blob: 7af9666ab870112ea31cf6d2f8052d2117f77ba8 [file] [log] [blame]
/*
*******************************************************************************
* Copyright (C) 2005-2006, International Business Machines Corporation and *
* others. All Rights Reserved. *
*******************************************************************************
*/
package com.ibm.icu.impl;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.util.Date;
import com.ibm.icu.util.Calendar;
import com.ibm.icu.util.GregorianCalendar;
import com.ibm.icu.util.SimpleTimeZone;
import com.ibm.icu.util.TimeZone;
/**
* A time zone based on the Olson database. Olson time zones change
* behavior over time. The raw offset, rules, presence or absence of
* daylight savings time, and even the daylight savings amount can all
* vary.
*
* This class uses a resource bundle named "zoneinfo". Zoneinfo is a
* table containing different kinds of resources. In several places,
* zones are referred to using integers. A zone's integer is a number
* from 0..n-1, where n is the number of zones, with the zones sorted
* in lexicographic order.
*
* 1. Zones. These have keys corresponding to the Olson IDs, e.g.,
* "Asia/Shanghai". Each resource describes the behavior of the given
* zone. Zones come in several formats, which are differentiated
* based on length.
*
* a. Alias (int, length 1). An alias zone is an int resource. The
* integer is the zone number of the target zone. The key of this
* resource is an alternate name for the target zone. Aliases
* represent Olson links and ICU compatibility IDs.
*
* b. Simple zone (array, length 3). The three subelements are:
*
* i. An intvector of transitions. These are given in epoch
* seconds. This may be an empty invector (length 0). If the
* transtions list is empty, then the zone's behavior is fixed and
* given by the offset list, which will contain exactly one pair.
* Otherwise each transtion indicates a time after which (inclusive)
* the associated offset pair is in effect.
*
* ii. An intvector of offsets. These are in pairs of raw offset /
* DST offset, in units of seconds. There will be at least one pair
* (length >= 2 && length % 2 == 0).
*
* iii. A binary resource. This is of the same length as the
* transitions vector, so length may be zero. Each unsigned byte
* corresponds to one transition, and has a value of 0..n-1, where n
* is the number of pairs in the offset vector. This forms a map
* between transitions and offset pairs.
*
* c. Simple zone with aliases (array, length 4). This is like a
* simple zone, but also contains a fourth element:
*
* iv. An intvector of aliases. This list includes this zone
* itself, and lists all aliases of this zone.
*
* d. Complex zone (array, length 5). This is like a simple zone,
* but contains two more elements:
*
* iv. A string, giving the name of a rule. This is the "final
* rule", which governs the zone's behavior beginning in the "final
* year". The rule ID is given without leading underscore, e.g.,
* "EU".
*
* v. An intvector of length 2, containing the raw offset for the
* final rule (in seconds), and the final year. The final rule
* takes effect for years >= the final year.
*
* e. Complex zone with aliases (array, length 6). This is like a
* complex zone, but also contains a sixth element:
*
* vi. An intvector of aliases. This list includes this zone
* itself, and lists all aliases of this zone.
*
* 2. Rules. These have keys corresponding to the Olson rule IDs,
* with an underscore prepended, e.g., "_EU". Each resource describes
* the behavior of the given rule using an intvector, containing the
* onset list, the cessation list, and the DST savings. The onset and
* cessation lists consist of the month, dowim, dow, time, and time
* mode. The end result is that the 11 integers describing the rule
* can be passed directly into the SimpleTimeZone 13-argument
* constructor (the other two arguments will be the raw offset, taken
* from the complex zone element 5, and the ID string, which is not
* used), with the times and the DST savings multiplied by 1000 to
* scale from seconds to milliseconds.
*
* 3. Countries. These have keys corresponding to the 2-letter ISO
* country codes, with a percent sign prepended, e.g., "%US". Each
* resource is an intvector listing the zones associated with the
* given country. The special entry "%" corresponds to "no country",
* that is, the category of zones assigned to no country in the Olson
* DB.
*
* 4. Metadata. Metadata is stored under the key "_". It is an
* intvector of length three containing the number of zones resources,
* rule resources, and country resources. For the purposes of this
* count, the metadata entry itself is considered a rule resource,
* since its key begins with an underscore.
*/
public class OlsonTimeZone extends TimeZone {
// Generated by serialver from JDK 1.4.1_01
static final long serialVersionUID = -6281977362477515376L;
private static final boolean ASSERT = false;
/* (non-Javadoc)
* @see com.ibm.icu.util.TimeZone#getOffset(int, int, int, int, int, int)
*/
public int getOffset(int era, int year, int month, int day, int dayOfWeek, int milliseconds) {
if (month < Calendar.JANUARY || month > Calendar.DECEMBER) {
throw new IllegalArgumentException("Month is not in the legal range: " +month);
} else {
return getOffset(era, year, month, day, dayOfWeek, milliseconds,MONTH_LENGTH[month + (isLeapYear(year)?12:0)]);
}
}
/**
* TimeZone API.
*/
public int getOffset(int era, int year, int month,int dom, int dow, int millis, int monthLength){
if ((era != GregorianCalendar.AD && era != GregorianCalendar.BC)
|| month < Calendar.JANUARY
|| month > Calendar.DECEMBER
|| dom < 1
|| dom > monthLength
|| dow < Calendar.SUNDAY
|| dow > Calendar.SATURDAY
|| millis < 0
|| millis >= MILLIS_PER_DAY
|| monthLength < 28
|| monthLength > 31) {
throw new IllegalArgumentException();
}
if (era == GregorianCalendar.BC) {
year = -year;
}
if (year > finalYear) { // [sic] >, not >=; see above
if (ASSERT) Assert.assrt("(finalZone != null)", finalZone != null);
return finalZone.getOffset(era, year, month, dom, dow,
millis, monthLength);
}
// Compute local epoch seconds from input fields
double time = fieldsToDay(year, month, dom) * SECONDS_PER_DAY +
Math.floor(millis / (double) MILLIS_PER_SECOND);
int[] offsets = new int[2];
getHistoricalOffset(time, true, offsets);
return offsets[0] + offsets[1];
}
/* (non-Javadoc)
* @see com.ibm.icu.util.TimeZone#setRawOffset(int)
*/
public void setRawOffset(int offsetMillis) {
finalZone.setRawOffset(offsetMillis);
}
public Object clone() {
OlsonTimeZone other = (OlsonTimeZone) super.clone();
if(finalZone!=null){
finalZone.setID(getID());
other.finalZone = (SimpleTimeZone)finalZone.clone();
}
other.transitionTimes = (int[])transitionTimes.clone();
other.typeData = (byte[])typeData.clone();
other.typeOffsets = (int[])typeOffsets.clone();
return other;
}
/**
* TimeZone API.
*/
public void getOffset(long date, boolean local, int[] offsets) {
int rawoff, dstoff;
// The check against finalMillis will suffice most of the time, except
// for the case in which finalMillis == DBL_MAX, date == DBL_MAX,
// and finalZone == 0. For this case we add "&& finalZone != 0".
if (date >= finalMillis && finalZone != null) {
double[] doub = floorDivide(date, (double)MILLIS_PER_DAY);
double millis=doub[1];
double days=doub[0];
int[] temp = dayToFields(days);
int year=temp[0], month=temp[1], dom=temp[2], dow=temp[3];
rawoff = finalZone.getRawOffset();
if (!local) {
// Adjust from GMT to local
date += rawoff;
doub = floorDivide(date, (double)MILLIS_PER_DAY);
double days2 = doub[0];
millis = doub[1];
if (days2 != days) {
temp = dayToFields(days2);
year=temp[0];
month=temp[1];
dom=temp[2];
dow=temp[3];
}
}
dstoff = finalZone.getOffset(GregorianCalendar.AD, year, month, dom,
dow, (int)millis)
- rawoff;
offsets[0]=rawoff;
offsets[1]=dstoff;
return;
}
double secs = Math.floor(date / MILLIS_PER_SECOND);
getHistoricalOffset(secs, local, offsets);
return;
}
double[] floorDivide(double dividend, double divisor) {
double remainder;
double[] ret = new double[2];
// Only designed to work for positive divisors
if (ASSERT) Assert.assrt("divisor > 0", divisor > 0);
double quotient = Math.floor(dividend/divisor);
remainder = dividend - (quotient * divisor);
// N.B. For certain large dividends, on certain platforms, there
// is a bug such that the quotient is off by one. If you doubt
// this to be true, set a breakpoint below and run cintltst.
if (remainder < 0 || remainder >= divisor) {
// E.g. 6.7317038241449352e+022 / 86400000.0 is wrong on my
// machine (too high by one). 4.1792057231752762e+024 /
// 86400000.0 is wrong the other way (too low).
double q = quotient;
quotient += (remainder < 0) ? -1 : +1;
if (q == quotient) {
// For quotients > ~2^53, we won't be able to add or
// subtract one, since the LSB of the mantissa will be >
// 2^0; that is, the exponent (base 2) will be larger than
// the length, in bits, of the mantissa. In that case, we
// can't give a correct answer, so we set the remainder to
// zero. This has the desired effect of making extreme
// values give back an approximate answer rather than
// crashing. For example, UDate values above a ~10^25
// might all have a time of midnight.
remainder = 0;
} else {
remainder = dividend - (quotient * divisor);
}
}
if (ASSERT) Assert.assrt("0 <= remainder && remainder < divisor", 0 <= remainder && remainder < divisor);
ret[0]=quotient;
ret[1]=remainder;
return ret;
}
/* (non-Javadoc)
* @see com.ibm.icu.util.TimeZone#getRawOffset()
*/
public int getRawOffset() {
int[] ret = new int[2];
getOffset( System.currentTimeMillis(), false, ret);
return ret[0];
}
/* (non-Javadoc)
* @see com.ibm.icu.util.TimeZone#useDaylightTime()
*/
public boolean useDaylightTime() {
// If DST was observed in 1942 (for example) but has never been
// observed from 1943 to the present, most clients will expect
// this method to return FALSE. This method determines whether
// DST is in use in the current year (at any point in the year)
// and returns TRUE if so.
double[] dt = floorDivide(System.currentTimeMillis(), (double)MILLIS_PER_DAY); // epoch days
int days = (int)dt[0];
int[] it = dayToFields(days);
int year=it[0], month=it[1], dom=it[2], dow=it[3];
if (year > finalYear) { // [sic] >, not >=; see above
if (ASSERT) Assert.assrt("finalZone != null && finalZone.useDaylightTime()", finalZone != null && finalZone.useDaylightTime());
return true;
}
// Find start of this year, and start of next year
int start = (int) fieldsToDay(year, 0, 1) * SECONDS_PER_DAY;
int limit = (int) fieldsToDay(year+1, 0, 1) * SECONDS_PER_DAY;
// Return TRUE if DST is observed at any time during the current
// year.
for (int i=0; i<transitionCount; ++i) {
if (transitionTimes[i] >= limit) {
break;
}
if (transitionTimes[i] >= start &&
dstOffset(typeData[i]) != 0) {
return true;
}
}
return false;
}
/**
* TimeZone API
* Returns the amount of time to be added to local standard time
* to get local wall clock time.
*/
public int getDSTSavings() {
if(finalZone!=null){
return finalZone.getDSTSavings();
}
return super.getDSTSavings();
}
/* (non-Javadoc)
* @see com.ibm.icu.util.TimeZone#inDaylightTime(java.util.Date)
*/
public boolean inDaylightTime(Date date) {
int[] temp = new int[2];
getOffset(date.getTime(), false, temp);
return temp[1] != 0;
}
/**
* Construct a GMT+0 zone with no transitions. This is done when a
* constructor fails so the resultant object is well-behaved.
*/
private void constructEmpty(){
transitionCount = 0;
typeCount = 1;
transitionTimes = typeOffsets = new int[]{0,0};
typeData = new byte[2];
}
/**
* Construct from a resource bundle
* @param top the top-level zoneinfo resource bundle. This is used
* to lookup the rule that `res' may refer to, if there is one.
* @param res the resource bundle of the zone to be constructed
* @param ec input-output error code
*/
public OlsonTimeZone(ICUResourceBundle top, ICUResourceBundle res){
construct(top, res);
}
private void construct(ICUResourceBundle top, ICUResourceBundle res){
if ((top == null || res == null)) {
throw new IllegalArgumentException();
}
if(DEBUG) System.out.println("OlsonTimeZone(" + res.getKey() +")");
// TODO -- clean up -- Doesn't work if res points to an alias
// // TODO remove nonconst casts below when ures_* API is fixed
// setID(ures_getKey((UResourceBundle*) res)); // cast away const
// Size 1 is an alias TO another zone (int)
// HOWEVER, the caller should dereference this and never pass it in to us
// Size 3 is a purely historical zone (no final rules)
// Size 4 is like size 3, but with an alias list at the end
// Size 5 is a hybrid zone, with historical and final elements
// Size 6 is like size 5, but with an alias list at the end
int size = res.getSize();
if (size < 3 || size > 6) {
// ec = U_INVALID_FORMAT_ERROR;
throw new IllegalArgumentException("Invalid Format");
}
// Transitions list may be empty
ICUResourceBundle r = res.get(0);
transitionTimes = r.getIntVector();
if ((transitionTimes.length<0 || transitionTimes.length>0x7FFF) ) {
throw new IllegalArgumentException("Invalid Format");
}
transitionCount = (int) transitionTimes.length;
// Type offsets list must be of even size, with size >= 2
r = res.get( 1);
typeOffsets = r.getIntVector();
if ((typeOffsets.length<2 || typeOffsets.length>0x7FFE || ((typeOffsets.length&1)!=0))) {
throw new IllegalArgumentException("Invalid Format");
}
typeCount = (int) typeOffsets.length >> 1;
// Type data must be of the same size as the transitions list
r = res.get(2);
typeData = r.getBinary().array();
if (typeData.length != transitionCount) {
throw new IllegalArgumentException("Invalid Format");
}
// Process final rule and data, if any
if (size >= 5) {
String ruleid = res.getString(3);
r = res.get(4);
int[] data = r.getIntVector();
if (data != null && data.length == 2) {
int rawOffset = data[0] * MILLIS_PER_SECOND;
// Subtract one from the actual final year; we
// actually store final year - 1, and compare
// using > rather than >=. This allows us to use
// INT32_MAX as an exclusive upper limit for all
// years, including INT32_MAX.
if (ASSERT) Assert.assrt("data[1] > Integer.MIN_VALUE", data[1] > Integer.MIN_VALUE);
finalYear = data[1] - 1;
// Also compute the millis for Jan 1, 0:00 GMT of the
// finalYear. This reduces runtime computations.
finalMillis = fieldsToDay(data[1], 0, 1) * TimeZone.MILLIS_PER_DAY;
//U_DEBUG_TZ_MSG(("zone%s|%s: {%d,%d}, finalYear%d, finalMillis%.1lf\n",
// zKey,rKey, data[0], data[1], finalYear, finalMillis));
r = loadRule(top, ruleid);
// 3, 1, -1, 7200, 0, 9, -31, -1, 7200, 0, 3600
data = r.getIntVector();
if ( data.length == 11) {
//U_DEBUG_TZ_MSG(("zone%s, rule%s: {%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d}", zKey, ures_getKey(r),
// data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7], data[8], data[9], data[10]));
finalZone = new SimpleTimeZone(rawOffset, "",
data[0], data[1], data[2],
data[3] * MILLIS_PER_SECOND,
data[4],
data[5], data[6], data[7],
data[8] * MILLIS_PER_SECOND,
data[9],
data[10] * MILLIS_PER_SECOND);
} else {
throw new IllegalArgumentException("Invalid Format");
}
} else {
throw new IllegalArgumentException("Invalid Format");
}
}
}
public OlsonTimeZone(){
/*
*
finalYear = Integer.MAX_VALUE;
finalMillis = Double.MAX_VALUE;
finalZone = null;
*/
constructEmpty();
}
public OlsonTimeZone(String id){
ICUResourceBundle top = (ICUResourceBundle)ICUResourceBundle.getBundleInstance(ICUResourceBundle.ICU_BASE_NAME, "zoneinfo", ICUResourceBundle.ICU_DATA_CLASS_LOADER);
ICUResourceBundle res = ZoneMeta.openOlsonResource(id);
construct(top, res);
if(finalZone!=null){
finalZone.setID(id);
}
super.setID(id);
}
public void setID(String id){
if(finalZone!= null){
finalZone.setID(id);
}
super.setID(id);
}
private static final int UNSIGNED_BYTE_MASK =0xFF;
private int getInt(byte val){
return (int)(UNSIGNED_BYTE_MASK & val);
}
private void getHistoricalOffset(double time, boolean local, int[] offsets) {
if (transitionCount != 0) {
// Linear search from the end is the fastest approach, since
// most lookups will happen at/near the end.
int i = 0;
for (i = transitionCount - 1; i > 0; --i) {
int transition = transitionTimes[i];
if (local) {
int zoneOffsetPrev = zoneOffset(getInt(typeData[i-1]));
int zoneOffsetCurr = zoneOffset(getInt(typeData[i]));
if(zoneOffsetPrev < zoneOffsetCurr) {
transition += zoneOffsetPrev;
} else {
transition += zoneOffsetCurr;
}
}
if (time >= transition) {
break;
}
}
if (ASSERT) Assert.assrt("i>=0 && i<transitionCount", i>=0 && i<transitionCount);
// Check invariants for GMT times; if these pass for GMT times
// the local logic should be working too.
if (ASSERT) {
Assert.assrt("local || time < transitionTimes[0] || time >= transitionTimes[i]",
local || time < transitionTimes[0] || time >= transitionTimes[i]);
Assert.assrt("local || i == transitionCount-1 || time < transitionTimes[i+1]",
local || i == transitionCount-1 || time < transitionTimes[i+1]);
}
if (i == 0) {
// Check if the given time is before the very first transition
int firstTransition = transitionTimes[0];
int initialRawOffset = rawOffset(getInt(typeData[0]));
if (local) {
firstTransition += initialRawOffset;
}
if (time >= firstTransition) {
// The given time is between the first and the second transition
offsets[0] = initialRawOffset * MILLIS_PER_SECOND;
offsets[1] = dstOffset(getInt(typeData[0])) * MILLIS_PER_SECOND;
} else {
// The given time is before the first transition
offsets[0] = initialRawOffset * MILLIS_PER_SECOND;
offsets[1] = 0;
}
} else {
int index = getInt(typeData[i]);
offsets[0] = rawOffset(index) * MILLIS_PER_SECOND;
offsets[1] = dstOffset(index) * MILLIS_PER_SECOND;
}
} else {
// No transitions, single pair of offsets only
offsets[0] = rawOffset(0) * MILLIS_PER_SECOND;
offsets[1] = dstOffset(0) * MILLIS_PER_SECOND;
}
}
private int zoneOffset(int index){
index=index << 1;
return typeOffsets[index] + typeOffsets[index+1];
}
private int rawOffset(int index){
return typeOffsets[(int)(index << 1)];
}
private int dstOffset(int index){
return typeOffsets[(int)((index << 1) + 1)];
}
// temp
public String toString() {
StringBuffer buf = new StringBuffer();
buf.append(super.toString());
buf.append('[');
buf.append("transitionCount=" + transitionCount);
buf.append(",typeCount=" + typeCount);
buf.append(",transitionTimes=");
if (transitionTimes != null) {
buf.append('[');
for (int i = 0; i < transitionTimes.length; ++i) {
if (i > 0) {
buf.append(',');
}
buf.append(Integer.toString(transitionTimes[i]));
}
buf.append(']');
} else {
buf.append("null");
}
buf.append(",typeOffsets=");
if (typeOffsets != null) {
buf.append('[');
for (int i = 0; i < typeOffsets.length; ++i) {
if (i > 0) {
buf.append(',');
}
buf.append(Integer.toString(typeOffsets[i]));
}
buf.append(']');
} else {
buf.append("null");
}
buf.append(",finalYear=" + finalYear);
buf.append(",finalMillis=" + finalMillis);
buf.append(",finalZone=" + finalZone);
buf.append(']');
return buf.toString();
}
/**
* Number of transitions, 0..~370
*/
private int transitionCount;
/**
* Number of types, 1..255
*/
private int typeCount;
/**
* Time of each transition in seconds from 1970 epoch.
* Length is transitionCount int32_t's.
*/
private int[] transitionTimes; // alias into res; do not delete
/**
* Offset from GMT in seconds for each type.
* Length is typeCount int32_t's.
*/
private int[] typeOffsets; // alias into res; do not delete
/**
* Type description data, consisting of transitionCount uint8_t
* type indices (from 0..typeCount-1).
* Length is transitionCount int8_t's.
*/
private byte[] typeData; // alias into res; do not delete
/**
* The last year for which the transitions data are to be used
* rather than the finalZone. If there is no finalZone, then this
* is set to INT32_MAX. NOTE: This corresponds to the year _before_
* the one indicated by finalMillis.
*/
private int finalYear = Integer.MAX_VALUE;
/**
* The millis for the start of the first year for which finalZone
* is to be used, or DBL_MAX if finalZone is 0. NOTE: This is
* 0:00 GMT Jan 1, <finalYear + 1> (not <finalMillis>).
*/
private double finalMillis = Double.MAX_VALUE;
/**
* A SimpleTimeZone that governs the behavior for years > finalYear.
* If and only if finalYear == INT32_MAX then finalZone == 0.
*/
private SimpleTimeZone finalZone = null; // owned, may be NULL
private static final boolean DEBUG = ICUDebug.enabled("olson");
private static final int[] DAYS_BEFORE = new int[] {0,31,59,90,120,151,181,212,243,273,304,334,
0,31,60,91,121,152,182,213,244,274,305,335};
private static final int[] MONTH_LENGTH = new int[]{31,28,31,30,31,30,31,31,30,31,30,31,
31,29,31,30,31,30,31,31,30,31,30,31};
private static final int JULIAN_1_CE = 1721426; // January 1, 1 CE Gregorian
private static final int JULIAN_1970_CE = 2440588; // January 1, 1970 CE Gregorian
private static final int MILLIS_PER_SECOND = 1000;
private static final int SECONDS_PER_DAY = 24*60*60;
private static final double fieldsToDay(int year, int month, int dom) {
int y = year - 1;
double julian = 365 * y + myFloorDivide(y, 4) + (JULIAN_1_CE - 3) + // Julian cal
myFloorDivide(y, 400) - myFloorDivide(y, 100) + 2 + // => Gregorian cal
DAYS_BEFORE[month + (isLeapYear(year) ? 12 : 0)] + dom; // => month/dom
return julian - JULIAN_1970_CE; // JD => epoch day
}
private static final boolean isLeapYear(int year) {
// year&0x3 == year%4
return ((year&0x3) == 0) && ((year%100 != 0) || (year%400 == 0));
}
private static ICUResourceBundle loadRule(ICUResourceBundle top, String ruleid) {
ICUResourceBundle r = top.get("Rules");
r = r.get(ruleid);
return r;
}
/**
* Divide two long integers, returning the floor of the quotient.
* <p>
* Unlike the built-in division, this is mathematically well-behaved.
* E.g., <code>-1/4</code> => 0
* but <code>floorDivide(-1,4)</code> => -1.
* @param numerator the numerator
* @param denominator a divisor which must be > 0
* @return the floor of the quotient.
* @stable ICU 2.0
*/
private static final long myFloorDivide(long numerator, long denominator) {
// We do this computation in order to handle
// a numerator of Long.MIN_VALUE correctly
return (numerator >= 0) ?
numerator / denominator :
((numerator + 1) / denominator) - 1;
}
int[] dayToFields(double day) {
int year, month, dom, dow;
double doy;
int[] ret = new int[5];
// Convert from 1970 CE epoch to 1 CE epoch (Gregorian calendar)
day += JULIAN_1970_CE - JULIAN_1_CE;
// Convert from the day number to the multiple radix
// representation. We use 400-year, 100-year, and 4-year cycles.
// For example, the 4-year cycle has 4 years + 1 leap day; giving
// 1461 == 365*4 + 1 days.
double[]temp = floorDivide(day, 146097); // 400-year cycle length
double n400 = temp[0];
doy = temp[1];
temp = floorDivide(doy, 36524); // 100-year cycle length
double n100 = temp[0];
doy = temp[1];
temp = floorDivide(doy, 1461); // 4-year cycle length
double n4 = temp[0];
doy = temp[1];
temp = floorDivide(doy, 365);
double n1 = temp[0];
doy = temp[1];
year = (int)( 400*n400 + 100*n100 + 4*n4 + n1);
if (n100 == 4 || n1 == 4) {
doy = 365; // Dec 31 at end of 4- or 400-year cycle
} else {
++year;
}
boolean isLeap = isLeapYear(year);
// Gregorian day zero is a Monday.
dow = (int) ((day + 1) % 7);
dow += (dow < 0) ? (Calendar.SUNDAY + 7) : Calendar.SUNDAY;
// Common Julian/Gregorian calculation
int correction = 0;
int march1 = isLeap ? 60 : 59; // zero-based DOY for March 1
if (doy >= march1) {
correction = isLeap ? 1 : 2;
}
month = (int)((12 * (doy + correction) + 6) / 367); // zero-based month
dom = (int)(doy - DAYS_BEFORE[month + (isLeap ? 12 : 0)] + 1); // one-based DOM
doy++; // one-based doy
ret[0]=year;
ret[1]=month;
ret[2]=dom;
ret[3]=dow;
ret[4]=(int)doy;
return ret;
}
public boolean equals(Object obj){
if (!super.equals(obj)) return false; // super does class check
OlsonTimeZone z = (OlsonTimeZone) obj;
return (Utility.arrayEquals(typeData, z.typeData) ||
// If the pointers are not equal, the zones may still
// be equal if their rules and transitions are equal
(finalYear == z.finalYear &&
// Don't compare finalMillis; if finalYear is ==, so is finalMillis
((finalZone == null && z.finalZone == null) ||
(finalZone != null && z.finalZone != null &&
finalZone.equals(z.finalZone)) &&
transitionCount == z.transitionCount &&
typeCount == z.typeCount &&
Utility.arrayEquals(transitionTimes, z.transitionTimes) &&
Utility.arrayEquals(typeOffsets, z.typeOffsets) &&
Utility.arrayEquals(typeData, z.typeData)
)));
}
public int hashCode(){
int ret = (int) (finalYear ^ (finalYear>>>4) +
transitionCount ^ (transitionCount>>>6) +
typeCount ^ (typeCount>>>8) +
Double.doubleToLongBits(finalMillis)+
(finalZone == null ? 0 : finalZone.hashCode()) +
super.hashCode());
for(int i=0; i<transitionTimes.length; i++){
ret+=transitionTimes[i]^(transitionTimes[i]>>>8);
}
for(int i=0; i<typeOffsets.length; i++){
ret+=typeOffsets[i]^(typeOffsets[i]>>>8);
}
for(int i=0; i<typeData.length; i++){
ret+=typeData[i] & UNSIGNED_BYTE_MASK;
}
return ret;
}
/*
private void readObject(ObjectInputStream s) throws IOException {
s.defaultReadObject();
// customized deserialization code
// followed by code to update the object, if necessary
}
*/
}