blob: 257e1110255263f0438851fecaebaf4d8f62555b [file] [log] [blame]
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "../skcms.h"
#include "../skcms_internal.h"
#include <assert.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
// Additional ICC signature values that are only used internally
enum {
// File signature
skcms_Signature_acsp = 0x61637370,
// Tag signatures
skcms_Signature_rTRC = 0x72545243,
skcms_Signature_gTRC = 0x67545243,
skcms_Signature_bTRC = 0x62545243,
skcms_Signature_kTRC = 0x6B545243,
skcms_Signature_rXYZ = 0x7258595A,
skcms_Signature_gXYZ = 0x6758595A,
skcms_Signature_bXYZ = 0x6258595A,
skcms_Signature_A2B0 = 0x41324230,
skcms_Signature_A2B1 = 0x41324231,
skcms_Signature_mAB = 0x6D414220,
skcms_Signature_CHAD = 0x63686164,
// Type signatures
skcms_Signature_curv = 0x63757276,
skcms_Signature_mft1 = 0x6D667431,
skcms_Signature_mft2 = 0x6D667432,
skcms_Signature_para = 0x70617261,
skcms_Signature_sf32 = 0x73663332,
// XYZ is also a PCS signature, so it's defined in skcms.h
// skcms_Signature_XYZ = 0x58595A20,
};
static uint16_t read_big_u16(const uint8_t* ptr) {
uint16_t be;
memcpy(&be, ptr, sizeof(be));
#if defined(_MSC_VER)
return _byteswap_ushort(be);
#else
return __builtin_bswap16(be);
#endif
}
static uint32_t read_big_u32(const uint8_t* ptr) {
uint32_t be;
memcpy(&be, ptr, sizeof(be));
#if defined(_MSC_VER)
return _byteswap_ulong(be);
#else
return __builtin_bswap32(be);
#endif
}
static int32_t read_big_i32(const uint8_t* ptr) {
return (int32_t)read_big_u32(ptr);
}
static float read_big_fixed(const uint8_t* ptr) {
return read_big_i32(ptr) * (1.0f / 65536.0f);
}
// Maps to an in-memory profile so that fields line up to the locations specified
// in ICC.1:2010, section 7.2
typedef struct {
uint8_t size [ 4];
uint8_t cmm_type [ 4];
uint8_t version [ 4];
uint8_t profile_class [ 4];
uint8_t data_color_space [ 4];
uint8_t pcs [ 4];
uint8_t creation_date_time [12];
uint8_t signature [ 4];
uint8_t platform [ 4];
uint8_t flags [ 4];
uint8_t device_manufacturer [ 4];
uint8_t device_model [ 4];
uint8_t device_attributes [ 8];
uint8_t rendering_intent [ 4];
uint8_t illuminant_X [ 4];
uint8_t illuminant_Y [ 4];
uint8_t illuminant_Z [ 4];
uint8_t creator [ 4];
uint8_t profile_id [16];
uint8_t reserved [28];
uint8_t tag_count [ 4]; // Technically not part of header, but required
} header_Layout;
typedef struct {
uint8_t signature [4];
uint8_t offset [4];
uint8_t size [4];
} tag_Layout;
static const tag_Layout* get_tag_table(const skcms_ICCProfile* profile) {
return (const tag_Layout*)(profile->buffer + SAFE_SIZEOF(header_Layout));
}
// s15Fixed16ArrayType is technically variable sized, holding N values. However, the only valid
// use of the type is for the CHAD tag that stores exactly nine values.
typedef struct {
uint8_t type [ 4];
uint8_t reserved [ 4];
uint8_t values [36];
} sf32_Layout;
bool skcms_GetCHAD(const skcms_ICCProfile* profile, skcms_Matrix3x3* m) {
skcms_ICCTag tag;
if (!skcms_GetTagBySignature(profile, skcms_Signature_CHAD, &tag)) {
return false;
}
if (tag.type != skcms_Signature_sf32 || tag.size < SAFE_SIZEOF(sf32_Layout)) {
return false;
}
const sf32_Layout* sf32Tag = (const sf32_Layout*)tag.buf;
const uint8_t* values = sf32Tag->values;
for (int r = 0; r < 3; ++r)
for (int c = 0; c < 3; ++c, values += 4) {
m->vals[r][c] = read_big_fixed(values);
}
return true;
}
// XYZType is technically variable sized, holding N XYZ triples. However, the only valid uses of
// the type are for tags/data that store exactly one triple.
typedef struct {
uint8_t type [4];
uint8_t reserved [4];
uint8_t X [4];
uint8_t Y [4];
uint8_t Z [4];
} XYZ_Layout;
static bool read_tag_xyz(const skcms_ICCTag* tag, float* x, float* y, float* z) {
if (tag->type != skcms_Signature_XYZ || tag->size < SAFE_SIZEOF(XYZ_Layout)) {
return false;
}
const XYZ_Layout* xyzTag = (const XYZ_Layout*)tag->buf;
*x = read_big_fixed(xyzTag->X);
*y = read_big_fixed(xyzTag->Y);
*z = read_big_fixed(xyzTag->Z);
return true;
}
static bool read_to_XYZD50(const skcms_ICCTag* rXYZ, const skcms_ICCTag* gXYZ,
const skcms_ICCTag* bXYZ, skcms_Matrix3x3* toXYZ) {
return read_tag_xyz(rXYZ, &toXYZ->vals[0][0], &toXYZ->vals[1][0], &toXYZ->vals[2][0]) &&
read_tag_xyz(gXYZ, &toXYZ->vals[0][1], &toXYZ->vals[1][1], &toXYZ->vals[2][1]) &&
read_tag_xyz(bXYZ, &toXYZ->vals[0][2], &toXYZ->vals[1][2], &toXYZ->vals[2][2]);
}
typedef struct {
uint8_t type [4];
uint8_t reserved_a [4];
uint8_t function_type [2];
uint8_t reserved_b [2];
uint8_t parameters [ ]; // 1, 3, 4, 5, or 7 s15.16 parameters, depending on function_type
} para_Layout;
static bool read_curve_para(const uint8_t* buf, uint32_t size,
skcms_Curve* curve, uint32_t* curve_size) {
if (size < SAFE_SIZEOF(para_Layout)) {
return false;
}
const para_Layout* paraTag = (const para_Layout*)buf;
enum { kG = 0, kGAB = 1, kGABC = 2, kGABCD = 3, kGABCDEF = 4 };
uint16_t function_type = read_big_u16(paraTag->function_type);
if (function_type > kGABCDEF) {
return false;
}
static const uint32_t curve_bytes[] = { 4, 12, 16, 20, 28 };
if (size < SAFE_SIZEOF(para_Layout) + curve_bytes[function_type]) {
return false;
}
if (curve_size) {
*curve_size = SAFE_SIZEOF(para_Layout) + curve_bytes[function_type];
}
curve->table_entries = 0;
curve->parametric.a = 1.0f;
curve->parametric.b = 0.0f;
curve->parametric.c = 0.0f;
curve->parametric.d = 0.0f;
curve->parametric.e = 0.0f;
curve->parametric.f = 0.0f;
curve->parametric.g = read_big_fixed(paraTag->parameters);
switch (function_type) {
case kGAB:
curve->parametric.a = read_big_fixed(paraTag->parameters + 4);
curve->parametric.b = read_big_fixed(paraTag->parameters + 8);
if (curve->parametric.a == 0) {
return false;
}
curve->parametric.d = -curve->parametric.b / curve->parametric.a;
break;
case kGABC:
curve->parametric.a = read_big_fixed(paraTag->parameters + 4);
curve->parametric.b = read_big_fixed(paraTag->parameters + 8);
curve->parametric.e = read_big_fixed(paraTag->parameters + 12);
if (curve->parametric.a == 0) {
return false;
}
curve->parametric.d = -curve->parametric.b / curve->parametric.a;
curve->parametric.f = curve->parametric.e;
break;
case kGABCD:
curve->parametric.a = read_big_fixed(paraTag->parameters + 4);
curve->parametric.b = read_big_fixed(paraTag->parameters + 8);
curve->parametric.c = read_big_fixed(paraTag->parameters + 12);
curve->parametric.d = read_big_fixed(paraTag->parameters + 16);
break;
case kGABCDEF:
curve->parametric.a = read_big_fixed(paraTag->parameters + 4);
curve->parametric.b = read_big_fixed(paraTag->parameters + 8);
curve->parametric.c = read_big_fixed(paraTag->parameters + 12);
curve->parametric.d = read_big_fixed(paraTag->parameters + 16);
curve->parametric.e = read_big_fixed(paraTag->parameters + 20);
curve->parametric.f = read_big_fixed(paraTag->parameters + 24);
break;
}
return skcms_TransferFunction_isValid(&curve->parametric);
}
typedef struct {
uint8_t type [4];
uint8_t reserved [4];
uint8_t value_count [4];
uint8_t parameters [ ]; // value_count parameters (8.8 if 1, uint16 (n*65535) if > 1)
} curv_Layout;
static bool read_curve_curv(const uint8_t* buf, uint32_t size,
skcms_Curve* curve, uint32_t* curve_size) {
if (size < SAFE_SIZEOF(curv_Layout)) {
return false;
}
const curv_Layout* curvTag = (const curv_Layout*)buf;
uint32_t value_count = read_big_u32(curvTag->value_count);
if (size < SAFE_SIZEOF(curv_Layout) + value_count * SAFE_SIZEOF(uint16_t)) {
return false;
}
if (curve_size) {
*curve_size = SAFE_SIZEOF(curv_Layout) + value_count * SAFE_SIZEOF(uint16_t);
}
if (value_count < 2) {
curve->table_entries = 0;
curve->parametric.a = 1.0f;
curve->parametric.b = 0.0f;
curve->parametric.c = 0.0f;
curve->parametric.d = 0.0f;
curve->parametric.e = 0.0f;
curve->parametric.f = 0.0f;
if (value_count == 0) {
// Empty tables are a shorthand for an identity curve
curve->parametric.g = 1.0f;
} else {
// Single entry tables are a shorthand for simple gamma
curve->parametric.g = read_big_u16(curvTag->parameters) * (1.0f / 256.0f);
}
} else {
curve->table_8 = NULL;
curve->table_16 = curvTag->parameters;
curve->table_entries = value_count;
}
return true;
}
// Parses both curveType and parametricCurveType data. Ensures that at most 'size' bytes are read.
// If curve_size is not NULL, writes the number of bytes used by the curve in (*curve_size).
static bool read_curve(const uint8_t* buf, uint32_t size,
skcms_Curve* curve, uint32_t* curve_size) {
if (!buf || size < 4 || !curve) {
return false;
}
uint32_t type = read_big_u32(buf);
if (type == skcms_Signature_para) {
return read_curve_para(buf, size, curve, curve_size);
} else if (type == skcms_Signature_curv) {
return read_curve_curv(buf, size, curve, curve_size);
}
return false;
}
// mft1 and mft2 share a large chunk of data
typedef struct {
uint8_t type [ 4];
uint8_t reserved_a [ 4];
uint8_t input_channels [ 1];
uint8_t output_channels [ 1];
uint8_t grid_points [ 1];
uint8_t reserved_b [ 1];
uint8_t matrix [36];
} mft_CommonLayout;
typedef struct {
mft_CommonLayout common [ 1];
uint8_t tables [ ];
} mft1_Layout;
typedef struct {
mft_CommonLayout common [ 1];
uint8_t input_table_entries [ 2];
uint8_t output_table_entries [ 2];
uint8_t tables [ ];
} mft2_Layout;
static bool read_mft_common(const mft_CommonLayout* mftTag, skcms_A2B* a2b) {
// MFT matrices are applied before the first set of curves, but must be identity unless the
// input is PCSXYZ. We don't support PCSXYZ profiles, so we ignore this matrix. Note that the
// matrix in skcms_A2B is applied later in the pipe, so supporting this would require another
// field/flag.
a2b->matrix_channels = 0;
a2b->input_channels = mftTag->input_channels[0];
a2b->output_channels = mftTag->output_channels[0];
// We require exactly three (ie XYZ/Lab/RGB) output channels
if (a2b->output_channels != ARRAY_COUNT(a2b->output_curves)) {
return false;
}
// We require at least one, and no more than four (ie CMYK) input channels
if (a2b->input_channels < 1 || a2b->input_channels > ARRAY_COUNT(a2b->input_curves)) {
return false;
}
for (uint32_t i = 0; i < a2b->input_channels; ++i) {
a2b->grid_points[i] = mftTag->grid_points[0];
}
// The grid only makes sense with at least two points along each axis
if (a2b->grid_points[0] < 2) {
return false;
}
return true;
}
static bool init_a2b_tables(const uint8_t* table_base, uint64_t max_tables_len, uint32_t byte_width,
uint32_t input_table_entries, uint32_t output_table_entries,
skcms_A2B* a2b) {
// byte_width is 1 or 2, [input|output]_table_entries are in [2, 4096], so no overflow
uint32_t byte_len_per_input_table = input_table_entries * byte_width;
uint32_t byte_len_per_output_table = output_table_entries * byte_width;
// [input|output]_channels are <= 4, so still no overflow
uint32_t byte_len_all_input_tables = a2b->input_channels * byte_len_per_input_table;
uint32_t byte_len_all_output_tables = a2b->output_channels * byte_len_per_output_table;
uint64_t grid_size = a2b->output_channels * byte_width;
for (uint32_t axis = 0; axis < a2b->input_channels; ++axis) {
grid_size *= a2b->grid_points[axis];
}
if (max_tables_len < byte_len_all_input_tables + grid_size + byte_len_all_output_tables) {
return false;
}
for (uint32_t i = 0; i < a2b->input_channels; ++i) {
a2b->input_curves[i].table_entries = input_table_entries;
if (byte_width == 1) {
a2b->input_curves[i].table_8 = table_base + i * byte_len_per_input_table;
a2b->input_curves[i].table_16 = NULL;
} else {
a2b->input_curves[i].table_8 = NULL;
a2b->input_curves[i].table_16 = table_base + i * byte_len_per_input_table;
}
}
if (byte_width == 1) {
a2b->grid_8 = table_base + byte_len_all_input_tables;
a2b->grid_16 = NULL;
} else {
a2b->grid_8 = NULL;
a2b->grid_16 = table_base + byte_len_all_input_tables;
}
const uint8_t* output_table_base = table_base + byte_len_all_input_tables + grid_size;
for (uint32_t i = 0; i < a2b->output_channels; ++i) {
a2b->output_curves[i].table_entries = output_table_entries;
if (byte_width == 1) {
a2b->output_curves[i].table_8 = output_table_base + i * byte_len_per_output_table;
a2b->output_curves[i].table_16 = NULL;
} else {
a2b->output_curves[i].table_8 = NULL;
a2b->output_curves[i].table_16 = output_table_base + i * byte_len_per_output_table;
}
}
return true;
}
static bool read_tag_mft1(const skcms_ICCTag* tag, skcms_A2B* a2b) {
if (tag->size < SAFE_SIZEOF(mft1_Layout)) {
return false;
}
const mft1_Layout* mftTag = (const mft1_Layout*)tag->buf;
if (!read_mft_common(mftTag->common, a2b)) {
return false;
}
uint32_t input_table_entries = 256;
uint32_t output_table_entries = 256;
return init_a2b_tables(mftTag->tables, tag->size - SAFE_SIZEOF(mft1_Layout), 1,
input_table_entries, output_table_entries, a2b);
}
static bool read_tag_mft2(const skcms_ICCTag* tag, skcms_A2B* a2b) {
if (tag->size < SAFE_SIZEOF(mft2_Layout)) {
return false;
}
const mft2_Layout* mftTag = (const mft2_Layout*)tag->buf;
if (!read_mft_common(mftTag->common, a2b)) {
return false;
}
uint32_t input_table_entries = read_big_u16(mftTag->input_table_entries);
uint32_t output_table_entries = read_big_u16(mftTag->output_table_entries);
// ICC spec mandates that 2 <= table_entries <= 4096
if (input_table_entries < 2 || input_table_entries > 4096 ||
output_table_entries < 2 || output_table_entries > 4096) {
return false;
}
return init_a2b_tables(mftTag->tables, tag->size - SAFE_SIZEOF(mft2_Layout), 2,
input_table_entries, output_table_entries, a2b);
}
static bool read_curves(const uint8_t* buf, uint32_t size, uint32_t curve_offset,
uint32_t num_curves, skcms_Curve* curves) {
for (uint32_t i = 0; i < num_curves; ++i) {
if (curve_offset > size) {
return false;
}
uint32_t curve_bytes;
if (!read_curve(buf + curve_offset, size - curve_offset, &curves[i], &curve_bytes)) {
return false;
}
if (curve_bytes > UINT32_MAX - 3) {
return false;
}
curve_bytes = (curve_bytes + 3) & ~3U;
uint64_t new_offset_64 = (uint64_t)curve_offset + curve_bytes;
curve_offset = (uint32_t)new_offset_64;
if (new_offset_64 != curve_offset) {
return false;
}
}
return true;
}
typedef struct {
uint8_t type [ 4];
uint8_t reserved_a [ 4];
uint8_t input_channels [ 1];
uint8_t output_channels [ 1];
uint8_t reserved_b [ 2];
uint8_t b_curve_offset [ 4];
uint8_t matrix_offset [ 4];
uint8_t m_curve_offset [ 4];
uint8_t clut_offset [ 4];
uint8_t a_curve_offset [ 4];
} mAB_Layout;
typedef struct {
uint8_t grid_points [16];
uint8_t grid_byte_width [ 1];
uint8_t reserved [ 3];
uint8_t data [ ];
} mABCLUT_Layout;
static bool read_tag_mab(const skcms_ICCTag* tag, skcms_A2B* a2b, bool pcs_is_xyz) {
if (tag->size < SAFE_SIZEOF(mAB_Layout)) {
return false;
}
const mAB_Layout* mABTag = (const mAB_Layout*)tag->buf;
a2b->input_channels = mABTag->input_channels[0];
a2b->output_channels = mABTag->output_channels[0];
// We require exactly three (ie XYZ/Lab/RGB) output channels
if (a2b->output_channels != ARRAY_COUNT(a2b->output_curves)) {
return false;
}
// We require no more than four (ie CMYK) input channels
if (a2b->input_channels > ARRAY_COUNT(a2b->input_curves)) {
return false;
}
uint32_t b_curve_offset = read_big_u32(mABTag->b_curve_offset);
uint32_t matrix_offset = read_big_u32(mABTag->matrix_offset);
uint32_t m_curve_offset = read_big_u32(mABTag->m_curve_offset);
uint32_t clut_offset = read_big_u32(mABTag->clut_offset);
uint32_t a_curve_offset = read_big_u32(mABTag->a_curve_offset);
// "B" curves must be present
if (0 == b_curve_offset) {
return false;
}
if (!read_curves(tag->buf, tag->size, b_curve_offset, a2b->output_channels,
a2b->output_curves)) {
return false;
}
// "M" curves and Matrix must be used together
if (0 != m_curve_offset) {
if (0 == matrix_offset) {
return false;
}
a2b->matrix_channels = a2b->output_channels;
if (!read_curves(tag->buf, tag->size, m_curve_offset, a2b->matrix_channels,
a2b->matrix_curves)) {
return false;
}
// Read matrix, which is stored as a row-major 3x3, followed by the fourth column
if (tag->size < matrix_offset + 12 * SAFE_SIZEOF(uint32_t)) {
return false;
}
float encoding_factor = pcs_is_xyz ? 65535 / 32768.0f : 1.0f;
const uint8_t* mtx_buf = tag->buf + matrix_offset;
a2b->matrix.vals[0][0] = encoding_factor * read_big_fixed(mtx_buf + 0);
a2b->matrix.vals[0][1] = encoding_factor * read_big_fixed(mtx_buf + 4);
a2b->matrix.vals[0][2] = encoding_factor * read_big_fixed(mtx_buf + 8);
a2b->matrix.vals[1][0] = encoding_factor * read_big_fixed(mtx_buf + 12);
a2b->matrix.vals[1][1] = encoding_factor * read_big_fixed(mtx_buf + 16);
a2b->matrix.vals[1][2] = encoding_factor * read_big_fixed(mtx_buf + 20);
a2b->matrix.vals[2][0] = encoding_factor * read_big_fixed(mtx_buf + 24);
a2b->matrix.vals[2][1] = encoding_factor * read_big_fixed(mtx_buf + 28);
a2b->matrix.vals[2][2] = encoding_factor * read_big_fixed(mtx_buf + 32);
a2b->matrix.vals[0][3] = encoding_factor * read_big_fixed(mtx_buf + 36);
a2b->matrix.vals[1][3] = encoding_factor * read_big_fixed(mtx_buf + 40);
a2b->matrix.vals[2][3] = encoding_factor * read_big_fixed(mtx_buf + 44);
} else {
if (0 != matrix_offset) {
return false;
}
a2b->matrix_channels = 0;
}
// "A" curves and CLUT must be used together
if (0 != a_curve_offset) {
if (0 == clut_offset) {
return false;
}
if (!read_curves(tag->buf, tag->size, a_curve_offset, a2b->input_channels,
a2b->input_curves)) {
return false;
}
if (tag->size < clut_offset + SAFE_SIZEOF(mABCLUT_Layout)) {
return false;
}
const mABCLUT_Layout* clut = (const mABCLUT_Layout*)(tag->buf + clut_offset);
if (clut->grid_byte_width[0] == 1) {
a2b->grid_8 = clut->data;
a2b->grid_16 = NULL;
} else if (clut->grid_byte_width[0] == 2) {
a2b->grid_8 = NULL;
a2b->grid_16 = clut->data;
} else {
return false;
}
uint64_t grid_size = a2b->output_channels * clut->grid_byte_width[0];
for (uint32_t i = 0; i < a2b->input_channels; ++i) {
a2b->grid_points[i] = clut->grid_points[i];
// The grid only makes sense with at least two points along each axis
if (a2b->grid_points[i] < 2) {
return false;
}
grid_size *= a2b->grid_points[i];
}
if (tag->size < clut_offset + SAFE_SIZEOF(mABCLUT_Layout) + grid_size) {
return false;
}
} else {
if (0 != clut_offset) {
return false;
}
// If there is no CLUT, the number of input and output channels must match
if (a2b->input_channels != a2b->output_channels) {
return false;
}
// Zero out the number of input channels to signal that we're skipping this stage
a2b->input_channels = 0;
}
return true;
}
static bool read_a2b(const skcms_ICCTag* tag, skcms_A2B* a2b, bool pcs_is_xyz) {
bool ok = false;
if (tag->type == skcms_Signature_mft1) {
ok = read_tag_mft1(tag, a2b);
} else if (tag->type == skcms_Signature_mft2) {
ok = read_tag_mft2(tag, a2b);
} else if (tag->type == skcms_Signature_mAB) {
ok = read_tag_mab(tag, a2b, pcs_is_xyz);
}
if (!ok) {
return false;
}
// Detect and canonicalize identity tables.
skcms_Curve* curves[] = {
a2b->input_channels > 0 ? a2b->input_curves + 0 : NULL,
a2b->input_channels > 1 ? a2b->input_curves + 1 : NULL,
a2b->input_channels > 2 ? a2b->input_curves + 2 : NULL,
a2b->input_channels > 3 ? a2b->input_curves + 3 : NULL,
a2b->matrix_channels > 0 ? a2b->matrix_curves + 0 : NULL,
a2b->matrix_channels > 1 ? a2b->matrix_curves + 1 : NULL,
a2b->matrix_channels > 2 ? a2b->matrix_curves + 2 : NULL,
a2b->output_channels > 0 ? a2b->output_curves + 0 : NULL,
a2b->output_channels > 1 ? a2b->output_curves + 1 : NULL,
a2b->output_channels > 2 ? a2b->output_curves + 2 : NULL,
};
for (int i = 0; i < ARRAY_COUNT(curves); i++) {
skcms_Curve* curve = curves[i];
if (curve && curve->table_entries && curve->table_entries <= (uint32_t)INT_MAX) {
int N = (int)curve->table_entries;
float c,d,f;
if (N == skcms_fit_linear(curve, N, 1.0f/(2*N), &c,&d,&f)
&& c == 1.0f
&& f == 0.0f) {
curve->table_entries = 0;
curve->table_8 = NULL;
curve->table_16 = NULL;
curve->parametric = (skcms_TransferFunction){1,1,0,0,0,0,0};
}
}
}
return true;
}
void skcms_GetTagByIndex(const skcms_ICCProfile* profile, uint32_t idx, skcms_ICCTag* tag) {
if (!profile || !profile->buffer || !tag) { return; }
if (idx > profile->tag_count) { return; }
const tag_Layout* tags = get_tag_table(profile);
tag->signature = read_big_u32(tags[idx].signature);
tag->size = read_big_u32(tags[idx].size);
tag->buf = read_big_u32(tags[idx].offset) + profile->buffer;
tag->type = read_big_u32(tag->buf);
}
bool skcms_GetTagBySignature(const skcms_ICCProfile* profile, uint32_t sig, skcms_ICCTag* tag) {
if (!profile || !profile->buffer || !tag) { return false; }
const tag_Layout* tags = get_tag_table(profile);
for (uint32_t i = 0; i < profile->tag_count; ++i) {
if (read_big_u32(tags[i].signature) == sig) {
tag->signature = sig;
tag->size = read_big_u32(tags[i].size);
tag->buf = read_big_u32(tags[i].offset) + profile->buffer;
tag->type = read_big_u32(tag->buf);
return true;
}
}
return false;
}
static bool usable_as_src(const skcms_ICCProfile* profile) {
return profile->has_A2B
|| (profile->has_trc && profile->has_toXYZD50);
}
bool skcms_Parse(const void* buf, size_t len, skcms_ICCProfile* profile) {
assert(SAFE_SIZEOF(header_Layout) == 132);
if (!profile) {
return false;
}
memset(profile, 0, SAFE_SIZEOF(*profile));
if (len < SAFE_SIZEOF(header_Layout)) {
return false;
}
// Byte-swap all header fields
const header_Layout* header = buf;
profile->buffer = buf;
profile->size = read_big_u32(header->size);
uint32_t version = read_big_u32(header->version);
profile->data_color_space = read_big_u32(header->data_color_space);
profile->pcs = read_big_u32(header->pcs);
uint32_t signature = read_big_u32(header->signature);
float illuminant_X = read_big_fixed(header->illuminant_X);
float illuminant_Y = read_big_fixed(header->illuminant_Y);
float illuminant_Z = read_big_fixed(header->illuminant_Z);
profile->tag_count = read_big_u32(header->tag_count);
// Validate signature, size (smaller than buffer, large enough to hold tag table),
// and major version
uint64_t tag_table_size = profile->tag_count * SAFE_SIZEOF(tag_Layout);
if (signature != skcms_Signature_acsp ||
profile->size > len ||
profile->size < SAFE_SIZEOF(header_Layout) + tag_table_size ||
(version >> 24) > 4) {
return false;
}
// Validate that illuminant is D50 white
if (fabsf_(illuminant_X - 0.9642f) > 0.0100f ||
fabsf_(illuminant_Y - 1.0000f) > 0.0100f ||
fabsf_(illuminant_Z - 0.8249f) > 0.0100f) {
return false;
}
// Validate that all tag entries have sane offset + size
const tag_Layout* tags = get_tag_table(profile);
for (uint32_t i = 0; i < profile->tag_count; ++i) {
uint32_t tag_offset = read_big_u32(tags[i].offset);
uint32_t tag_size = read_big_u32(tags[i].size);
uint64_t tag_end = (uint64_t)tag_offset + (uint64_t)tag_size;
if (tag_size < 4 || tag_end > profile->size) {
return false;
}
}
if (profile->pcs != skcms_Signature_XYZ && profile->pcs != skcms_Signature_Lab) {
return false;
}
bool pcs_is_xyz = profile->pcs == skcms_Signature_XYZ;
// Pre-parse commonly used tags.
skcms_ICCTag kTRC;
if (profile->data_color_space == skcms_Signature_Gray &&
skcms_GetTagBySignature(profile, skcms_Signature_kTRC, &kTRC)) {
if (!read_curve(kTRC.buf, kTRC.size, &profile->trc[0], NULL)) {
// Malformed tag
return false;
}
profile->trc[1] = profile->trc[0];
profile->trc[2] = profile->trc[0];
profile->has_trc = true;
if (pcs_is_xyz) {
profile->toXYZD50.vals[0][0] = illuminant_X;
profile->toXYZD50.vals[1][1] = illuminant_Y;
profile->toXYZD50.vals[2][2] = illuminant_Z;
profile->has_toXYZD50 = true;
}
} else {
skcms_ICCTag rTRC, gTRC, bTRC;
if (skcms_GetTagBySignature(profile, skcms_Signature_rTRC, &rTRC) &&
skcms_GetTagBySignature(profile, skcms_Signature_gTRC, &gTRC) &&
skcms_GetTagBySignature(profile, skcms_Signature_bTRC, &bTRC)) {
if (!read_curve(rTRC.buf, rTRC.size, &profile->trc[0], NULL) ||
!read_curve(gTRC.buf, gTRC.size, &profile->trc[1], NULL) ||
!read_curve(bTRC.buf, bTRC.size, &profile->trc[2], NULL)) {
// Malformed TRC tags
return false;
}
profile->has_trc = true;
}
skcms_ICCTag rXYZ, gXYZ, bXYZ;
if (skcms_GetTagBySignature(profile, skcms_Signature_rXYZ, &rXYZ) &&
skcms_GetTagBySignature(profile, skcms_Signature_gXYZ, &gXYZ) &&
skcms_GetTagBySignature(profile, skcms_Signature_bXYZ, &bXYZ)) {
if (!read_to_XYZD50(&rXYZ, &gXYZ, &bXYZ, &profile->toXYZD50)) {
// Malformed XYZ tags
return false;
}
profile->has_toXYZD50 = true;
}
}
skcms_ICCTag a2b_tag;
// For now, we're preferring A2B0, like Skia does and the ICC spec tells us to.
// TODO: prefer A2B1 (relative colormetric) over A2B0 (perceptual)?
// This breaks with the ICC spec, but we think it's a good idea, given that TRC curves
// and all our known users are thinking exclusively in terms of relative colormetric.
const uint32_t sigs[] = { skcms_Signature_A2B0, skcms_Signature_A2B1 };
for (int i = 0; i < ARRAY_COUNT(sigs); i++) {
if (skcms_GetTagBySignature(profile, sigs[i], &a2b_tag)) {
if (!read_a2b(&a2b_tag, &profile->A2B, pcs_is_xyz)) {
// Malformed A2B tag
return false;
}
profile->has_A2B = true;
break;
}
}
return usable_as_src(profile);
}
const skcms_ICCProfile* skcms_sRGB_profile() {
static const skcms_ICCProfile sRGB_profile = {
// These fields are moot when not a skcms_Parse()'d profile.
.buffer = NULL,
.size = 0,
.tag_count = 0,
// We choose to represent sRGB with its canonical transfer function,
// and with its canonical XYZD50 gamut matrix.
.data_color_space = skcms_Signature_RGB,
.pcs = skcms_Signature_XYZ,
.has_trc = true,
.has_toXYZD50 = true,
.has_A2B = false,
.trc = {
{{0, {2.4f, (float)(1/1.055), (float)(0.055/1.055), (float)(1/12.92), 0.04045f, 0, 0 }}},
{{0, {2.4f, (float)(1/1.055), (float)(0.055/1.055), (float)(1/12.92), 0.04045f, 0, 0 }}},
{{0, {2.4f, (float)(1/1.055), (float)(0.055/1.055), (float)(1/12.92), 0.04045f, 0, 0 }}},
},
.toXYZD50 = {{
{ 0.436065674f, 0.385147095f, 0.143066406f },
{ 0.222488403f, 0.716873169f, 0.060607910f },
{ 0.013916016f, 0.097076416f, 0.714096069f },
}},
};
return &sRGB_profile;
}
const skcms_ICCProfile* skcms_XYZD50_profile() {
static const skcms_ICCProfile XYZD50_profile = {
.buffer = NULL,
.size = 0,
.tag_count = 0,
.data_color_space = skcms_Signature_RGB,
.pcs = skcms_Signature_XYZ,
.has_trc = true,
.has_toXYZD50 = true,
.has_A2B = false,
.trc = {
{{0, {1,1,0,0,0,0,0}}},
{{0, {1,1,0,0,0,0,0}}},
{{0, {1,1,0,0,0,0,0}}},
},
.toXYZD50 = {{
{1,0,0},
{0,1,0},
{0,0,1},
}},
};
return &XYZD50_profile;
}
const skcms_TransferFunction* skcms_sRGB_TransferFunction() {
return &skcms_sRGB_profile()->trc[0].parametric;
}
const skcms_TransferFunction* skcms_sRGB_Inverse_TransferFunction() {
static const skcms_TransferFunction sRGB_inv =
{ (float)(1/2.4), 1.137119f, 0, 12.92f, 0.0031308f, -0.055f, 0 };
return &sRGB_inv;
}
const skcms_TransferFunction* skcms_Identity_TransferFunction() {
static const skcms_TransferFunction identity = {1,1,0,0,0,0,0};
return &identity;
}
const uint8_t skcms_252_random_bytes[] = {
8, 179, 128, 204, 253, 38, 134, 184, 68, 102, 32, 138, 99, 39, 169, 215,
119, 26, 3, 223, 95, 239, 52, 132, 114, 74, 81, 234, 97, 116, 244, 205, 30,
154, 173, 12, 51, 159, 122, 153, 61, 226, 236, 178, 229, 55, 181, 220, 191,
194, 160, 126, 168, 82, 131, 18, 180, 245, 163, 22, 246, 69, 235, 252, 57,
108, 14, 6, 152, 240, 255, 171, 242, 20, 227, 177, 238, 96, 85, 16, 211,
70, 200, 149, 155, 146, 127, 145, 100, 151, 109, 19, 165, 208, 195, 164,
137, 254, 182, 248, 64, 201, 45, 209, 5, 147, 207, 210, 113, 162, 83, 225,
9, 31, 15, 231, 115, 37, 58, 53, 24, 49, 197, 56, 120, 172, 48, 21, 214,
129, 111, 11, 50, 187, 196, 34, 60, 103, 71, 144, 47, 203, 77, 80, 232,
140, 222, 250, 206, 166, 247, 139, 249, 221, 72, 106, 27, 199, 117, 54,
219, 135, 118, 40, 79, 41, 251, 46, 93, 212, 92, 233, 148, 28, 121, 63,
123, 158, 105, 59, 29, 42, 143, 23, 0, 107, 176, 87, 104, 183, 156, 193,
189, 90, 188, 65, 190, 17, 198, 7, 186, 161, 1, 124, 78, 125, 170, 133,
174, 218, 67, 157, 75, 101, 89, 217, 62, 33, 141, 228, 25, 35, 91, 230, 4,
2, 13, 73, 86, 167, 237, 84, 243, 44, 185, 66, 130, 110, 150, 142, 216, 88,
112, 36, 224, 136, 202, 76, 94, 98, 175, 213
};
bool skcms_ApproximatelyEqualProfiles(const skcms_ICCProfile* A, const skcms_ICCProfile* B) {
// For now this is the essentially the same strategy we use in test_only.c
// for our skcms_Transform() smoke tests:
// 1) transform A to XYZD50
// 2) transform B to XYZD50
// 3) return true if they're similar enough
// Our current criterion in 3) is maximum 1 bit error per XYZD50 byte.
// Here are 252 of a random shuffle of all possible bytes.
// 252 is evenly divisible by 3 and 4. Only 192, 10, 241, and 43 are missing.
if (A->data_color_space != B->data_color_space) {
return false;
}
// Interpret as RGB_888 if data color space is RGB or GRAY, RGBA_8888 if CMYK.
skcms_PixelFormat fmt = skcms_PixelFormat_RGB_888;
size_t npixels = 84;
if (A->data_color_space == skcms_Signature_CMYK) {
fmt = skcms_PixelFormat_RGBA_8888;
npixels = 63;
}
uint8_t dstA[252],
dstB[252];
if (!skcms_Transform(
skcms_252_random_bytes, fmt, skcms_AlphaFormat_Unpremul, A,
dstA, skcms_PixelFormat_RGB_888, skcms_AlphaFormat_Unpremul, skcms_XYZD50_profile(),
npixels)) {
return false;
}
if (!skcms_Transform(
skcms_252_random_bytes, fmt, skcms_AlphaFormat_Unpremul, B,
dstB, skcms_PixelFormat_RGB_888, skcms_AlphaFormat_Unpremul, skcms_XYZD50_profile(),
npixels)) {
return false;
}
for (size_t i = 0; i < 252; i++) {
if (abs((int)dstA[i] - (int)dstB[i]) > 1) {
return false;
}
}
return true;
}
bool skcms_TRCs_AreApproximateInverse(const skcms_ICCProfile* profile,
const skcms_TransferFunction* inv_tf) {
if (!profile || !profile->has_trc) {
return false;
}
return skcms_AreApproximateInverses(&profile->trc[0], inv_tf) &&
skcms_AreApproximateInverses(&profile->trc[1], inv_tf) &&
skcms_AreApproximateInverses(&profile->trc[2], inv_tf);
}
static bool is_zero_to_one(float x) {
return 0 <= x && x <= 1;
}
bool skcms_PrimariesToXYZD50(float rx, float ry,
float gx, float gy,
float bx, float by,
float wx, float wy,
skcms_Matrix3x3* toXYZD50) {
if (!is_zero_to_one(rx) || !is_zero_to_one(ry) ||
!is_zero_to_one(gx) || !is_zero_to_one(gy) ||
!is_zero_to_one(bx) || !is_zero_to_one(by) ||
!is_zero_to_one(wx) || !is_zero_to_one(wy) ||
!toXYZD50) {
return false;
}
// First, we need to convert xy values (primaries) to XYZ.
skcms_Matrix3x3 primaries = {{
{ rx, gx, bx },
{ ry, gy, by },
{ 1 - rx - ry, 1 - gx - gy, 1 - bx - by },
}};
skcms_Matrix3x3 primaries_inv;
if (!skcms_Matrix3x3_invert(&primaries, &primaries_inv)) {
return false;
}
// Assumes that Y is 1.0f.
skcms_Vector3 wXYZ = { { wx / wy, 1, (1 - wx - wy) / wy } };
skcms_Vector3 XYZ = skcms_MV_mul(&primaries_inv, &wXYZ);
skcms_Matrix3x3 toXYZ = {{
{ XYZ.vals[0], 0, 0 },
{ 0, XYZ.vals[1], 0 },
{ 0, 0, XYZ.vals[2] },
}};
toXYZ = skcms_Matrix3x3_concat(&primaries, &toXYZ);
// Now convert toXYZ matrix to toXYZD50.
skcms_Vector3 wXYZD50 = { { 0.96422f, 1.0f, 0.82521f } };
// Calculate the chromatic adaptation matrix. We will use the Bradford method, thus
// the matrices below. The Bradford method is used by Adobe and is widely considered
// to be the best.
skcms_Matrix3x3 xyz_to_lms = {{
{ 0.8951f, 0.2664f, -0.1614f },
{ -0.7502f, 1.7135f, 0.0367f },
{ 0.0389f, -0.0685f, 1.0296f },
}};
skcms_Matrix3x3 lms_to_xyz = {{
{ 0.9869929f, -0.1470543f, 0.1599627f },
{ 0.4323053f, 0.5183603f, 0.0492912f },
{ -0.0085287f, 0.0400428f, 0.9684867f },
}};
skcms_Vector3 srcCone = skcms_MV_mul(&xyz_to_lms, &wXYZ);
skcms_Vector3 dstCone = skcms_MV_mul(&xyz_to_lms, &wXYZD50);
skcms_Matrix3x3 DXtoD50 = {{
{ dstCone.vals[0] / srcCone.vals[0], 0, 0 },
{ 0, dstCone.vals[1] / srcCone.vals[1], 0 },
{ 0, 0, dstCone.vals[2] / srcCone.vals[2] },
}};
DXtoD50 = skcms_Matrix3x3_concat(&DXtoD50, &xyz_to_lms);
DXtoD50 = skcms_Matrix3x3_concat(&lms_to_xyz, &DXtoD50);
*toXYZD50 = skcms_Matrix3x3_concat(&DXtoD50, &toXYZ);
return true;
}