blob: f46fb90ba3c206782f26bde17fca00bdf2750306 [file] [log] [blame]
//##header 1132615047000
/*
*******************************************************************************
* Copyright (C) 1996-2005, International Business Machines Corporation and *
* others. All Rights Reserved. *
*******************************************************************************
*/
package com.ibm.icu.text;
import java.math.BigInteger;
/**
* <code>DigitList</code> handles the transcoding between numeric values and
* strings of characters. It only represents non-negative numbers. The
* division of labor between <code>DigitList</code> and
* <code>DecimalFormat</code> is that <code>DigitList</code> handles the radix
* 10 representation issues and numeric conversion, including rounding;
* <code>DecimalFormat</code> handles the locale-specific issues such as
* positive and negative representation, digit grouping, decimal point,
* currency, and so on.
*
* <p>A <code>DigitList</code> is a representation of a finite numeric value.
* <code>DigitList</code> objects do not represent <code>NaN</code> or infinite
* values. A <code>DigitList</code> value can be converted to a
* <code>BigDecimal</code> without loss of precision. Conversion to other
* numeric formats may involve loss of precision, depending on the specific
* value.
*
* <p>The <code>DigitList</code> representation consists of a string of
* characters, which are the digits radix 10, from '0' to '9'. It also has a
* base 10 exponent associated with it. The value represented by a
* <code>DigitList</code> object can be computed by mulitplying the fraction
* <em>f</em>, where 0 <= <em>f</em> < 1, derived by placing all the digits of
* the list to the right of the decimal point, by 10^exponent.
*
* @see java.util.Locale
* @see java.text.Format
* @see NumberFormat
* @see DecimalFormat
* @see java.text.ChoiceFormat
* @see java.text.MessageFormat
* @version 1.18 08/12/98
* @author Mark Davis, Alan Liu
* */
final class DigitList {
/**
* The maximum number of significant digits in an IEEE 754 double, that
* is, in a Java double. This must not be increased, or garbage digits
* will be generated, and should not be decreased, or accuracy will be lost.
*/
public static final int MAX_LONG_DIGITS = 19; // == Long.toString(Long.MAX_VALUE).length()
public static final int DBL_DIG = 17;
/**
* These data members are intentionally public and can be set directly.
*
* The value represented is given by placing the decimal point before
* digits[decimalAt]. If decimalAt is < 0, then leading zeros between
* the decimal point and the first nonzero digit are implied. If decimalAt
* is > count, then trailing zeros between the digits[count-1] and the
* decimal point are implied.
*
* Equivalently, the represented value is given by f * 10^decimalAt. Here
* f is a value 0.1 <= f < 1 arrived at by placing the digits in Digits to
* the right of the decimal.
*
* DigitList is normalized, so if it is non-zero, figits[0] is non-zero. We
* don't allow denormalized numbers because our exponent is effectively of
* unlimited magnitude. The count value contains the number of significant
* digits present in digits[].
*
* Zero is represented by any DigitList with count == 0 or with each digits[i]
* for all i <= count == '0'.
*/
public int decimalAt = 0;
public int count = 0;
public byte[] digits = new byte[MAX_LONG_DIGITS];
private final void ensureCapacity(int digitCapacity, int digitsToCopy) {
if (digitCapacity > digits.length) {
byte[] newDigits = new byte[digitCapacity * 2];
System.arraycopy(digits, 0, newDigits, 0, digitsToCopy);
digits = newDigits;
}
}
/**
* Return true if the represented number is zero.
*/
boolean isZero()
{
for (int i=0; i<count; ++i) if (digits[i] != '0') return false;
return true;
}
// Unused as of ICU 2.6 - alan
// /**
// * Clears out the digits.
// * Use before appending them.
// * Typically, you set a series of digits with append, then at the point
// * you hit the decimal point, you set myDigitList.decimalAt = myDigitList.count;
// * then go on appending digits.
// */
// public void clear () {
// decimalAt = 0;
// count = 0;
// }
/**
* Appends digits to the list.
*/
public void append (int digit) {
ensureCapacity(count+1, count);
digits[count++] = (byte) digit;
}
/**
* Utility routine to get the value of the digit list
* If (count == 0) this throws a NumberFormatException, which
* mimics Long.parseLong().
*/
public final double getDouble() {
if (count == 0) return 0.0;
StringBuffer temp = new StringBuffer(count);
temp.append('.');
for (int i = 0; i < count; ++i) temp.append((char)(digits[i]));
temp.append('E');
temp.append(Integer.toString(decimalAt));
return Double.valueOf(temp.toString()).doubleValue();
// long value = Long.parseLong(temp.toString());
// return (value * Math.pow(10, decimalAt - count));
}
/**
* Utility routine to get the value of the digit list.
* If (count == 0) this returns 0, unlike Long.parseLong().
*/
public final long getLong() {
// for now, simple implementation; later, do proper IEEE native stuff
if (count == 0) return 0;
// We have to check for this, because this is the one NEGATIVE value
// we represent. If we tried to just pass the digits off to parseLong,
// we'd get a parse failure.
if (isLongMIN_VALUE()) return Long.MIN_VALUE;
StringBuffer temp = new StringBuffer(count);
for (int i = 0; i < decimalAt; ++i)
{
temp.append((i < count) ? (char)(digits[i]) : '0');
}
return Long.parseLong(temp.toString());
}
/**
* Return a <code>BigInteger</code> representing the value stored in this
* <code>DigitList</code>. This method assumes that this object contains
* an integral value; if not, it will return an incorrect value.
* [bnf]
* @param isPositive determines the sign of the returned result
* @return the value of this object as a <code>BigInteger</code>
*/
public BigInteger getBigInteger(boolean isPositive) {
if (isZero()) return BigInteger.valueOf(0);
if (false) {
StringBuffer stringRep = new StringBuffer(count);
if (!isPositive) {
stringRep.append('-');
}
for (int i=0; i<count; ++i) {
stringRep.append((char) digits[i]);
}
int d = decimalAt;
while (d-- > count) {
stringRep.append('0');
}
return new BigInteger(stringRep.toString());
} else {
int len = decimalAt > count ? decimalAt : count;
if (!isPositive) {
len += 1;
}
char[] text = new char[len];
int n = 0;
if (!isPositive) {
text[0] = '-';
for (int i = 0; i < count; ++i) {
text[i+1] = (char)digits[i];
}
n = count+1;
} else {
for (int i = 0; i < count; ++i) {
text[i] = (char)digits[i];
}
n = count;
}
for (int i = n; i < text.length; ++i) {
text[i] = '0';
}
return new BigInteger(new String(text));
}
}
private String getStringRep(boolean isPositive) {
if (isZero()) return "0";
StringBuffer stringRep = new StringBuffer(count+1);
if (!isPositive) {
stringRep.append('-');
}
int d = decimalAt;
if (d < 0) {
stringRep.append('.');
while (d < 0) {
stringRep.append('0');
++d;
}
d = -1;
}
for (int i=0; i<count; ++i) {
if (d == i) {
stringRep.append('.');
}
stringRep.append((char) digits[i]);
}
while (d-- > count) {
stringRep.append('0');
}
return stringRep.toString();
}
//#ifndef FOUNDATION
/**
* Return a <code>BigDecimal</code> representing the value stored in this
* <code>DigitList</code>.
* [bnf]
* @param isPositive determines the sign of the returned result
* @return the value of this object as a <code>BigDecimal</code>
*/
public java.math.BigDecimal getBigDecimal(boolean isPositive) {
if (isZero()) return java.math.BigDecimal.valueOf(0);
return new java.math.BigDecimal(getStringRep(isPositive));
}
//#endif
/**
* Return an <code>ICU BigDecimal</code> representing the value stored in this
* <code>DigitList</code>.
* [bnf]
* @param isPositive determines the sign of the returned result
* @return the value of this object as a <code>BigDecimal</code>
*/
public com.ibm.icu.math.BigDecimal getBigDecimalICU(boolean isPositive) {
if (isZero()) return com.ibm.icu.math.BigDecimal.valueOf(0);
return new com.ibm.icu.math.BigDecimal(getStringRep(isPositive));
}
/**
* Return whether or not this objects represented value is an integer.
* [bnf]
* @return true if the represented value of this object is an integer
*/
boolean isIntegral() {
// Trim trailing zeros. This does not change the represented value.
while (count > 0 && digits[count - 1] == (byte)'0') --count;
return count == 0 || decimalAt >= count;
}
// Unused as of ICU 2.6 - alan
// /**
// * Return true if the number represented by this object can fit into
// * a long.
// */
// boolean fitsIntoLong(boolean isPositive)
// {
// // Figure out if the result will fit in a long. We have to
// // first look for nonzero digits after the decimal point;
// // then check the size. If the digit count is 18 or less, then
// // the value can definitely be represented as a long. If it is 19
// // then it may be too large.
//
// // Trim trailing zeros. This does not change the represented value.
// while (count > 0 && digits[count - 1] == (byte)'0') --count;
//
// if (count == 0) {
// // Positive zero fits into a long, but negative zero can only
// // be represented as a double. - bug 4162852
// return isPositive;
// }
//
// if (decimalAt < count || decimalAt > MAX_LONG_DIGITS) return false;
//
// if (decimalAt < MAX_LONG_DIGITS) return true;
//
// // At this point we have decimalAt == count, and count == MAX_LONG_DIGITS.
// // The number will overflow if it is larger than 9223372036854775807
// // or smaller than -9223372036854775808.
// for (int i=0; i<count; ++i)
// {
// byte dig = digits[i], max = LONG_MIN_REP[i];
// if (dig > max) return false;
// if (dig < max) return true;
// }
//
// // At this point the first count digits match. If decimalAt is less
// // than count, then the remaining digits are zero, and we return true.
// if (count < decimalAt) return true;
//
// // Now we have a representation of Long.MIN_VALUE, without the leading
// // negative sign. If this represents a positive value, then it does
// // not fit; otherwise it fits.
// return !isPositive;
// }
// Unused as of ICU 2.6 - alan
// /**
// * Set the digit list to a representation of the given double value.
// * This method supports fixed-point notation.
// * @param source Value to be converted; must not be Inf, -Inf, Nan,
// * or a value <= 0.
// * @param maximumFractionDigits The most fractional digits which should
// * be converted.
// */
// public final void set(double source, int maximumFractionDigits)
// {
// set(source, maximumFractionDigits, true);
// }
/**
* Set the digit list to a representation of the given double value.
* This method supports both fixed-point and exponential notation.
* @param source Value to be converted; must not be Inf, -Inf, Nan,
* or a value <= 0.
* @param maximumDigits The most fractional or total digits which should
* be converted.
* @param fixedPoint If true, then maximumDigits is the maximum
* fractional digits to be converted. If false, total digits.
*/
final void set(double source, int maximumDigits, boolean fixedPoint)
{
if (source == 0) source = 0;
// Generate a representation of the form DDDDD, DDDDD.DDDDD, or
// DDDDDE+/-DDDDD.
String rep = Double.toString(source);
set(rep, MAX_LONG_DIGITS);
if (fixedPoint) {
// The negative of the exponent represents the number of leading
// zeros between the decimal and the first non-zero digit, for
// a value < 0.1 (e.g., for 0.00123, -decimalAt == 2). If this
// is more than the maximum fraction digits, then we have an underflow
// for the printed representation.
if (-decimalAt > maximumDigits) {
count = 0;
return;
} else if (-decimalAt == maximumDigits) {
if (shouldRoundUp(0)) {
count = 1;
++decimalAt;
digits[0] = (byte)'1';
} else {
count = 0;
}
return;
}
// else fall through
}
// Eliminate trailing zeros.
while (count > 1 && digits[count - 1] == '0')
--count;
// Eliminate digits beyond maximum digits to be displayed.
// Round up if appropriate.
round(fixedPoint ? (maximumDigits + decimalAt) : maximumDigits == 0 ? -1 : maximumDigits);
}
/**
* Given a string representation of the form DDDDD, DDDDD.DDDDD,
* or DDDDDE+/-DDDDD, set this object's value to it. Ignore
* any leading '-'.
*/
private void set(String rep, int maxCount) {
decimalAt = -1;
count = 0;
int exponent = 0;
// Number of zeros between decimal point and first non-zero digit after
// decimal point, for numbers < 1.
int leadingZerosAfterDecimal = 0;
boolean nonZeroDigitSeen = false;
// Skip over leading '-'
int i=0;
if (rep.charAt(i) == '-') {
++i;
}
for (; i < rep.length(); ++i) {
char c = rep.charAt(i);
if (c == '.') {
decimalAt = count;
} else if (c == 'e' || c == 'E') {
++i;
// Integer.parseInt doesn't handle leading '+' signs
if (rep.charAt(i) == '+') {
++i;
}
exponent = Integer.valueOf(rep.substring(i)).intValue();
break;
} else if (count < maxCount) {
if (!nonZeroDigitSeen) {
nonZeroDigitSeen = (c != '0');
if (!nonZeroDigitSeen && decimalAt != -1) {
++leadingZerosAfterDecimal;
}
}
if (nonZeroDigitSeen) {
ensureCapacity(count+1, count);
digits[count++] = (byte)c;
}
}
}
if (decimalAt == -1) {
decimalAt = count;
}
decimalAt += exponent - leadingZerosAfterDecimal;
}
/**
* Return true if truncating the representation to the given number
* of digits will result in an increment to the last digit. This
* method implements half-even rounding, the default rounding mode.
* [bnf]
* @param maximumDigits the number of digits to keep, from 0 to
* <code>count-1</code>. If 0, then all digits are rounded away, and
* this method returns true if a one should be generated (e.g., formatting
* 0.09 with "#.#").
* @return true if digit <code>maximumDigits-1</code> should be
* incremented
*/
private boolean shouldRoundUp(int maximumDigits) {
// variable not used boolean increment = false;
// Implement IEEE half-even rounding
/*Bug 4243108
format(0.0) gives "0.1" if preceded by parse("99.99") [Richard/GCL]
*/
if (maximumDigits < count) {
if (digits[maximumDigits] > '5') {
return true;
} else if (digits[maximumDigits] == '5' ) {
for (int i=maximumDigits+1; i<count; ++i) {
if (digits[i] != '0') {
return true;
}
}
return maximumDigits > 0 && (digits[maximumDigits-1] % 2 != 0);
}
}
return false;
}
/**
* Round the representation to the given number of digits.
* @param maximumDigits The maximum number of digits to be shown.
* Upon return, count will be less than or equal to maximumDigits.
* This now performs rounding when maximumDigits is 0, formerly it did not.
*/
public final void round(int maximumDigits) {
// Eliminate digits beyond maximum digits to be displayed.
// Round up if appropriate.
// [bnf] rewritten to fix 4179818
if (maximumDigits >= 0 && maximumDigits < count) {
if (shouldRoundUp(maximumDigits)) {
// Rounding up involves incrementing digits from LSD to MSD.
// In most cases this is simple, but in a worst case situation
// (9999..99) we have to adjust the decimalAt value.
for (;;)
{
--maximumDigits;
if (maximumDigits < 0)
{
// We have all 9's, so we increment to a single digit
// of one and adjust the exponent.
digits[0] = (byte) '1';
++decimalAt;
maximumDigits = 0; // Adjust the count
break;
}
++digits[maximumDigits];
if (digits[maximumDigits] <= '9') break;
// digits[maximumDigits] = '0'; // Unnecessary since we'll truncate this
}
++maximumDigits; // Increment for use as count
}
count = maximumDigits;
/*Bug 4217661 DecimalFormat formats 1.001 to "1.00" instead of "1"
Eliminate trailing zeros. [Richard/GCL]
*/
while (count > 1 && digits[count-1] == '0') {
--count;
} //[Richard/GCL]
}
}
/**
* Utility routine to set the value of the digit list from a long
*/
public final void set(long source)
{
set(source, 0);
}
/**
* Set the digit list to a representation of the given long value.
* @param source Value to be converted; must be >= 0 or ==
* Long.MIN_VALUE.
* @param maximumDigits The most digits which should be converted.
* If maximumDigits is lower than the number of significant digits
* in source, the representation will be rounded. Ignored if <= 0.
*/
public final void set(long source, int maximumDigits)
{
// This method does not expect a negative number. However,
// "source" can be a Long.MIN_VALUE (-9223372036854775808),
// if the number being formatted is a Long.MIN_VALUE. In that
// case, it will be formatted as -Long.MIN_VALUE, a number
// which is outside the legal range of a long, but which can
// be represented by DigitList.
// [NEW] Faster implementation
if (source <= 0) {
if (source == Long.MIN_VALUE) {
decimalAt = count = MAX_LONG_DIGITS;
System.arraycopy(LONG_MIN_REP, 0, digits, 0, count);
} else {
count = 0;
decimalAt = 0;
}
} else {
int left = MAX_LONG_DIGITS;
int right;
while (source > 0) {
digits[--left] = (byte) (((long) '0') + (source % 10));
source /= 10;
}
decimalAt = MAX_LONG_DIGITS-left;
// Don't copy trailing zeros
// we are guaranteed that there is at least one non-zero digit,
// so we don't have to check lower bounds
for (right = MAX_LONG_DIGITS - 1; digits[right] == (byte) '0'; --right) {}
count = right - left + 1;
System.arraycopy(digits, left, digits, 0, count);
}
if (maximumDigits > 0) round(maximumDigits);
}
/**
* Set the digit list to a representation of the given BigInteger value.
* [bnf]
* @param source Value to be converted
* @param maximumDigits The most digits which should be converted.
* If maximumDigits is lower than the number of significant digits
* in source, the representation will be rounded. Ignored if <= 0.
*/
public final void set(BigInteger source, int maximumDigits) {
String stringDigits = source.toString();
count = decimalAt = stringDigits.length();
// Don't copy trailing zeros
while (count > 1 && stringDigits.charAt(count - 1) == '0') --count;
int offset = 0;
if (stringDigits.charAt(0) == '-') {
++offset;
--count;
--decimalAt;
}
ensureCapacity(count, 0);
for (int i = 0; i < count; ++i) {
digits[i] = (byte) stringDigits.charAt(i + offset);
}
if (maximumDigits > 0) round(maximumDigits);
}
/**
* Internal method that sets this digit list to represent the
* given value. The value is given as a String of the format
* returned by BigDecimal.
* @param stringDigits value to be represented with the following
* syntax, expressed as a regular expression: -?\d*.?\d*
* Must not be an empty string.
* @param maximumDigits The most digits which should be converted.
* If maximumDigits is lower than the number of significant digits
* in source, the representation will be rounded. Ignored if <= 0.
* @param fixedPoint If true, then maximumDigits is the maximum
* fractional digits to be converted. If false, total digits.
*/
private void setBigDecimalDigits(String stringDigits,
int maximumDigits, boolean fixedPoint) {
//| // Find the first non-zero digit, the decimal, and the last non-zero digit.
//| int first=-1, last=stringDigits.length()-1, decimal=-1;
//| for (int i=0; (first<0 || decimal<0) && i<=last; ++i) {
//| char c = stringDigits.charAt(i);
//| if (c == '.') {
//| decimal = i;
//| } else if (first < 0 && (c >= '1' && c <= '9')) {
//| first = i;
//| }
//| }
//|
//| if (first < 0) {
//| clear();
//| return;
//| }
//|
//| // At this point we know there is at least one non-zero digit, so the
//| // following loop is safe.
//| for (;;) {
//| char c = stringDigits.charAt(last);
//| if (c != '0' && c != '.') {
//| break;
//| }
//| --last;
//| }
//|
//| if (decimal < 0) {
//| decimal = stringDigits.length();
//| }
//|
//| count = last - first;
//| if (decimal < first || decimal > last) {
//| ++count;
//| }
//| decimalAt = decimal - first;
//| if (decimalAt < 0) {
//| ++decimalAt;
//| }
//|
//| ensureCapacity(count, 0);
//| for (int i = 0; i < count; ++i) {
//| digits[i] = (byte) stringDigits.charAt(first++);
//| if (first == decimal) {
//| ++first;
//| }
//| }
// The maxDigits here could also be Integer.MAX_VALUE
set(stringDigits, stringDigits.length());
// Eliminate digits beyond maximum digits to be displayed.
// Round up if appropriate.
// {dlf} Some callers depend on passing '0' to round to mean 'don't round', but
// rather than pass that information explicitly, we rely on some magic with maximumDigits
// and decimalAt. Unfortunately, this is no good, because there are cases where maximumDigits
// is zero and we do want to round, e.g. BigDecimal values -1 < x < 1. So since round
// changed to perform rounding when the argument is 0, we now force the argument
// to -1 in the situations where it matters.
round(fixedPoint ? (maximumDigits + decimalAt) : maximumDigits == 0 ? -1 : maximumDigits);
}
//#ifndef FOUNDATION
/**
* Set the digit list to a representation of the given BigDecimal value.
* [bnf]
* @param source Value to be converted
* @param maximumDigits The most digits which should be converted.
* If maximumDigits is lower than the number of significant digits
* in source, the representation will be rounded. Ignored if <= 0.
* @param fixedPoint If true, then maximumDigits is the maximum
* fractional digits to be converted. If false, total digits.
*/
public final void set(java.math.BigDecimal source,
int maximumDigits, boolean fixedPoint) {
setBigDecimalDigits(source.toString(), maximumDigits, fixedPoint);
}
//#endif
/*
* Set the digit list to a representation of the given BigDecimal value.
* [bnf]
* @param source Value to be converted
* @param maximumDigits The most digits which should be converted.
* If maximumDigits is lower than the number of significant digits
* in source, the representation will be rounded. Ignored if <= 0.
* @param fixedPoint If true, then maximumDigits is the maximum
* fractional digits to be converted. If false, total digits.
*/
public final void set(com.ibm.icu.math.BigDecimal source,
int maximumDigits, boolean fixedPoint) {
setBigDecimalDigits(source.toString(), maximumDigits, fixedPoint);
}
/**
* Returns true if this DigitList represents Long.MIN_VALUE;
* false, otherwise. This is required so that getLong() works.
*/
private boolean isLongMIN_VALUE()
{
if (decimalAt != count || count != MAX_LONG_DIGITS)
return false;
for (int i = 0; i < count; ++i)
{
if (digits[i] != LONG_MIN_REP[i]) return false;
}
return true;
}
private static byte[] LONG_MIN_REP;
static
{
// Store the representation of LONG_MIN without the leading '-'
String s = Long.toString(Long.MIN_VALUE);
LONG_MIN_REP = new byte[MAX_LONG_DIGITS];
for (int i=0; i < MAX_LONG_DIGITS; ++i)
{
LONG_MIN_REP[i] = (byte)s.charAt(i + 1);
}
}
// Unused -- Alan 2003-05
// /**
// * Return the floor of the log base 10 of a given double.
// * This method compensates for inaccuracies which arise naturally when
// * computing logs, and always give the correct value. The parameter
// * must be positive and finite.
// */
// private static final int log10(double d)
// {
// // The reason this routine is needed is that simply taking the
// // log and dividing by log10 yields a result which may be off
// // by 1 due to rounding errors. For example, the naive log10
// // of 1.0e300 taken this way is 299, rather than 300.
// double log10 = Math.log(d) / LOG10;
// int ilog10 = (int)Math.floor(log10);
// // Positive logs could be too small, e.g. 0.99 instead of 1.0
// if (log10 > 0 && d >= Math.pow(10, ilog10 + 1))
// {
// ++ilog10;
// }
// // Negative logs could be too big, e.g. -0.99 instead of -1.0
// else if (log10 < 0 && d < Math.pow(10, ilog10))
// {
// --ilog10;
// }
// return ilog10;
// }
//
// private static final double LOG10 = Math.log(10.0);
// (The following boilerplate methods are currently not called,
// and cannot be called by tests since this class is
// package-private. The methods may be useful in the future, so
// we do not delete them. 2003-06-11 ICU 2.6 Alan)
///CLOVER:OFF
/**
* equality test between two digit lists.
*/
public boolean equals(Object obj) {
if (this == obj) // quick check
return true;
if (!(obj instanceof DigitList)) // (1) same object?
return false;
DigitList other = (DigitList) obj;
if (count != other.count ||
decimalAt != other.decimalAt)
return false;
for (int i = 0; i < count; i++)
if (digits[i] != other.digits[i])
return false;
return true;
}
/**
* Generates the hash code for the digit list.
*/
public int hashCode() {
int hashcode = decimalAt;
for (int i = 0; i < count; i++)
hashcode = hashcode * 37 + digits[i];
return hashcode;
}
public String toString()
{
if (isZero()) return "0";
StringBuffer buf = new StringBuffer("0.");
for (int i=0; i<count; ++i) buf.append((char)digits[i]);
buf.append("x10^");
buf.append(decimalAt);
return buf.toString();
}
///CLOVER:ON
}