blob: 35e07f665abc32769b3436c87024584ef03cb389 [file] [log] [blame]
/*
*******************************************************************************
* Copyright (C) 1996-2005, International Business Machines Corporation and *
* others. All Rights Reserved. *
*******************************************************************************
*/
package com.ibm.icu.text;
import com.ibm.icu.impl.Utility;
import com.ibm.icu.impl.UtilityExtensions;
import java.util.Vector;
/**
* A transliterator that is composed of two or more other
* transliterator objects linked together. For example, if one
* transliterator transliterates from script A to script B, and
* another transliterates from script B to script C, the two may be
* combined to form a new transliterator from A to C.
*
* <p>Composed transliterators may not behave as expected. For
* example, inverses may not combine to form the identity
* transliterator. See the class documentation for {@link
* Transliterator} for details.
*
* <p>Copyright &copy; IBM Corporation 1999. All rights reserved.
*
* @author Alan Liu
* @internal
*/
class CompoundTransliterator extends Transliterator {
private Transliterator[] trans;
private int numAnonymousRBTs = 0;
private static final String COPYRIGHT =
"\u00A9 IBM Corporation 1999-2001. All rights reserved.";
/**
* Constructs a new compound transliterator given an array of
* transliterators. The array of transliterators may be of any
* length, including zero or one, however, useful compound
* transliterators have at least two components.
* @param transliterators array of <code>Transliterator</code>
* objects
* @param filter the filter. Any character for which
* <tt>filter.contains()</tt> returns <tt>false</tt> will not be
* altered by this transliterator. If <tt>filter</tt> is
* <tt>null</tt> then no filtering is applied.
* @internal
*/
public CompoundTransliterator(Transliterator[] transliterators,
UnicodeFilter filter) {
super(joinIDs(transliterators), filter);
trans = new Transliterator[transliterators.length];
System.arraycopy(transliterators, 0, trans, 0, trans.length);
computeMaximumContextLength();
}
/**
* Constructs a new compound transliterator given an array of
* transliterators. The array of transliterators may be of any
* length, including zero or one, however, useful compound
* transliterators have at least two components.
* @param transliterators array of <code>Transliterator</code>
* objects
* @internal
*/
public CompoundTransliterator(Transliterator[] transliterators) {
this(transliterators, null);
}
/**
* Constructs a new compound transliterator.
* @param ID compound ID
* @param direction either Transliterator.FORWARD or Transliterator.REVERSE
* @param filter a global filter for this compound transliterator
* or null
* @internal
*/
public CompoundTransliterator(String ID, int direction,
UnicodeFilter filter) {
super(ID, filter);
init(ID, direction, true);
}
/**
* Constructs a new compound transliterator with no filter.
* @param ID compound ID
* @param direction either Transliterator.FORWARD or Transliterator.REVERSE
* @internal
*/
public CompoundTransliterator(String ID, int direction) {
this(ID, direction, null);
}
/**
* Constructs a new forward compound transliterator with no filter.
* @param ID compound ID
* @internal
*/
public CompoundTransliterator(String ID) {
this(ID, FORWARD, null);
}
/**
* Package private constructor for Transliterator from a vector of
* transliterators. The caller is responsible for fixing up the
* ID.
*/
CompoundTransliterator(Vector list) {
this(list, 0);
}
CompoundTransliterator(Vector list, int numAnonymousRBTs) {
super("", null);
trans = null;
init(list, FORWARD, false);
this.numAnonymousRBTs = numAnonymousRBTs;
// assume caller will fixup ID
}
/**
* Finish constructing a transliterator: only to be called by
* constructors. Before calling init(), set trans and filter to NULL.
* @param id the id containing ';'-separated entries
* @param direction either FORWARD or REVERSE
* @param idSplitPoint the index into id at which the
* splitTrans should be inserted, if there is one, or
* -1 if there is none.
* @param splitTrans a transliterator to be inserted
* before the entry at offset idSplitPoint in the id string. May be
* NULL to insert no entry.
* @param fixReverseID if TRUE, then reconstruct the ID of reverse
* entries by calling getID() of component entries. Some constructors
* do not require this because they apply a facade ID anyway.
*/
private void init(String id,
int direction,
boolean fixReverseID) {
// assert(trans == 0);
Vector list = new Vector();
UnicodeSet[] compoundFilter = new UnicodeSet[1];
StringBuffer regenID = new StringBuffer();
if (!TransliteratorIDParser.parseCompoundID(id, direction,
regenID, list, compoundFilter)) {
throw new IllegalArgumentException("Invalid ID " + id);
}
TransliteratorIDParser.instantiateList(list);
init(list, direction, fixReverseID);
if (compoundFilter[0] != null) {
setFilter(compoundFilter[0]);
}
}
/**
* Finish constructing a transliterator: only to be called by
* constructors. Before calling init(), set trans and filter to NULL.
* @param list a vector of transliterator objects to be adopted. It
* should NOT be empty. The list should be in declared order. That
* is, it should be in the FORWARD order; if direction is REVERSE then
* the list order will be reversed.
* @param direction either FORWARD or REVERSE
* @param fixReverseID if TRUE, then reconstruct the ID of reverse
* entries by calling getID() of component entries. Some constructors
* do not require this because they apply a facade ID anyway.
*/
private void init(Vector list,
int direction,
boolean fixReverseID) {
// assert(trans == 0);
// Allocate array
int count = list.size();
trans = new Transliterator[count];
// Move the transliterators from the vector into an array.
// Reverse the order if necessary.
int i;
for (i=0; i<count; ++i) {
int j = (direction == FORWARD) ? i : count - 1 - i;
trans[i] = (Transliterator) list.elementAt(j);
}
// If the direction is UTRANS_REVERSE then we may need to fix the
// ID.
if (direction == REVERSE && fixReverseID) {
StringBuffer newID = new StringBuffer();
for (i=0; i<count; ++i) {
if (i > 0) {
newID.append(ID_DELIM);
}
newID.append(trans[i].getID());
}
setID(newID.toString());
}
computeMaximumContextLength();
}
/**
* Return the IDs of the given list of transliterators, concatenated
* with ';' delimiting them. Equivalent to the perlish expression
* join(';', map($_.getID(), transliterators).
*/
private static String joinIDs(Transliterator[] transliterators) {
StringBuffer id = new StringBuffer();
for (int i=0; i<transliterators.length; ++i) {
if (i > 0) {
id.append(';');
}
id.append(transliterators[i].getID());
}
return id.toString();
}
/**
* Returns the number of transliterators in this chain.
* @return number of transliterators in this chain.
* @internal
*/
public int getCount() {
return trans.length;
}
/**
* Returns the transliterator at the given index in this chain.
* @param index index into chain, from 0 to <code>getCount() - 1</code>
* @return transliterator at the given index
* @internal
*/
public Transliterator getTransliterator(int index) {
return trans[index];
}
/**
* Append c to buf, unless buf is empty or buf already ends in c.
*/
private static void _smartAppend(StringBuffer buf, char c) {
if (buf.length() != 0 &&
buf.charAt(buf.length() - 1) != c) {
buf.append(c);
}
}
/**
* Override Transliterator:
* Create a rule string that can be passed to createFromRules()
* to recreate this transliterator.
* @param escapeUnprintable if TRUE then convert unprintable
* character to their hex escape representations, \\uxxxx or
* \\Uxxxxxxxx. Unprintable characters are those other than
* U+000A, U+0020..U+007E.
* @return the rule string
* @internal
*/
public String toRules(boolean escapeUnprintable) {
// We do NOT call toRules() on our component transliterators, in
// general. If we have several rule-based transliterators, this
// yields a concatenation of the rules -- not what we want. We do
// handle compound RBT transliterators specially -- those for which
// compoundRBTIndex >= 0. For the transliterator at compoundRBTIndex,
// we do call toRules() recursively.
StringBuffer rulesSource = new StringBuffer();
if (numAnonymousRBTs >= 1 && getFilter() != null) {
// If we are a compound RBT and if we have a global
// filter, then emit it at the top.
rulesSource.append("::").append(getFilter().toPattern(escapeUnprintable)).append(ID_DELIM);
}
for (int i=0; i<trans.length; ++i) {
String rule;
// Anonymous RuleBasedTransliterators (inline rules and
// ::BEGIN/::END blocks) are given IDs that begin with
// "%Pass": use toRules() to write all the rules to the output
// (and insert "::Null;" if we have two in a row)
if (trans[i].getID().startsWith("%Pass")) {
rule = trans[i].toRules(escapeUnprintable);
if (numAnonymousRBTs > 1 && i > 0 && trans[i - 1].getID().startsWith("%Pass"))
rule = "::Null;" + rule;
// we also use toRules() on CompoundTransliterators (which we
// check for by looking for a semicolon in the ID)-- this gets
// the list of their child transliterators output in the right
// format
} else if (trans[i].getID().indexOf(';') >= 0) {
rule = trans[i].toRules(escapeUnprintable);
// for everything else, use baseToRules()
} else {
rule = trans[i].baseToRules(escapeUnprintable);
}
_smartAppend(rulesSource, '\n');
rulesSource.append(rule);
_smartAppend(rulesSource, ID_DELIM);
}
return rulesSource.toString();
}
/**
* Return the set of all characters that may be modified by this
* Transliterator, ignoring the effect of our filter.
* @internal
*/
protected UnicodeSet handleGetSourceSet() {
UnicodeSet set = new UnicodeSet();
for (int i=0; i<trans.length; ++i) {
set.addAll(trans[i].getSourceSet());
// Take the example of Hiragana-Latin. This is really
// Hiragana-Katakana; Katakana-Latin. The source set of
// these two is roughly [:Hiragana:] and [:Katakana:].
// But the source set for the entire transliterator is
// actually [:Hiragana:] ONLY -- that is, the first
// non-empty source set.
// This is a heuristic, and not 100% reliable.
if (!set.isEmpty()) {
break;
}
}
return set;
}
/**
* Returns the set of all characters that may be generated as
* replacement text by this transliterator.
* @internal
*/
public UnicodeSet getTargetSet() {
UnicodeSet set = new UnicodeSet();
for (int i=0; i<trans.length; ++i) {
// This is a heuristic, and not 100% reliable.
set.addAll(trans[i].getTargetSet());
}
return set;
}
/**
* Implements {@link Transliterator#handleTransliterate}.
* @internal
*/
protected void handleTransliterate(Replaceable text,
Position index, boolean incremental) {
/* Call each transliterator with the same start value and
* initial cursor index, but with the limit index as modified
* by preceding transliterators. The cursor index must be
* reset for each transliterator to give each a chance to
* transliterate the text. The initial cursor index is known
* to still point to the same place after each transliterator
* is called because each transliterator will not change the
* text between start and the initial value of cursor.
*
* IMPORTANT: After the first transliterator, each subsequent
* transliterator only gets to transliterate text committed by
* preceding transliterators; that is, the cursor (output
* value) of transliterator i becomes the limit (input value)
* of transliterator i+1. Finally, the overall limit is fixed
* up before we return.
*
* Assumptions we make here:
* (1) contextStart <= start <= limit <= contextLimit <= text.length()
* (2) start <= start' <= limit' ;cursor doesn't move back
* (3) start <= limit' ;text before cursor unchanged
* - start' is the value of start after calling handleKT
* - limit' is the value of limit after calling handleKT
*/
/**
* Example: 3 transliterators. This example illustrates the
* mechanics we need to implement. C, S, and L are the contextStart,
* start, and limit. gl is the globalLimit. contextLimit is
* equal to limit throughout.
*
* 1. h-u, changes hex to Unicode
*
* 4 7 a d 0 4 7 a
* abc/u0061/u => abca/u
* C S L C S L gl=f->a
*
* 2. upup, changes "x" to "XX"
*
* 4 7 a 4 7 a
* abca/u => abcAA/u
* C SL C S
* L gl=a->b
* 3. u-h, changes Unicode to hex
*
* 4 7 a 4 7 a d 0 3
* abcAA/u => abc/u0041/u0041/u
* C S L C S
* L gl=b->15
* 4. return
*
* 4 7 a d 0 3
* abc/u0041/u0041/u
* C S L
*/
if (trans.length < 1) {
index.start = index.limit;
return; // Short circuit for empty compound transliterators
}
// compoundLimit is the limit value for the entire compound
// operation. We overwrite index.limit with the previous
// index.start. After each transliteration, we update
// compoundLimit for insertions or deletions that have happened.
int compoundLimit = index.limit;
// compoundStart is the start for the entire compound
// operation.
int compoundStart = index.start;
int delta = 0; // delta in length
StringBuffer log = null;
if (DEBUG) {
log = new StringBuffer("CompoundTransliterator{" + getID() +
(incremental ? "}i: IN=" : "}: IN="));
UtilityExtensions.formatInput(log, text, index);
System.out.println(Utility.escape(log.toString()));
}
// Give each transliterator a crack at the run of characters.
// See comments at the top of the method for more detail.
for (int i=0; i<trans.length; ++i) {
index.start = compoundStart; // Reset start
int limit = index.limit;
if (index.start == index.limit) {
// Short circuit for empty range
if (DEBUG) {
System.out.println("CompoundTransliterator[" + i +
".." + (trans.length-1) +
(incremental ? "]i: " : "]: ") +
UtilityExtensions.formatInput(text, index) +
" (NOTHING TO DO)");
}
break;
}
if (DEBUG) {
log.setLength(0);
log.append("CompoundTransliterator[" + i + "=" +
trans[i].getID() +
(incremental ? "]i: " : "]: "));
UtilityExtensions.formatInput(log, text, index);
}
trans[i].filteredTransliterate(text, index, incremental);
// In a properly written transliterator, start == limit after
// handleTransliterate() returns when incremental is false.
// Catch cases where the subclass doesn't do this, and throw
// an exception. (Just pinning start to limit is a bad idea,
// because what's probably happening is that the subclass
// isn't transliterating all the way to the end, and it should
// in non-incremental mode.)
if (!incremental && index.start != index.limit) {
throw new RuntimeException("ERROR: Incomplete non-incremental transliteration by " + trans[i].getID());
}
if (DEBUG) {
log.append(" => ");
UtilityExtensions.formatInput(log, text, index);
System.out.println(Utility.escape(log.toString()));
}
// Cumulative delta for insertions/deletions
delta += index.limit - limit;
if (incremental) {
// In the incremental case, only allow subsequent
// transliterators to modify what has already been
// completely processed by prior transliterators. In the
// non-incrmental case, allow each transliterator to
// process the entire text.
index.limit = index.start;
}
}
compoundLimit += delta;
// Start is good where it is -- where the last transliterator left
// it. Limit needs to be put back where it was, modulo
// adjustments for deletions/insertions.
index.limit = compoundLimit;
if (DEBUG) {
log.setLength(0);
log.append("CompoundTransliterator{" + getID() +
(incremental ? "}i: OUT=" : "}: OUT="));
UtilityExtensions.formatInput(log, text, index);
System.out.println(Utility.escape(log.toString()));
}
}
/**
* Compute and set the length of the longest context required by this transliterator.
* This is <em>preceding</em> context.
*/
private void computeMaximumContextLength() {
int max = 0;
for (int i=0; i<trans.length; ++i) {
int len = trans[i].getMaximumContextLength();
if (len > max) {
max = len;
}
}
setMaximumContextLength(max);
}
}