| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/core/SkEdge.h" |
| |
| #include "include/core/SkRect.h" |
| #include "include/private/base/SkDebug.h" |
| #include "include/private/base/SkSafe32.h" |
| #include "include/private/base/SkTo.h" |
| #include "src/base/SkMathPriv.h" |
| #include "src/core/SkFDot6.h" |
| |
| #include <algorithm> |
| #include <utility> |
| |
| /* |
| In setLine, setQuadratic, setCubic, the first thing we do is to convert |
| the points into FDot6. This is modulated by the shift parameter, which |
| will either be 0, or something like 2 for antialiasing. |
| |
| In the float case, we want to turn the float into .6 by saying pt * 64, |
| or pt * 256 for antialiasing. This is implemented as 1 << (shift + 6). |
| |
| In the fixed case, we want to turn the fixed into .6 by saying pt >> 10, |
| or pt >> 8 for antialiasing. This is implemented as pt >> (10 - shift). |
| */ |
| |
| static inline SkFixed SkFDot6ToFixedDiv2(SkFDot6 value) { |
| // we want to return SkFDot6ToFixed(value >> 1), but we don't want to throw |
| // away data in value, so just perform a modify up-shift |
| return SkLeftShift(value, 16 - 6 - 1); |
| } |
| |
| ///////////////////////////////////////////////////////////////////////// |
| |
| #if defined(SK_DEBUG) |
| void SkEdge::dump() const { |
| SkASSERT(fSegmentCount == 0); |
| SkDebugf("line edge: firstY:%d lastY:%d x:%g dx/dy:%g\n" |
| "\twinding:%d curveShift:%u\n", |
| fFirstY, |
| fLastY, |
| SkFixedToFloat(fX), |
| SkFixedToFloat(fDxDy), |
| static_cast<int8_t>(fWinding), |
| fCurveShift); |
| } |
| |
| void SkQuadraticEdge::dump() const { |
| SkDebugf("quad edge; %u segment(s) left: firstY:%d lastY:%d x:%g dx/dy:%g\n" |
| "\tqx:%g qy:%g dqx:%g dqy:%g ddqx:%g ddqy:%g qLastX:%g qLastY:%g\n" |
| "\twinding:%d curveShift:%u\n", |
| fSegmentCount, |
| fFirstY, |
| fLastY, |
| SkFixedToFloat(fX), |
| SkFixedToFloat(fDxDy), |
| SkFixedToFloat(fQx), |
| SkFixedToFloat(fQy), |
| SkFixedToFloat(fQDxDt), |
| SkFixedToFloat(fQDyDt), |
| SkFixedToFloat(fQD2xDt2), |
| SkFixedToFloat(fQD2yDt2), |
| SkFixedToFloat(fQLastX), |
| SkFixedToFloat(fQLastY), |
| static_cast<int8_t>(fWinding), |
| fCurveShift); |
| } |
| |
| void SkCubicEdge::dump() const { |
| SkDebugf("cube edge; %u segment(s) left: firstY:%d lastY:%d x:%g dx/dy:%g\n" |
| "qx:%g qy:%g dcx:%g dcy:%g ddcx:%g ddcy:%g dddcx:%g dddcy:%g cLastX:%g cLastY:%g\n" |
| "\twinding:%d curveShift:%u dShift:%u\n", |
| fSegmentCount, |
| fFirstY, |
| fLastY, |
| SkFixedToFloat(fX), |
| SkFixedToFloat(fDxDy), |
| SkFixedToFloat(fCx), |
| SkFixedToFloat(fCy), |
| SkFixedToFloat(fCDxDt), |
| SkFixedToFloat(fCDyDt), |
| SkFixedToFloat(fCD2xDt2), |
| SkFixedToFloat(fCD2yDt2), |
| SkFixedToFloat(fCD3xDt3), |
| SkFixedToFloat(fCD3yDt3), |
| SkFixedToFloat(fCLastX), |
| SkFixedToFloat(fCLastY), |
| static_cast<int8_t>(fWinding), |
| fCurveShift, |
| fCubicDShift); |
| } |
| #endif |
| |
| bool SkEdge::setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect* clip) { |
| SkFDot6 x0, y0, x1, y1; |
| |
| #ifdef SK_RASTERIZE_EVEN_ROUNDING |
| x0 = SkScalarRoundToFDot6(p0.fX, 0); |
| y0 = SkScalarRoundToFDot6(p0.fY, 0); |
| x1 = SkScalarRoundToFDot6(p1.fX, 0); |
| y1 = SkScalarRoundToFDot6(p1.fY, 0); |
| #else |
| x0 = SkFloatToFDot6(p0.fX); |
| y0 = SkFloatToFDot6(p0.fY); |
| x1 = SkFloatToFDot6(p1.fX); |
| y1 = SkFloatToFDot6(p1.fY); |
| #endif |
| |
| Winding winding = Winding::kCW; |
| if (y0 > y1) { |
| std::swap(x0, x1); |
| std::swap(y0, y1); |
| winding = Winding::kCCW; |
| } |
| |
| int top = SkFDot6Round(y0); |
| int bot = SkFDot6Round(y1); |
| |
| // are we a zero-height line? |
| if (top == bot) { |
| return false; |
| } |
| // are we completely above or below the clip? |
| if (clip && (top >= clip->fBottom || bot <= clip->fTop)) { |
| return false; |
| } |
| |
| SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0); |
| const SkFDot6 dy = SkEdge_Compute_DY(top, y0); |
| |
| // Note that SkFixedMul(SkFixed, SkFDot6) produces results in SkFDot6 |
| fX = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy)); |
| fDxDy = slope; |
| fFirstY = top; |
| fLastY = bot - 1; |
| fEdgeType = Type::kLine; |
| fSegmentCount = 0; |
| fWinding = winding; |
| fCurveShift = 0; |
| |
| if (clip) { |
| this->chopLineWithClip(*clip); |
| } |
| return true; |
| } |
| |
| bool SkEdge::nextSegment() { |
| SkDEBUGFAILF("Shouldn't be asking a linear edge to go to the next curve."); |
| return false; |
| } |
| |
| // Draws a line between the provided points and then calculates the slope and starting |
| // x value to line up with the closest pixel center. Updates the fields in the SkEdge |
| // base class appropriately. Returns false if this edge would start and stop in the |
| // same row. |
| bool SkEdge::updateLine(SkFixed xStart, SkFixed yStart, SkFixed xEnd, SkFixed yEnd) { |
| SkASSERT(fWinding == Winding::kCW || fWinding == Winding::kCCW); |
| SkASSERT(fSegmentCount != 0); |
| |
| const SkFDot6 y0 = SkFixedToFDot6(yStart); |
| const SkFDot6 y1 = SkFixedToFDot6(yEnd); |
| |
| SkASSERT(y0 <= y1); |
| |
| const int top = SkFDot6Round(y0); |
| const int bot = SkFDot6Round(y1); |
| |
| // are we a zero-height line? |
| if (top == bot) { |
| return false; |
| } |
| |
| const SkFDot6 x0 = SkFixedToFDot6(xStart); |
| const SkFDot6 x1 = SkFixedToFDot6(xEnd); |
| |
| SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0); |
| const SkFDot6 dy = SkEdge_Compute_DY(top, y0); |
| |
| // We could do this math in fixed point, but it would potentially require some |
| // rebaselining https://codereview.chromium.org/960353005/#msg6 |
| // Note that SkFixedMul(SkFixed, SkFDot6) produces results in SkFDot6 |
| fX = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy)); |
| fDxDy = slope; |
| fFirstY = top; |
| fLastY = bot - 1; |
| |
| return true; |
| } |
| |
| void SkEdge::chopLineWithClip(const SkIRect& clip) |
| { |
| int top = fFirstY; |
| |
| SkASSERT(top < clip.fBottom); |
| |
| // clip the line to the top |
| if (top < clip.fTop) |
| { |
| SkASSERT(fLastY >= clip.fTop); |
| fX += fDxDy * (clip.fTop - top); |
| fFirstY = clip.fTop; |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /* This limits the number of lines we use to approximate a curve. |
| If we need to increase this, we need to store fSegmentCount in a larger data type. |
| TODO(kjlubick): now that this is in an unsigned byte, we could go up to 7 |
| */ |
| #define MAX_COEFF_SHIFT 6 |
| |
| // Approximate the distance from (0,0) to (dx, dy). |
| // When dx and dy are about the same |
| // sqrt(dx^2 + dy^2) => sqrt(2dx^2) => dx sqrt(2) = 1.41 * dx |
| // When dx >> dy |
| // sqrt(dx^2 + dy^2) => sqrt(dx^2) => dx |
| // So this is a reasonable approximation |
| static inline SkFDot6 cheap_distance(SkFDot6 dx, SkFDot6 dy) { |
| dx = SkAbs32(dx); |
| dy = SkAbs32(dy); |
| // return max + min/2 |
| if (dx > dy) { |
| return dx + (dy / 2); |
| } |
| return dy + (dx / 2); |
| } |
| |
| static inline int diff_to_shift(SkFDot6 dx, SkFDot6 dy, int accuracy) { |
| // cheap calc of distance from center of p0-p2 to the center of the curve |
| SkFDot6 dist = cheap_distance(dx, dy); |
| |
| // shift down dist (it is currently in dot6) |
| // down by 3 should give us 1/8 pixel accuracy (assuming our dist is accurate...) |
| // this is chosen by heuristic: make it as big as possible (to minimize segments) |
| // ... but small enough so that our curves still look smooth |
| // When shift > 0, we're using AA and everything is scaled up so we can |
| // lower the accuracy. |
| // For cubics still, we have shift > 0. TODO(kjlubick) can we align cubics and quads? |
| dist = (dist + (1 << (2 + accuracy))) >> (3 + accuracy); |
| |
| // each subdivision (shift value) cuts this dist (error) by 1/4 |
| return (32 - SkCLZ(dist)) >> 1; |
| } |
| |
| bool SkQuadraticEdge::setQuadratic(const SkPoint pts[3]) { |
| SkFDot6 x0, y0, x1, y1, x2, y2; |
| |
| #if defined(SK_RASTERIZE_EVEN_ROUNDING) |
| x0 = SkScalarRoundToFDot6(pts[0].fX, 0); |
| y0 = SkScalarRoundToFDot6(pts[0].fY, 0); |
| x1 = SkScalarRoundToFDot6(pts[1].fX, 0); |
| y1 = SkScalarRoundToFDot6(pts[1].fY, 0); |
| x2 = SkScalarRoundToFDot6(pts[2].fX, 0); |
| y2 = SkScalarRoundToFDot6(pts[2].fY, 0); |
| #else |
| x0 = SkFloatToFDot6(pts[0].fX); |
| y0 = SkFloatToFDot6(pts[0].fY); |
| x1 = SkFloatToFDot6(pts[1].fX); |
| y1 = SkFloatToFDot6(pts[1].fY); |
| x2 = SkFloatToFDot6(pts[2].fX); |
| y2 = SkFloatToFDot6(pts[2].fY); |
| #endif |
| |
| Winding winding = Winding::kCW; |
| if (y0 > y2) { |
| std::swap(x0, x2); |
| std::swap(y0, y2); |
| winding = Winding::kCCW; |
| } |
| SkASSERTF(y0 <= y1 && y1 <= y2, "curve must be monotonic"); |
| |
| const int top = SkFDot6Round(y0); |
| const int bot = SkFDot6Round(y2); |
| |
| // are we a zero-height quad (line)? |
| if (top == bot) { |
| return false; |
| } |
| |
| // compute number of steps needed (2^shift) based on the distance between |
| // this curve at the half-way point (t=0.5) and the midpoint of a straight |
| // line between p0 and p2. |
| // B(1/2) = p0 (1-t)^2 + 2 p1 t(1-t) + p2 t^2; t = 1/2 |
| // = p0 (1/2)^2 + 2 p1 (1/2)(1/2) + p2 (1/2)^2 |
| // = 1/4 (p0 + 2 p1 + p2) |
| // Midpoint of p0 and p2 is M(p0, p2) = (p2 + p0) / 2 |
| // Subtracting the two terms to get the vector representing the difference |
| // distance = B(1/2) - M(p0, p2) |
| // = 1/4 (p0 + 2 p1 + p2) - (p2 + p0) / 2 |
| // = 1/4 (p0 + 2 p1 + p2) - (2 p2 + 2 p0) / 4 |
| // = 1/4 (-p0 + 2 p1 - p2) |
| SkFDot6 deltaX = (2*x1 - x0 - x2) >> 2; |
| SkFDot6 deltaY = (2*y1 - y0 - y2) >> 2; |
| // We pass those points into this function which will find the total distance |
| // and use a heuristic to reduce the error to some threshold. |
| int shift = diff_to_shift(deltaX, deltaY, 0); |
| SkASSERT(shift >= 0); |
| |
| // We need at least 2 line segments for us to be able to save the derivatives as |
| // half their values to avoid overflow. |
| if (shift == 0) { |
| shift = 1; |
| } else if (shift > MAX_COEFF_SHIFT) { |
| shift = MAX_COEFF_SHIFT; |
| } |
| |
| fWinding = winding; |
| fEdgeType = Type::kQuad; |
| fSegmentCount = SkToU8(1 << shift); |
| |
| /* |
| * By re-arranging the Bezier curve in polynomial form, it is easier to |
| * find the derivatives and forward-differentiate from one segment to the next. |
| * |
| * p0 (1-t)^2 + 2 p1 t(1-t) + p2 t^2 ==> At^2 + Bt + C |
| * |
| * A = p0 - 2p1 + p2 |
| * B = 2(p1 - p0) |
| * C = p0 |
| * |
| * Our caller must have constrained our inputs (p0..p2) to all fit into |
| * 16.16. However, as seen above, we sometimes compute values that can be |
| * larger (e.g. B = 2*(p1 - p0)). To guard against overflow, we will store |
| * A and B at 1/2 of their actual value, and just apply a 2x scale during |
| * application in nextSegment(). Hence we store (shift - 1) in |
| * fCurveShift. |
| */ |
| |
| fCurveShift = SkToU8(shift - 1); |
| // TODO(kjlubick): Can we use SkVx and calculate both X and Y at once? |
| |
| // The extra 1/2 factor avoids overflow |
| SkFixed A_half = SkFDot6ToFixedDiv2(x0 - x1 - x1 + x2); |
| SkFixed B_half = SkFDot6ToFixed(x1 - x0); |
| |
| // We want to calculate the slope at the midpoint of our first segment. This means evaluating |
| // dx/dt = 2A*t + B |
| // dx^2/dt^2 = 2A |
| // at t = 1/N * 1/2 |
| // There's an extra 1/2 on the whole expression to avoid overflows (as above). |
| // 1/2 ( 2A*t + B) => 1/2 (2A*1/2N + B) => A/2*1/N + B/2 => A/2 * 1/2^shift + B/2 |
| fQDxDt = B_half + (A_half >> shift); |
| // The second derivatives are constant, so we can pre-multiply them by 1/N to save having |
| // to do it in nextSegment(). Since A_half was already calculated we can use a smaller shift. |
| // 1/2 (2A * 1/N) => A * 1/N => A * 1/2^shift => A/2 * 1/2^(shift-1) |
| fQD2xDt2 = A_half >> (shift - 1); |
| |
| A_half = SkFDot6ToFixedDiv2(y0 - y1 - y1 + y2); |
| B_half = SkFDot6ToFixed(y1 - y0); |
| |
| fQDyDt = B_half + (A_half >> shift); |
| fQD2yDt2 = A_half >> (shift - 1); |
| |
| fQx = SkFDot6ToFixed(x0); |
| fQy = SkFDot6ToFixed(y0); |
| fQLastX = SkFDot6ToFixed(x2); |
| fQLastY = SkFDot6ToFixed(y2); |
| |
| return this->nextSegment(); |
| } |
| |
| bool SkQuadraticEdge::nextSegment() { |
| bool success; |
| int count = fSegmentCount; |
| SkFixed oldx = fQx; |
| SkFixed oldy = fQy; |
| SkFixed dx = fQDxDt; |
| SkFixed dy = fQDyDt; |
| SkFixed newx, newy; |
| int shift = fCurveShift; |
| |
| SkASSERT(count > 0); |
| |
| do { |
| if (--count > 0) { |
| newx = oldx + (dx >> shift); |
| dx += fQD2xDt2; |
| newy = oldy + (dy >> shift); |
| dy += fQD2yDt2; |
| } |
| else // last segment |
| { |
| newx = fQLastX; |
| newy = fQLastY; |
| } |
| success = this->updateLine(oldx, oldy, newx, newy); |
| oldx = newx; |
| oldy = newy; |
| } while (count > 0 && !success); |
| |
| fQx = newx; |
| fQy = newy; |
| fQDxDt = dx; |
| fQDyDt = dy; |
| fSegmentCount = SkToU8(count); |
| return success; |
| } |
| |
| ///////////////////////////////////////////////////////////////////////// |
| |
| static inline int SkFDot6UpShift(SkFDot6 x, int upShift) { |
| SkASSERT((SkLeftShift(x, upShift) >> upShift) == x); |
| return SkLeftShift(x, upShift); |
| } |
| |
| /* f(1/3) = (8a + 12b + 6c + d) / 27 |
| f(2/3) = (a + 6b + 12c + 8d) / 27 |
| |
| f(1/3)-b = (8a - 15b + 6c + d) / 27 |
| f(2/3)-c = (a + 6b - 15c + 8d) / 27 |
| |
| use 16/512 to approximate 1/27 |
| */ |
| static SkFDot6 cubic_delta_from_line(SkFDot6 a, SkFDot6 b, SkFDot6 c, SkFDot6 d) |
| { |
| // since our parameters may be negative, we don't use << to avoid ASAN warnings |
| SkFDot6 oneThird = (a*8 - b*15 + 6*c + d) * 19 >> 9; |
| SkFDot6 twoThird = (a + 6*b - c*15 + d*8) * 19 >> 9; |
| |
| return std::max(SkAbs32(oneThird), SkAbs32(twoThird)); |
| } |
| |
| bool SkCubicEdge::setCubic(const SkPoint pts[4]) { |
| SkFDot6 x0, y0, x1, y1, x2, y2, x3, y3; |
| |
| #if defined(SK_RASTERIZE_EVEN_ROUNDING) |
| x0 = SkScalarRoundToFDot6(pts[0].fX, 0); |
| y0 = SkScalarRoundToFDot6(pts[0].fY, 0); |
| x1 = SkScalarRoundToFDot6(pts[1].fX, 0); |
| y1 = SkScalarRoundToFDot6(pts[1].fY, 0); |
| x2 = SkScalarRoundToFDot6(pts[2].fX, 0); |
| y2 = SkScalarRoundToFDot6(pts[2].fY, 0); |
| x3 = SkScalarRoundToFDot6(pts[3].fX, 0); |
| y3 = SkScalarRoundToFDot6(pts[3].fY, 0); |
| #else |
| x0 = SkFloatToFDot6(pts[0].fX); |
| y0 = SkFloatToFDot6(pts[0].fY); |
| x1 = SkFloatToFDot6(pts[1].fX); |
| y1 = SkFloatToFDot6(pts[1].fY); |
| x2 = SkFloatToFDot6(pts[2].fX); |
| y2 = SkFloatToFDot6(pts[2].fY); |
| x3 = SkFloatToFDot6(pts[3].fX); |
| y3 = SkFloatToFDot6(pts[3].fY); |
| #endif |
| |
| Winding winding = Winding::kCW; |
| if (y0 > y3) { |
| std::swap(x0, x3); |
| std::swap(x1, x2); |
| std::swap(y0, y3); |
| std::swap(y1, y2); |
| winding = Winding::kCCW; |
| } |
| |
| int top = SkFDot6Round(y0); |
| int bot = SkFDot6Round(y3); |
| |
| // are we a zero-height cubic (line)? |
| if (top == bot) { |
| return false; |
| } |
| |
| // compute number of steps needed (1 << shift) |
| // Can't use (center of curve - center of baseline), since center-of-curve |
| // need not be the max delta from the baseline (it could even be coincident) |
| // so we try just looking at the two off-curve points |
| SkFDot6 dx = cubic_delta_from_line(x0, x1, x2, x3); |
| SkFDot6 dy = cubic_delta_from_line(y0, y1, y2, y3); |
| // add 1 (by observation) |
| int shift = diff_to_shift(dx, dy, 2) + 1; |
| // need at least 1 subdivision for our bias trick |
| SkASSERT(shift > 0); |
| if (shift > MAX_COEFF_SHIFT) { |
| shift = MAX_COEFF_SHIFT; |
| } |
| |
| /* Since our in coming data is initially shifted down by 10 (or 8 in |
| antialias). That means the most we can shift up is 8. However, we |
| compute coefficients with a 3*, so the safest upshift is really 6 |
| */ |
| int upShift = 6; // largest safe value |
| int downShift = shift + upShift - 10; |
| if (downShift < 0) { |
| downShift = 0; |
| upShift = 10 - shift; |
| } |
| |
| fWinding = winding; |
| fEdgeType = Type::kCubic; |
| fSegmentCount = SkToU8(SkLeftShift(1, shift)); |
| fCurveShift = SkToU8(shift); |
| fCubicDShift = SkToU8(downShift); |
| |
| /* |
| * By re-arranging the Bezier curve in polynomial form, it is easier to |
| * find the derivatives and forward-differentiate from one segment to the next. |
| * |
| * p0 (1-t)^3 + 3 p1 t(1-t)^2 + 3 p2 t^2 (1-t) + p3 t^3 ==> At^3 + Bt^2 + Ct + D |
| * Where A = -p0 + 3p1 + -3p2 + p3 |
| * B = 3p0 - 6p1 + 3p2 |
| * C = -3p0 + 3p1 |
| * D = p0 |
| */ |
| // TODO(kjlubick): Can we use SkVx and calculate both X and Y at once? |
| |
| SkFixed A = SkFDot6UpShift(x3 + 3 * (x1 - x2) - x0, upShift); |
| SkFixed B = SkFDot6UpShift(3 * (x0 - 2*x1 + x2), upShift); |
| SkFixed C = SkFDot6UpShift(3 * (x1 - x0), upShift); |
| |
| // We want to calculate the slope at the midpoint of our first segment. This means evaluating |
| // dx/dt = 3A*t^2 + 2B*t + C |
| // dx^2/dt^2 = 6A * t + 2B |
| // dx^3/dt^3 = 6A |
| // at t = 1/N * 1/2 |
| // TODO(kjlubick): I'm not sure these cubic approximations are being done correctly. Some |
| // coefficients seem to be missing. Maybe it's being done not at the midpoint |
| // of the first line but just...somewhere in there? |
| fCDxDt = (A >> 2*shift) + (B >> shift) + C; |
| fCD2xDt2 = (3*A >> (shift - 1)) + 2*B; |
| |
| // This may be attempting to precompute the third derivative times 1/N |
| // 6A / N => 6A / 2^shift => 3A / 2^(shift-1) |
| fCD3xDt3 = 3*A >> (shift - 1); |
| |
| A = SkFDot6UpShift(y3 + 3 * (y1 - y2) - y0, upShift); |
| B = SkFDot6UpShift(3 * (y0 - 2*y1 + y2), upShift); |
| C = SkFDot6UpShift(3 * (y1 - y0), upShift); |
| |
| fCDyDt = (A >> 2*shift) + (B >> shift) + C; |
| fCD2yDt2 = (3*A >> (shift - 1)) + 2*B; |
| fCD3yDt3 = 3*A >> (shift - 1); |
| |
| fCx = SkFDot6ToFixed(x0); |
| fCy = SkFDot6ToFixed(y0); |
| fCLastX = SkFDot6ToFixed(x3); |
| fCLastY = SkFDot6ToFixed(y3); |
| |
| return this->nextSegment(); |
| } |
| |
| bool SkCubicEdge::nextSegment() { |
| bool success; |
| int count = fSegmentCount; |
| SkFixed oldx = fCx; |
| SkFixed oldy = fCy; |
| SkFixed newx, newy; |
| const int ddshift = fCurveShift; |
| const int dshift = fCubicDShift; |
| |
| SkASSERT(count > 0); |
| |
| do { |
| if (--count > 0) |
| { |
| newx = oldx + (fCDxDt >> dshift); |
| fCDxDt += fCD2xDt2 >> ddshift; |
| fCD2xDt2 += fCD3xDt3; |
| |
| newy = oldy + (fCDyDt >> dshift); |
| fCDyDt += fCD2yDt2 >> ddshift; |
| fCD2yDt2 += fCD3yDt3; |
| } |
| else // last segment |
| { |
| newx = fCLastX; |
| newy = fCLastY; |
| } |
| |
| // we want to say SkASSERT(oldy <= newy), but our finite fixedpoint |
| // doesn't always achieve that, so we have to explicitly pin it here. |
| if (newy < oldy) { |
| newy = oldy; |
| } |
| |
| success = this->updateLine(oldx, oldy, newx, newy); |
| oldx = newx; |
| oldy = newy; |
| } while (count > 0 && !success); |
| |
| fCx = newx; |
| fCy = newy; |
| fSegmentCount = SkToU8(count); |
| return success; |
| } |