| /* |
| * Copyright 2017 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "GrCCPathParser.h" |
| |
| #include "GrCaps.h" |
| #include "GrGpuCommandBuffer.h" |
| #include "GrOnFlushResourceProvider.h" |
| #include "GrOpFlushState.h" |
| #include "SkMathPriv.h" |
| #include "SkPath.h" |
| #include "SkPathPriv.h" |
| #include "SkPoint.h" |
| #include "ccpr/GrCCGeometry.h" |
| #include <stdlib.h> |
| |
| using TriPointInstance = GrCCCoverageProcessor::TriPointInstance; |
| using QuadPointInstance = GrCCCoverageProcessor::QuadPointInstance; |
| |
| GrCCPathParser::GrCCPathParser(int maxTotalPaths, int maxPathPoints, int numSkPoints, |
| int numSkVerbs) |
| : fLocalDevPtsBuffer(maxPathPoints + 1) // Overallocate by one point to accomodate for |
| // overflow with Sk4f. (See parsePath.) |
| , fGeometry(numSkPoints, numSkVerbs) |
| , fPathsInfo(maxTotalPaths) |
| , fScissorSubBatches(maxTotalPaths) |
| , fTotalPrimitiveCounts{PrimitiveTallies(), PrimitiveTallies()} { |
| // Batches decide what to draw by looking where the previous one ended. Define initial batches |
| // that "end" at the beginning of the data. These will not be drawn, but will only be be read by |
| // the first actual batch. |
| fScissorSubBatches.push_back() = {PrimitiveTallies(), SkIRect::MakeEmpty()}; |
| fCoverageCountBatches.push_back() = {PrimitiveTallies(), fScissorSubBatches.count(), |
| PrimitiveTallies()}; |
| } |
| |
| void GrCCPathParser::parsePath(const SkMatrix& m, const SkPath& path, SkRect* devBounds, |
| SkRect* devBounds45) { |
| const SkPoint* pts = SkPathPriv::PointData(path); |
| int numPts = path.countPoints(); |
| SkASSERT(numPts + 1 <= fLocalDevPtsBuffer.count()); |
| |
| if (!numPts) { |
| devBounds->setEmpty(); |
| devBounds45->setEmpty(); |
| this->parsePath(path, nullptr); |
| return; |
| } |
| |
| // m45 transforms path points into "45 degree" device space. A bounding box in this space gives |
| // the circumscribing octagon's diagonals. We could use SK_ScalarRoot2Over2, but an orthonormal |
| // transform is not necessary as long as the shader uses the correct inverse. |
| SkMatrix m45; |
| m45.setSinCos(1, 1); |
| m45.preConcat(m); |
| |
| // X,Y,T are two parallel view matrices that accumulate two bounding boxes as they map points: |
| // device-space bounds and "45 degree" device-space bounds (| 1 -1 | * devCoords). |
| // | 1 1 | |
| Sk4f X = Sk4f(m.getScaleX(), m.getSkewY(), m45.getScaleX(), m45.getSkewY()); |
| Sk4f Y = Sk4f(m.getSkewX(), m.getScaleY(), m45.getSkewX(), m45.getScaleY()); |
| Sk4f T = Sk4f(m.getTranslateX(), m.getTranslateY(), m45.getTranslateX(), m45.getTranslateY()); |
| |
| // Map the path's points to device space and accumulate bounding boxes. |
| Sk4f devPt = SkNx_fma(Y, Sk4f(pts[0].y()), T); |
| devPt = SkNx_fma(X, Sk4f(pts[0].x()), devPt); |
| Sk4f topLeft = devPt; |
| Sk4f bottomRight = devPt; |
| |
| // Store all 4 values [dev.x, dev.y, dev45.x, dev45.y]. We are only interested in the first two, |
| // and will overwrite [dev45.x, dev45.y] with the next point. This is why the dst buffer must |
| // be at least one larger than the number of points. |
| devPt.store(&fLocalDevPtsBuffer[0]); |
| |
| for (int i = 1; i < numPts; ++i) { |
| devPt = SkNx_fma(Y, Sk4f(pts[i].y()), T); |
| devPt = SkNx_fma(X, Sk4f(pts[i].x()), devPt); |
| topLeft = Sk4f::Min(topLeft, devPt); |
| bottomRight = Sk4f::Max(bottomRight, devPt); |
| devPt.store(&fLocalDevPtsBuffer[i]); |
| } |
| |
| SkPoint topLeftPts[2], bottomRightPts[2]; |
| topLeft.store(topLeftPts); |
| bottomRight.store(bottomRightPts); |
| devBounds->setLTRB(topLeftPts[0].x(), topLeftPts[0].y(), bottomRightPts[0].x(), |
| bottomRightPts[0].y()); |
| devBounds45->setLTRB(topLeftPts[1].x(), topLeftPts[1].y(), bottomRightPts[1].x(), |
| bottomRightPts[1].y()); |
| |
| this->parsePath(path, fLocalDevPtsBuffer.get()); |
| } |
| |
| void GrCCPathParser::parseDeviceSpacePath(const SkPath& deviceSpacePath) { |
| this->parsePath(deviceSpacePath, SkPathPriv::PointData(deviceSpacePath)); |
| } |
| |
| void GrCCPathParser::parsePath(const SkPath& path, const SkPoint* deviceSpacePts) { |
| SkASSERT(!fInstanceBuffer); // Can't call after finalize(). |
| SkASSERT(!fParsingPath); // Call saveParsedPath() or discardParsedPath() for the last one first. |
| SkDEBUGCODE(fParsingPath = true); |
| SkASSERT(path.isEmpty() || deviceSpacePts); |
| |
| fCurrPathPointsIdx = fGeometry.points().count(); |
| fCurrPathVerbsIdx = fGeometry.verbs().count(); |
| fCurrPathPrimitiveCounts = PrimitiveTallies(); |
| |
| fGeometry.beginPath(); |
| |
| if (path.isEmpty()) { |
| return; |
| } |
| |
| int ptsIdx = 0; |
| bool insideContour = false; |
| |
| for (SkPath::Verb verb : SkPathPriv::Verbs(path)) { |
| switch (verb) { |
| case SkPath::kMove_Verb: |
| this->endContourIfNeeded(insideContour); |
| fGeometry.beginContour(deviceSpacePts[ptsIdx]); |
| ++ptsIdx; |
| insideContour = true; |
| continue; |
| case SkPath::kClose_Verb: |
| this->endContourIfNeeded(insideContour); |
| insideContour = false; |
| continue; |
| case SkPath::kLine_Verb: |
| fGeometry.lineTo(deviceSpacePts[ptsIdx]); |
| ++ptsIdx; |
| continue; |
| case SkPath::kQuad_Verb: |
| fGeometry.quadraticTo(deviceSpacePts[ptsIdx], deviceSpacePts[ptsIdx + 1]); |
| ptsIdx += 2; |
| continue; |
| case SkPath::kCubic_Verb: |
| fGeometry.cubicTo(deviceSpacePts[ptsIdx], deviceSpacePts[ptsIdx + 1], |
| deviceSpacePts[ptsIdx + 2]); |
| ptsIdx += 3; |
| continue; |
| case SkPath::kConic_Verb: |
| SK_ABORT("Conics are not supported."); |
| default: |
| SK_ABORT("Unexpected path verb."); |
| } |
| } |
| |
| this->endContourIfNeeded(insideContour); |
| } |
| |
| void GrCCPathParser::endContourIfNeeded(bool insideContour) { |
| if (insideContour) { |
| fCurrPathPrimitiveCounts += fGeometry.endContour(); |
| } |
| } |
| |
| void GrCCPathParser::saveParsedPath(ScissorMode scissorMode, const SkIRect& clippedDevIBounds, |
| int16_t atlasOffsetX, int16_t atlasOffsetY) { |
| SkASSERT(fParsingPath); |
| |
| fPathsInfo.emplace_back(scissorMode, atlasOffsetX, atlasOffsetY); |
| |
| // Tessellate fans from very large and/or simple paths, in order to reduce overdraw. |
| int numVerbs = fGeometry.verbs().count() - fCurrPathVerbsIdx - 1; |
| int64_t tessellationWork = (int64_t)numVerbs * (32 - SkCLZ(numVerbs)); // N log N. |
| int64_t fanningWork = (int64_t)clippedDevIBounds.height() * clippedDevIBounds.width(); |
| if (tessellationWork * (50*50) + (100*100) < fanningWork) { // Don't tessellate under 100x100. |
| fCurrPathPrimitiveCounts.fTriangles = |
| fCurrPathPrimitiveCounts.fWoundTriangles = 0; |
| |
| const SkTArray<GrCCGeometry::Verb, true>& verbs = fGeometry.verbs(); |
| const SkTArray<SkPoint, true>& pts = fGeometry.points(); |
| int ptsIdx = fCurrPathPointsIdx; |
| |
| // Build an SkPath of the Redbook fan. We use "winding" fill type right now because we are |
| // producing a coverage count, and must fill in every region that has non-zero wind. The |
| // path processor will convert coverage count to the appropriate fill type later. |
| SkPath fan; |
| fan.setFillType(SkPath::kWinding_FillType); |
| SkASSERT(GrCCGeometry::Verb::kBeginPath == verbs[fCurrPathVerbsIdx]); |
| for (int i = fCurrPathVerbsIdx + 1; i < fGeometry.verbs().count(); ++i) { |
| switch (verbs[i]) { |
| case GrCCGeometry::Verb::kBeginPath: |
| SK_ABORT("Invalid GrCCGeometry"); |
| continue; |
| |
| case GrCCGeometry::Verb::kBeginContour: |
| fan.moveTo(pts[ptsIdx++]); |
| continue; |
| |
| case GrCCGeometry::Verb::kLineTo: |
| fan.lineTo(pts[ptsIdx++]); |
| continue; |
| |
| case GrCCGeometry::Verb::kMonotonicQuadraticTo: |
| fan.lineTo(pts[ptsIdx + 1]); |
| ptsIdx += 2; |
| continue; |
| |
| case GrCCGeometry::Verb::kMonotonicCubicTo: |
| fan.lineTo(pts[ptsIdx + 2]); |
| ptsIdx += 3; |
| continue; |
| |
| case GrCCGeometry::Verb::kEndClosedContour: |
| case GrCCGeometry::Verb::kEndOpenContour: |
| fan.close(); |
| continue; |
| } |
| } |
| GrTessellator::WindingVertex* vertices = nullptr; |
| int count = GrTessellator::PathToVertices(fan, std::numeric_limits<float>::infinity(), |
| SkRect::Make(clippedDevIBounds), &vertices); |
| SkASSERT(0 == count % 3); |
| for (int i = 0; i < count; i += 3) { |
| int tessWinding = vertices[i].fWinding; |
| SkASSERT(tessWinding == vertices[i + 1].fWinding); |
| SkASSERT(tessWinding == vertices[i + 2].fWinding); |
| |
| // Ensure this triangle's points actually wind in the same direction as tessWinding. |
| // CCPR shaders use the sign of wind to determine which direction to bloat, so even for |
| // "wound" triangles the winding sign and point ordering need to agree. |
| float ax = vertices[i].fPos.fX - vertices[i + 1].fPos.fX; |
| float ay = vertices[i].fPos.fY - vertices[i + 1].fPos.fY; |
| float bx = vertices[i].fPos.fX - vertices[i + 2].fPos.fX; |
| float by = vertices[i].fPos.fY - vertices[i + 2].fPos.fY; |
| float wind = ax*by - ay*bx; |
| if ((wind > 0) != (-tessWinding > 0)) { // Tessellator has opposite winding sense. |
| std::swap(vertices[i + 1].fPos, vertices[i + 2].fPos); |
| } |
| |
| if (1 == abs(tessWinding)) { |
| ++fCurrPathPrimitiveCounts.fTriangles; |
| } else { |
| ++fCurrPathPrimitiveCounts.fWoundTriangles; |
| } |
| } |
| |
| fPathsInfo.back().fFanTessellation.reset(vertices); |
| fPathsInfo.back().fFanTessellationCount = count; |
| } |
| |
| fTotalPrimitiveCounts[(int)scissorMode] += fCurrPathPrimitiveCounts; |
| |
| if (ScissorMode::kScissored == scissorMode) { |
| fScissorSubBatches.push_back() = {fTotalPrimitiveCounts[(int)ScissorMode::kScissored], |
| clippedDevIBounds.makeOffset(atlasOffsetX, atlasOffsetY)}; |
| } |
| |
| SkDEBUGCODE(fParsingPath = false); |
| } |
| |
| void GrCCPathParser::discardParsedPath() { |
| SkASSERT(fParsingPath); |
| fGeometry.resize_back(fCurrPathPointsIdx, fCurrPathVerbsIdx); |
| SkDEBUGCODE(fParsingPath = false); |
| } |
| |
| GrCCPathParser::CoverageCountBatchID GrCCPathParser::closeCurrentBatch() { |
| SkASSERT(!fInstanceBuffer); |
| SkASSERT(!fCoverageCountBatches.empty()); |
| const auto& lastBatch = fCoverageCountBatches.back(); |
| const auto& lastScissorSubBatch = fScissorSubBatches[lastBatch.fEndScissorSubBatchIdx - 1]; |
| |
| PrimitiveTallies batchTotalCounts = fTotalPrimitiveCounts[(int)ScissorMode::kNonScissored] - |
| lastBatch.fEndNonScissorIndices; |
| batchTotalCounts += fTotalPrimitiveCounts[(int)ScissorMode::kScissored] - |
| lastScissorSubBatch.fEndPrimitiveIndices; |
| |
| fCoverageCountBatches.push_back() = { |
| fTotalPrimitiveCounts[(int)ScissorMode::kNonScissored], |
| fScissorSubBatches.count(), |
| batchTotalCounts |
| }; |
| |
| int maxMeshes = 1 + fScissorSubBatches.count() - lastBatch.fEndScissorSubBatchIdx; |
| fMaxMeshesPerDraw = SkTMax(fMaxMeshesPerDraw, maxMeshes); |
| |
| return fCoverageCountBatches.count() - 1; |
| } |
| |
| // Emits a contour's triangle fan. |
| // |
| // Classic Redbook fanning would be the triangles: [0 1 2], [0 2 3], ..., [0 n-2 n-1]. |
| // |
| // This function emits the triangle: [0 n/3 n*2/3], and then recurses on all three sides. The |
| // advantage to this approach is that for a convex-ish contour, it generates larger triangles. |
| // Classic fanning tends to generate long, skinny triangles, which are expensive to draw since they |
| // have a longer perimeter to rasterize and antialias. |
| // |
| // The indices array indexes the fan's points (think: glDrawElements), and must have at least log3 |
| // elements past the end for this method to use as scratch space. |
| // |
| // Returns the next triangle instance after the final one emitted. |
| static TriPointInstance* emit_recursive_fan(const SkTArray<SkPoint, true>& pts, |
| SkTArray<int32_t, true>& indices, int firstIndex, |
| int indexCount, const Sk2f& atlasOffset, |
| TriPointInstance out[]) { |
| if (indexCount < 3) { |
| return out; |
| } |
| |
| int32_t oneThirdCount = indexCount / 3; |
| int32_t twoThirdsCount = (2 * indexCount) / 3; |
| out++->set(pts[indices[firstIndex]], pts[indices[firstIndex + oneThirdCount]], |
| pts[indices[firstIndex + twoThirdsCount]], atlasOffset); |
| |
| out = emit_recursive_fan(pts, indices, firstIndex, oneThirdCount + 1, atlasOffset, out); |
| out = emit_recursive_fan(pts, indices, firstIndex + oneThirdCount, |
| twoThirdsCount - oneThirdCount + 1, atlasOffset, out); |
| |
| int endIndex = firstIndex + indexCount; |
| int32_t oldValue = indices[endIndex]; |
| indices[endIndex] = indices[firstIndex]; |
| out = emit_recursive_fan(pts, indices, firstIndex + twoThirdsCount, |
| indexCount - twoThirdsCount + 1, atlasOffset, out); |
| indices[endIndex] = oldValue; |
| |
| return out; |
| } |
| |
| static void emit_tessellated_fan(const GrTessellator::WindingVertex* vertices, int numVertices, |
| const Sk2f& atlasOffset, TriPointInstance* triPointInstanceData, |
| QuadPointInstance* quadPointInstanceData, |
| GrCCGeometry::PrimitiveTallies* indices) { |
| for (int i = 0; i < numVertices; i += 3) { |
| if (1 == abs(vertices[i].fWinding)) { |
| triPointInstanceData[indices->fTriangles++].set(vertices[i].fPos, vertices[i + 1].fPos, |
| vertices[i + 2].fPos, atlasOffset); |
| } else { |
| quadPointInstanceData[indices->fWoundTriangles++].set( |
| vertices[i].fPos, vertices[i+1].fPos, vertices[i + 2].fPos, atlasOffset, |
| // Tessellator has opposite winding sense. |
| -static_cast<float>(vertices[i].fWinding)); |
| } |
| } |
| } |
| |
| bool GrCCPathParser::finalize(GrOnFlushResourceProvider* onFlushRP) { |
| SkASSERT(!fParsingPath); // Call saveParsedPath() or discardParsedPath(). |
| SkASSERT(fCoverageCountBatches.back().fEndNonScissorIndices == // Call closeCurrentBatch(). |
| fTotalPrimitiveCounts[(int)ScissorMode::kNonScissored]); |
| SkASSERT(fCoverageCountBatches.back().fEndScissorSubBatchIdx == fScissorSubBatches.count()); |
| |
| // Here we build a single instance buffer to share with every internal batch. |
| // |
| // CCPR processs 3 different types of primitives: triangles, quadratics, cubics. Each primitive |
| // type is further divided into instances that require a scissor and those that don't. This |
| // leaves us with 3*2 = 6 independent instance arrays to build for the GPU. |
| // |
| // Rather than place each instance array in its own GPU buffer, we allocate a single |
| // megabuffer and lay them all out side-by-side. We can offset the "baseInstance" parameter in |
| // our draw calls to direct the GPU to the applicable elements within a given array. |
| // |
| // We already know how big to make each of the 6 arrays from fTotalPrimitiveCounts, so layout is |
| // straightforward. Start with triangles and quadratics. They both view the instance buffer as |
| // an array of TriPointInstance[], so we can begin at zero and lay them out one after the other. |
| fBaseInstances[0].fTriangles = 0; |
| fBaseInstances[1].fTriangles = fBaseInstances[0].fTriangles + |
| fTotalPrimitiveCounts[0].fTriangles; |
| fBaseInstances[0].fQuadratics = fBaseInstances[1].fTriangles + |
| fTotalPrimitiveCounts[1].fTriangles; |
| fBaseInstances[1].fQuadratics = fBaseInstances[0].fQuadratics + |
| fTotalPrimitiveCounts[0].fQuadratics; |
| int triEndIdx = fBaseInstances[1].fQuadratics + fTotalPrimitiveCounts[1].fQuadratics; |
| |
| // Wound triangles and cubics both view the same instance buffer as an array of |
| // QuadPointInstance[]. So, reinterpreting the instance data as QuadPointInstance[], we start |
| // them on the first index that will not overwrite previous TriPointInstance data. |
| int quadBaseIdx = |
| GR_CT_DIV_ROUND_UP(triEndIdx * sizeof(TriPointInstance), sizeof(QuadPointInstance)); |
| fBaseInstances[0].fWoundTriangles = quadBaseIdx; |
| fBaseInstances[1].fWoundTriangles = fBaseInstances[0].fWoundTriangles + |
| fTotalPrimitiveCounts[0].fWoundTriangles; |
| fBaseInstances[0].fCubics = fBaseInstances[1].fWoundTriangles + |
| fTotalPrimitiveCounts[1].fWoundTriangles; |
| fBaseInstances[1].fCubics = fBaseInstances[0].fCubics + fTotalPrimitiveCounts[0].fCubics; |
| int quadEndIdx = fBaseInstances[1].fCubics + fTotalPrimitiveCounts[1].fCubics; |
| |
| fInstanceBuffer = onFlushRP->makeBuffer(kVertex_GrBufferType, |
| quadEndIdx * sizeof(QuadPointInstance)); |
| if (!fInstanceBuffer) { |
| return false; |
| } |
| |
| TriPointInstance* triPointInstanceData = static_cast<TriPointInstance*>(fInstanceBuffer->map()); |
| QuadPointInstance* quadPointInstanceData = |
| reinterpret_cast<QuadPointInstance*>(triPointInstanceData); |
| SkASSERT(quadPointInstanceData); |
| |
| PathInfo* nextPathInfo = fPathsInfo.begin(); |
| float atlasOffsetX = 0.0, atlasOffsetY = 0.0; |
| Sk2f atlasOffset; |
| PrimitiveTallies instanceIndices[2] = {fBaseInstances[0], fBaseInstances[1]}; |
| PrimitiveTallies* currIndices = nullptr; |
| SkSTArray<256, int32_t, true> currFan; |
| bool currFanIsTessellated = false; |
| |
| const SkTArray<SkPoint, true>& pts = fGeometry.points(); |
| int ptsIdx = -1; |
| |
| // Expand the ccpr verbs into GPU instance buffers. |
| for (GrCCGeometry::Verb verb : fGeometry.verbs()) { |
| switch (verb) { |
| case GrCCGeometry::Verb::kBeginPath: |
| SkASSERT(currFan.empty()); |
| currIndices = &instanceIndices[(int)nextPathInfo->fScissorMode]; |
| atlasOffsetX = static_cast<float>(nextPathInfo->fAtlasOffsetX); |
| atlasOffsetY = static_cast<float>(nextPathInfo->fAtlasOffsetY); |
| atlasOffset = {atlasOffsetX, atlasOffsetY}; |
| currFanIsTessellated = nextPathInfo->fFanTessellation.get(); |
| if (currFanIsTessellated) { |
| emit_tessellated_fan(nextPathInfo->fFanTessellation.get(), |
| nextPathInfo->fFanTessellationCount, atlasOffset, |
| triPointInstanceData, quadPointInstanceData, currIndices); |
| } |
| ++nextPathInfo; |
| continue; |
| |
| case GrCCGeometry::Verb::kBeginContour: |
| SkASSERT(currFan.empty()); |
| ++ptsIdx; |
| if (!currFanIsTessellated) { |
| currFan.push_back(ptsIdx); |
| } |
| continue; |
| |
| case GrCCGeometry::Verb::kLineTo: |
| ++ptsIdx; |
| if (!currFanIsTessellated) { |
| SkASSERT(!currFan.empty()); |
| currFan.push_back(ptsIdx); |
| } |
| continue; |
| |
| case GrCCGeometry::Verb::kMonotonicQuadraticTo: |
| triPointInstanceData[currIndices->fQuadratics++].set(&pts[ptsIdx], atlasOffset); |
| ptsIdx += 2; |
| if (!currFanIsTessellated) { |
| SkASSERT(!currFan.empty()); |
| currFan.push_back(ptsIdx); |
| } |
| continue; |
| |
| case GrCCGeometry::Verb::kMonotonicCubicTo: |
| quadPointInstanceData[currIndices->fCubics++].set(&pts[ptsIdx], atlasOffsetX, |
| atlasOffsetY); |
| ptsIdx += 3; |
| if (!currFanIsTessellated) { |
| SkASSERT(!currFan.empty()); |
| currFan.push_back(ptsIdx); |
| } |
| continue; |
| |
| case GrCCGeometry::Verb::kEndClosedContour: // endPt == startPt. |
| if (!currFanIsTessellated) { |
| SkASSERT(!currFan.empty()); |
| currFan.pop_back(); |
| } |
| // fallthru. |
| case GrCCGeometry::Verb::kEndOpenContour: // endPt != startPt. |
| SkASSERT(!currFanIsTessellated || currFan.empty()); |
| if (!currFanIsTessellated && currFan.count() >= 3) { |
| int fanSize = currFan.count(); |
| // Reserve space for emit_recursive_fan. Technically this can grow to |
| // fanSize + log3(fanSize), but we approximate with log2. |
| currFan.push_back_n(SkNextLog2(fanSize)); |
| SkDEBUGCODE(TriPointInstance* end =) |
| emit_recursive_fan(pts, currFan, 0, fanSize, atlasOffset, |
| triPointInstanceData + currIndices->fTriangles); |
| currIndices->fTriangles += fanSize - 2; |
| SkASSERT(triPointInstanceData + currIndices->fTriangles == end); |
| } |
| currFan.reset(); |
| continue; |
| } |
| } |
| |
| fInstanceBuffer->unmap(); |
| |
| SkASSERT(nextPathInfo == fPathsInfo.end()); |
| SkASSERT(ptsIdx == pts.count() - 1); |
| SkASSERT(instanceIndices[0].fTriangles == fBaseInstances[1].fTriangles); |
| SkASSERT(instanceIndices[1].fTriangles == fBaseInstances[0].fQuadratics); |
| SkASSERT(instanceIndices[0].fQuadratics == fBaseInstances[1].fQuadratics); |
| SkASSERT(instanceIndices[1].fQuadratics == triEndIdx); |
| SkASSERT(instanceIndices[0].fWoundTriangles == fBaseInstances[1].fWoundTriangles); |
| SkASSERT(instanceIndices[1].fWoundTriangles == fBaseInstances[0].fCubics); |
| SkASSERT(instanceIndices[0].fCubics == fBaseInstances[1].fCubics); |
| SkASSERT(instanceIndices[1].fCubics == quadEndIdx); |
| |
| fMeshesScratchBuffer.reserve(fMaxMeshesPerDraw); |
| fDynamicStatesScratchBuffer.reserve(fMaxMeshesPerDraw); |
| |
| return true; |
| } |
| |
| void GrCCPathParser::drawCoverageCount(GrOpFlushState* flushState, CoverageCountBatchID batchID, |
| const SkIRect& drawBounds) const { |
| using RenderPass = GrCCCoverageProcessor::RenderPass; |
| using WindMethod = GrCCCoverageProcessor::WindMethod; |
| |
| SkASSERT(fInstanceBuffer); |
| |
| const PrimitiveTallies& batchTotalCounts = fCoverageCountBatches[batchID].fTotalPrimitiveCounts; |
| |
| GrPipeline pipeline(flushState->drawOpArgs().fProxy, GrPipeline::ScissorState::kEnabled, |
| SkBlendMode::kPlus); |
| |
| if (batchTotalCounts.fTriangles) { |
| this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kTriangleHulls, |
| WindMethod::kCrossProduct, &PrimitiveTallies::fTriangles, drawBounds); |
| this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kTriangleEdges, |
| WindMethod::kCrossProduct, &PrimitiveTallies::fTriangles, |
| drawBounds); // Might get skipped. |
| this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kTriangleCorners, |
| WindMethod::kCrossProduct, &PrimitiveTallies::fTriangles, drawBounds); |
| } |
| |
| if (batchTotalCounts.fWoundTriangles) { |
| this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kTriangleHulls, |
| WindMethod::kInstanceData, &PrimitiveTallies::fWoundTriangles, |
| drawBounds); |
| this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kTriangleEdges, |
| WindMethod::kInstanceData, &PrimitiveTallies::fWoundTriangles, |
| drawBounds); // Might get skipped. |
| this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kTriangleCorners, |
| WindMethod::kInstanceData, &PrimitiveTallies::fWoundTriangles, |
| drawBounds); |
| } |
| |
| if (batchTotalCounts.fQuadratics) { |
| this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kQuadraticHulls, |
| WindMethod::kCrossProduct, &PrimitiveTallies::fQuadratics, drawBounds); |
| this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kQuadraticCorners, |
| WindMethod::kCrossProduct, &PrimitiveTallies::fQuadratics, drawBounds); |
| } |
| |
| if (batchTotalCounts.fCubics) { |
| this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kCubicHulls, |
| WindMethod::kCrossProduct, &PrimitiveTallies::fCubics, drawBounds); |
| this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kCubicCorners, |
| WindMethod::kCrossProduct, &PrimitiveTallies::fCubics, drawBounds); |
| } |
| } |
| |
| void GrCCPathParser::drawRenderPass(GrOpFlushState* flushState, const GrPipeline& pipeline, |
| CoverageCountBatchID batchID, |
| GrCCCoverageProcessor::RenderPass renderPass, |
| GrCCCoverageProcessor::WindMethod windMethod, |
| int PrimitiveTallies::*instanceType, |
| const SkIRect& drawBounds) const { |
| SkASSERT(pipeline.getScissorState().enabled()); |
| |
| if (!GrCCCoverageProcessor::DoesRenderPass(renderPass, flushState->caps())) { |
| return; |
| } |
| |
| // Don't call reset(), as that also resets the reserve count. |
| fMeshesScratchBuffer.pop_back_n(fMeshesScratchBuffer.count()); |
| fDynamicStatesScratchBuffer.pop_back_n(fDynamicStatesScratchBuffer.count()); |
| |
| GrCCCoverageProcessor proc(flushState->resourceProvider(), renderPass, windMethod); |
| |
| SkASSERT(batchID > 0); |
| SkASSERT(batchID < fCoverageCountBatches.count()); |
| const CoverageCountBatch& previousBatch = fCoverageCountBatches[batchID - 1]; |
| const CoverageCountBatch& batch = fCoverageCountBatches[batchID]; |
| SkDEBUGCODE(int totalInstanceCount = 0); |
| |
| if (int instanceCount = batch.fEndNonScissorIndices.*instanceType - |
| previousBatch.fEndNonScissorIndices.*instanceType) { |
| SkASSERT(instanceCount > 0); |
| int baseInstance = fBaseInstances[(int)ScissorMode::kNonScissored].*instanceType + |
| previousBatch.fEndNonScissorIndices.*instanceType; |
| proc.appendMesh(fInstanceBuffer.get(), instanceCount, baseInstance, &fMeshesScratchBuffer); |
| fDynamicStatesScratchBuffer.push_back().fScissorRect.setXYWH(0, 0, drawBounds.width(), |
| drawBounds.height()); |
| SkDEBUGCODE(totalInstanceCount += instanceCount); |
| } |
| |
| SkASSERT(previousBatch.fEndScissorSubBatchIdx > 0); |
| SkASSERT(batch.fEndScissorSubBatchIdx <= fScissorSubBatches.count()); |
| int baseScissorInstance = fBaseInstances[(int)ScissorMode::kScissored].*instanceType; |
| for (int i = previousBatch.fEndScissorSubBatchIdx; i < batch.fEndScissorSubBatchIdx; ++i) { |
| const ScissorSubBatch& previousSubBatch = fScissorSubBatches[i - 1]; |
| const ScissorSubBatch& scissorSubBatch = fScissorSubBatches[i]; |
| int startIndex = previousSubBatch.fEndPrimitiveIndices.*instanceType; |
| int instanceCount = scissorSubBatch.fEndPrimitiveIndices.*instanceType - startIndex; |
| if (!instanceCount) { |
| continue; |
| } |
| SkASSERT(instanceCount > 0); |
| proc.appendMesh(fInstanceBuffer.get(), instanceCount, |
| baseScissorInstance + startIndex, &fMeshesScratchBuffer); |
| fDynamicStatesScratchBuffer.push_back().fScissorRect = scissorSubBatch.fScissor; |
| SkDEBUGCODE(totalInstanceCount += instanceCount); |
| } |
| |
| SkASSERT(fMeshesScratchBuffer.count() == fDynamicStatesScratchBuffer.count()); |
| SkASSERT(fMeshesScratchBuffer.count() <= fMaxMeshesPerDraw); |
| SkASSERT(totalInstanceCount == batch.fTotalPrimitiveCounts.*instanceType); |
| |
| if (!fMeshesScratchBuffer.empty()) { |
| SkASSERT(flushState->rtCommandBuffer()); |
| flushState->rtCommandBuffer()->draw(pipeline, proc, fMeshesScratchBuffer.begin(), |
| fDynamicStatesScratchBuffer.begin(), |
| fMeshesScratchBuffer.count(), SkRect::Make(drawBounds)); |
| } |
| } |