| /* |
| * Copyright 2018 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| @header { |
| #include "GrClip.h" |
| #include "GrContext.h" |
| #include "GrContextPriv.h" |
| #include "GrProxyProvider.h" |
| #include "GrRenderTargetContext.h" |
| } |
| |
| @class { |
| static bool TestForPreservingPMConversions(GrContext* context) { |
| static constexpr int kSize = 256; |
| static constexpr GrPixelConfig kConfig = kRGBA_8888_GrPixelConfig; |
| SkAutoTMalloc<uint32_t> data(kSize * kSize * 3); |
| uint32_t* srcData = data.get(); |
| uint32_t* firstRead = data.get() + kSize * kSize; |
| uint32_t* secondRead = data.get() + 2 * kSize * kSize; |
| |
| // Fill with every possible premultiplied A, color channel value. There will be 256-y |
| // duplicate values in row y. We set r, g, and b to the same value since they are handled |
| // identically. |
| for (int y = 0; y < kSize; ++y) { |
| for (int x = 0; x < kSize; ++x) { |
| uint8_t* color = reinterpret_cast<uint8_t*>(&srcData[kSize*y + x]); |
| color[3] = y; |
| color[2] = SkTMin(x, y); |
| color[1] = SkTMin(x, y); |
| color[0] = SkTMin(x, y); |
| } |
| } |
| |
| const SkImageInfo ii = SkImageInfo::Make(kSize, kSize, |
| kRGBA_8888_SkColorType, kPremul_SkAlphaType); |
| |
| sk_sp<GrRenderTargetContext> readRTC( |
| context->contextPriv().makeDeferredRenderTargetContext(SkBackingFit::kExact, |
| kSize, kSize, |
| kConfig, nullptr)); |
| sk_sp<GrRenderTargetContext> tempRTC( |
| context->contextPriv().makeDeferredRenderTargetContext(SkBackingFit::kExact, |
| kSize, kSize, |
| kConfig, nullptr)); |
| if (!readRTC || !readRTC->asTextureProxy() || !tempRTC) { |
| return false; |
| } |
| // Adding discard to appease vulkan validation warning about loading uninitialized data on |
| // draw |
| readRTC->discard(); |
| |
| GrSurfaceDesc desc; |
| desc.fWidth = kSize; |
| desc.fHeight = kSize; |
| desc.fConfig = kConfig; |
| |
| GrProxyProvider* proxyProvider = context->contextPriv().proxyProvider(); |
| |
| sk_sp<GrTextureProxy> dataProxy = proxyProvider->createTextureProxy( |
| desc, SkBudgeted::kYes, data, 0); |
| if (!dataProxy) { |
| return false; |
| } |
| |
| static const SkRect kRect = SkRect::MakeIWH(kSize, kSize); |
| |
| // We do a PM->UPM draw from dataTex to readTex and read the data. Then we do a UPM->PM draw |
| // from readTex to tempTex followed by a PM->UPM draw to readTex and finally read the data. |
| // We then verify that two reads produced the same values. |
| |
| GrPaint paint1; |
| GrPaint paint2; |
| GrPaint paint3; |
| std::unique_ptr<GrFragmentProcessor> pmToUPM( |
| new GrConfigConversionEffect(PMConversion::kToUnpremul)); |
| std::unique_ptr<GrFragmentProcessor> upmToPM( |
| new GrConfigConversionEffect(PMConversion::kToPremul)); |
| |
| paint1.addColorTextureProcessor(dataProxy, SkMatrix::I()); |
| paint1.addColorFragmentProcessor(pmToUPM->clone()); |
| paint1.setPorterDuffXPFactory(SkBlendMode::kSrc); |
| |
| readRTC->fillRectToRect(GrNoClip(), std::move(paint1), GrAA::kNo, SkMatrix::I(), kRect, |
| kRect); |
| if (!readRTC->readPixels(ii, firstRead, 0, 0, 0)) { |
| return false; |
| } |
| |
| // Adding discard to appease vulkan validation warning about loading uninitialized data on |
| // draw |
| tempRTC->discard(); |
| |
| paint2.addColorTextureProcessor(readRTC->asTextureProxyRef(), SkMatrix::I()); |
| paint2.addColorFragmentProcessor(std::move(upmToPM)); |
| paint2.setPorterDuffXPFactory(SkBlendMode::kSrc); |
| |
| tempRTC->fillRectToRect(GrNoClip(), std::move(paint2), GrAA::kNo, SkMatrix::I(), kRect, |
| kRect); |
| |
| paint3.addColorTextureProcessor(tempRTC->asTextureProxyRef(), SkMatrix::I()); |
| paint3.addColorFragmentProcessor(std::move(pmToUPM)); |
| paint3.setPorterDuffXPFactory(SkBlendMode::kSrc); |
| |
| readRTC->fillRectToRect(GrNoClip(), std::move(paint3), GrAA::kNo, SkMatrix::I(), kRect, |
| kRect); |
| |
| if (!readRTC->readPixels(ii, secondRead, 0, 0, 0)) { |
| return false; |
| } |
| |
| for (int y = 0; y < kSize; ++y) { |
| for (int x = 0; x <= y; ++x) { |
| if (firstRead[kSize * y + x] != secondRead[kSize * y + x]) { |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| } |
| |
| @make { |
| static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp, |
| PMConversion pmConversion) { |
| if (!fp) { |
| return nullptr; |
| } |
| std::unique_ptr<GrFragmentProcessor> ccFP(new GrConfigConversionEffect(pmConversion)); |
| std::unique_ptr<GrFragmentProcessor> fpPipeline[] = { std::move(fp), std::move(ccFP) }; |
| return GrFragmentProcessor::RunInSeries(fpPipeline, 2); |
| } |
| } |
| |
| layout(key) in PMConversion pmConversion; |
| |
| @emitCode { |
| fragBuilder->forceHighPrecision(); |
| } |
| |
| void main() { |
| // Aggressively round to the nearest exact (N / 255) floating point value. This lets us find a |
| // round-trip preserving pair on some GPUs that do odd byte to float conversion. |
| sk_OutColor = floor(sk_InColor * 255 + 0.5) / 255; |
| |
| @switch (pmConversion) { |
| case PMConversion::kToPremul: |
| sk_OutColor.rgb = floor(sk_OutColor.rgb * sk_OutColor.a * 255 + 0.5) / 255; |
| break; |
| |
| case PMConversion::kToUnpremul: |
| sk_OutColor.rgb = sk_OutColor.a <= 0.0 ? |
| half3(0) : |
| floor(sk_OutColor.rgb / sk_OutColor.a * 255 + 0.5) / 255; |
| break; |
| } |
| } |
| |
| @test(data) { |
| PMConversion pmConv = static_cast<PMConversion>(data->fRandom->nextULessThan( |
| (int) PMConversion::kPMConversionCnt)); |
| return std::unique_ptr<GrFragmentProcessor>(new GrConfigConversionEffect(pmConv)); |
| } |