could not allocate indices\n");
return;
}
SkSTArray<kPreallocDrawCnt, Draw, true> draws;
GrVertexColor color(args.fColor, fWideColor);
create_vertices(segments, fanPt, color, &draws, verts, idxs, kVertexStride);
GrMesh* meshes = target->allocMeshes(draws.count());
for (int j = 0; j < draws.count(); ++j) {
const Draw& draw = draws[j];
meshes[j].setPrimitiveType(GrPrimitiveType::kTriangles);
meshes[j].setIndexed(indexBuffer, draw.fIndexCnt, firstIndex, 0,
draw.fVertexCnt - 1, GrPrimitiveRestart::kNo);
meshes[j].setVertexData(vertexBuffer, firstVertex);
firstIndex += draw.fIndexCnt;
firstVertex += draw.fVertexCnt;
}
target->recordDraw(quadProcessor, meshes, draws.count());
}
}
void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override {
fHelper.executeDrawsAndUploads(this, flushState, chainBounds);
}
CombineResult onCombineIfPossible(GrOp* t, const GrCaps& caps) override {
AAConvexPathOp* that = t->cast<AAConvexPathOp>();
if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) {
return CombineResult::kCannotCombine;
}
if (fHelper.usesLocalCoords() &&
!fPaths[0].fViewMatrix.cheapEqualTo(that->fPaths[0].fViewMatrix)) {
return CombineResult::kCannotCombine;
}
fPaths.push_back_n(that->fPaths.count(), that->fPaths.begin());
fWideColor |= that->fWideColor;
return CombineResult::kMerged;
}
struct PathData {
SkMatrix fViewMatrix;
SkPath fPath;
SkPMColor4f fColor;
};
Helper fHelper;
SkSTArray<1, PathData, true> fPaths;
bool fWideColor;
typedef GrMeshDrawOp INHERITED;
};
} // anonymous namespace
bool GrAAConvexPathRenderer::onDrawPath(const DrawPathArgs& args) {
GR_AUDIT_TRAIL_AUTO_FRAME(args.fRenderTargetContext->auditTrail(),
"GrAAConvexPathRenderer::onDrawPath");
SkASSERT(GrFSAAType::kUnifiedMSAA != args.fRenderTargetContext->fsaaType());
SkASSERT(!args.fShape->isEmpty());
SkPath path;
args.fShape->asPath(&path);
std::unique_ptr<GrDrawOp> op = AAConvexPathOp::Make(args.fContext, std::move(args.fPaint),
*args.fViewMatrix,
path, args.fUserStencilSettings);
args.fRenderTargetContext->addDrawOp(*args.fClip, std::move(op));
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#if GR_TEST_UTILS
GR_DRAW_OP_TEST_DEFINE(AAConvexPathOp) {
SkMatrix viewMatrix = GrTest::TestMatrixInvertible(random);
SkPath path = GrTest::TestPathConvex(random);
const GrUserStencilSettings* stencilSettings = GrGetRandomStencil(random, context);
return AAConvexPathOp::Make(context, std::move(paint), viewMatrix, path, stencilSettings);
}
#endif