blob: 1449c0f84dbefc0a91d2c79deee12078d09eb6d0 [file] [log] [blame]
/*
*******************************************************************************
* Copyright (C) 1996-2000, International Business Machines Corporation and *
* others. All Rights Reserved. *
*******************************************************************************
*
* $Source: /xsrl/Nsvn/icu/icu4j/src/com/ibm/util/Attic/Utility.java,v $
* $Date: 2001/01/09 20:07:16 $
* $Revision: 1.5 $
*
*****************************************************************************************
*/
package com.ibm.util;
public final class Utility {
/**
* Convenience utility to compare two Object[]s.
* Ought to be in System
*/
public final static boolean arrayEquals(Object[] source, Object target) {
if (source == null) return (target == null);
if (!(target instanceof Object[])) return false;
Object[] targ = (Object[]) target;
return (source.length == targ.length
&& arrayRegionMatches(source, 0, targ, 0, source.length));
}
/**
* Convenience utility to compare two int[]s
* Ought to be in System
*/
public final static boolean arrayEquals(int[] source, Object target) {
if (source == null) return (target == null);
if (!(target instanceof int[])) return false;
int[] targ = (int[]) target;
return (source.length == targ.length
&& arrayRegionMatches(source, 0, targ, 0, source.length));
}
/**
* Convenience utility to compare two double[]s
* Ought to be in System
*/
public final static boolean arrayEquals(double[] source, Object target) {
if (source == null) return (target == null);
if (!(target instanceof double[])) return false;
double[] targ = (double[]) target;
return (source.length == targ.length
&& arrayRegionMatches(source, 0, targ, 0, source.length));
}
/**
* Convenience utility to compare two Object[]s
* Ought to be in System
*/
public final static boolean arrayEquals(Object source, Object target) {
if (source == null) return (target == null);
// for some reason, the correct arrayEquals is not being called
// so do it by hand for now.
if (source instanceof Object[])
return(arrayEquals((Object[]) source,target));
if (source instanceof int[])
return(arrayEquals((int[]) source,target));
if (source instanceof double[])
return(arrayEquals((int[]) source,target));
return source.equals(target);
}
/**
* Convenience utility to compare two Object[]s
* Ought to be in System.
* @param len the length to compare.
* The start indices and start+len must be valid.
*/
public final static boolean arrayRegionMatches(Object[] source, int sourceStart,
Object[] target, int targetStart,
int len)
{
int sourceEnd = sourceStart + len;
int delta = targetStart - sourceStart;
for (int i = sourceStart; i < sourceEnd; i++) {
if (!arrayEquals(source[i],target[i + delta]))
return false;
}
return true;
}
/**
* Convenience utility to compare two int[]s.
* @param len the length to compare.
* The start indices and start+len must be valid.
* Ought to be in System
*/
public final static boolean arrayRegionMatches(int[] source, int sourceStart,
int[] target, int targetStart,
int len)
{
int sourceEnd = sourceStart + len;
int delta = targetStart - sourceStart;
for (int i = sourceStart; i < sourceEnd; i++) {
if (source[i] != target[i + delta])
return false;
}
return true;
}
/**
* Convenience utility to compare two arrays of doubles.
* @param len the length to compare.
* The start indices and start+len must be valid.
* Ought to be in System
*/
public final static boolean arrayRegionMatches(double[] source, int sourceStart,
double[] target, int targetStart,
int len)
{
int sourceEnd = sourceStart + len;
int delta = targetStart - sourceStart;
for (int i = sourceStart; i < sourceEnd; i++) {
if (source[i] != target[i + delta])
return false;
}
return true;
}
/**
* Convenience utility. Does null checks on objects, then calls equals.
*/
public final static boolean objectEquals(Object source, Object target) {
if (source == null)
return (target == null);
else
return source.equals(target);
}
/**
* The ESCAPE character is used during run-length encoding. It signals
* a run of identical chars.
*/
private static final char ESCAPE = '\uA5A5';
/**
* The ESCAPE_BYTE character is used during run-length encoding. It signals
* a run of identical bytes.
*/
static final byte ESCAPE_BYTE = (byte)0xA5;
/**
* Construct a string representing an int array. Use run-length encoding.
* A character represents itself, unless it is the ESCAPE character. Then
* the following notations are possible:
* ESCAPE ESCAPE ESCAPE literal
* ESCAPE n c n instances of character c
* Since an encoded run occupies 3 characters, we only encode runs of 4 or
* more characters. Thus we have n > 0 and n != ESCAPE and n <= 0xFFFF.
* If we encounter a run where n == ESCAPE, we represent this as:
* c ESCAPE n-1 c
* The ESCAPE value is chosen so as not to collide with commonly
* seen values.
*/
static public final String arrayToRLEString(int[] a) {
StringBuffer buffer = new StringBuffer();
appendInt(buffer, a.length);
int runValue = a[0];
int runLength = 1;
for (int i=1; i<a.length; ++i) {
int s = a[i];
if (s == runValue && runLength < 0xFFFF) {
++runLength;
} else {
encodeRun(buffer, runValue, runLength);
runValue = s;
runLength = 1;
}
}
encodeRun(buffer, runValue, runLength);
return buffer.toString();
}
/**
* Construct a string representing a short array. Use run-length encoding.
* A character represents itself, unless it is the ESCAPE character. Then
* the following notations are possible:
* ESCAPE ESCAPE ESCAPE literal
* ESCAPE n c n instances of character c
* Since an encoded run occupies 3 characters, we only encode runs of 4 or
* more characters. Thus we have n > 0 and n != ESCAPE and n <= 0xFFFF.
* If we encounter a run where n == ESCAPE, we represent this as:
* c ESCAPE n-1 c
* The ESCAPE value is chosen so as not to collide with commonly
* seen values.
*/
static public final String arrayToRLEString(short[] a) {
StringBuffer buffer = new StringBuffer();
// for (int i=0; i<a.length; ++i) buffer.append((char) a[i]);
buffer.append((char) (a.length >> 16));
buffer.append((char) a.length);
short runValue = a[0];
int runLength = 1;
for (int i=1; i<a.length; ++i) {
short s = a[i];
if (s == runValue && runLength < 0xFFFF) ++runLength;
else {
encodeRun(buffer, runValue, runLength);
runValue = s;
runLength = 1;
}
}
encodeRun(buffer, runValue, runLength);
return buffer.toString();
}
/**
* Construct a string representing a char array. Use run-length encoding.
* A character represents itself, unless it is the ESCAPE character. Then
* the following notations are possible:
* ESCAPE ESCAPE ESCAPE literal
* ESCAPE n c n instances of character c
* Since an encoded run occupies 3 characters, we only encode runs of 4 or
* more characters. Thus we have n > 0 and n != ESCAPE and n <= 0xFFFF.
* If we encounter a run where n == ESCAPE, we represent this as:
* c ESCAPE n-1 c
* The ESCAPE value is chosen so as not to collide with commonly
* seen values.
*/
static public final String arrayToRLEString(char[] a) {
StringBuffer buffer = new StringBuffer();
buffer.append((char) (a.length >> 16));
buffer.append((char) a.length);
char runValue = a[0];
int runLength = 1;
for (int i=1; i<a.length; ++i) {
char s = a[i];
if (s == runValue && runLength < 0xFFFF) ++runLength;
else {
encodeRun(buffer, (short)runValue, runLength);
runValue = s;
runLength = 1;
}
}
encodeRun(buffer, (short)runValue, runLength);
return buffer.toString();
}
/**
* Construct a string representing a byte array. Use run-length encoding.
* Two bytes are packed into a single char, with a single extra zero byte at
* the end if needed. A byte represents itself, unless it is the
* ESCAPE_BYTE. Then the following notations are possible:
* ESCAPE_BYTE ESCAPE_BYTE ESCAPE_BYTE literal
* ESCAPE_BYTE n b n instances of byte b
* Since an encoded run occupies 3 bytes, we only encode runs of 4 or
* more bytes. Thus we have n > 0 and n != ESCAPE_BYTE and n <= 0xFF.
* If we encounter a run where n == ESCAPE_BYTE, we represent this as:
* b ESCAPE_BYTE n-1 b
* The ESCAPE_BYTE value is chosen so as not to collide with commonly
* seen values.
*/
static public final String arrayToRLEString(byte[] a) {
StringBuffer buffer = new StringBuffer();
buffer.append((char) (a.length >> 16));
buffer.append((char) a.length);
byte runValue = a[0];
int runLength = 1;
byte[] state = new byte[2];
for (int i=1; i<a.length; ++i) {
byte b = a[i];
if (b == runValue && runLength < 0xFF) ++runLength;
else {
encodeRun(buffer, runValue, runLength, state);
runValue = b;
runLength = 1;
}
}
encodeRun(buffer, runValue, runLength, state);
// We must save the final byte, if there is one, by padding
// an extra zero.
if (state[0] != 0) appendEncodedByte(buffer, (byte)0, state);
return buffer.toString();
}
/**
* Encode a run, possibly a degenerate run (of < 4 values).
* @param length The length of the run; must be > 0 && <= 0xFFFF.
*/
private static final void encodeRun(StringBuffer buffer, int value, int length) {
if (length < 4) {
for (int j=0; j<length; ++j) {
if (value == ESCAPE) {
appendInt(buffer, value);
}
appendInt(buffer, value);
}
}
else {
if (length == (int) ESCAPE) {
if (value == (int) ESCAPE) {
appendInt(buffer, ESCAPE);
}
appendInt(buffer, value);
--length;
}
appendInt(buffer, ESCAPE);
appendInt(buffer, length);
appendInt(buffer, value); // Don't need to escape this value
}
}
private static final void appendInt(StringBuffer buffer, int value) {
buffer.append((char)(value >>> 16));
buffer.append((char)(value & 0xFFFF));
}
/**
* Encode a run, possibly a degenerate run (of < 4 values).
* @param length The length of the run; must be > 0 && <= 0xFFFF.
*/
private static final void encodeRun(StringBuffer buffer, short value, int length) {
if (length < 4) {
for (int j=0; j<length; ++j) {
if (value == (int) ESCAPE) buffer.append(ESCAPE);
buffer.append((char) value);
}
}
else {
if (length == (int) ESCAPE) {
if (value == (int) ESCAPE) buffer.append(ESCAPE);
buffer.append((char) value);
--length;
}
buffer.append(ESCAPE);
buffer.append((char) length);
buffer.append((char) value); // Don't need to escape this value
}
}
/**
* Encode a run, possibly a degenerate run (of < 4 values).
* @param length The length of the run; must be > 0 && <= 0xFF.
*/
private static final void encodeRun(StringBuffer buffer, byte value, int length,
byte[] state) {
if (length < 4) {
for (int j=0; j<length; ++j) {
if (value == ESCAPE_BYTE) appendEncodedByte(buffer, ESCAPE_BYTE, state);
appendEncodedByte(buffer, value, state);
}
}
else {
if (length == ESCAPE_BYTE) {
if (value == ESCAPE_BYTE) appendEncodedByte(buffer, ESCAPE_BYTE, state);
appendEncodedByte(buffer, value, state);
--length;
}
appendEncodedByte(buffer, ESCAPE_BYTE, state);
appendEncodedByte(buffer, (byte)length, state);
appendEncodedByte(buffer, value, state); // Don't need to escape this value
}
}
/**
* Append a byte to the given StringBuffer, packing two bytes into each
* character. The state parameter maintains intermediary data between
* calls.
* @param state A two-element array, with state[0] == 0 if this is the
* first byte of a pair, or state[0] != 0 if this is the second byte
* of a pair, in which case state[1] is the first byte.
*/
private static final void appendEncodedByte(StringBuffer buffer, byte value,
byte[] state) {
if (state[0] != 0) {
char c = (char) ((state[1] << 8) | (((int) value) & 0xFF));
buffer.append(c);
state[0] = 0;
}
else {
state[0] = 1;
state[1] = value;
}
}
/**
* Construct an array of ints from a run-length encoded string.
*/
static public final int[] RLEStringToIntArray(String s) {
int length = getInt(s, 0);
int[] array = new int[length];
int ai = 0, i = 1;
int maxI = s.length() / 2;
while (ai < length && i < maxI) {
int c = getInt(s, i++);
if (c == ESCAPE) {
c = getInt(s, i++);
if (c == ESCAPE) {
array[ai++] = c;
} else {
int runLength = c;
int runValue = getInt(s, i++);
for (int j=0; j<runLength; ++j) {
array[ai++] = runValue;
}
}
}
else {
array[ai++] = c;
}
}
if (ai != length || i != maxI) {
throw new InternalError("Bad run-length encoded int array");
}
return array;
}
static final int getInt(String s, int i) {
return (((int) s.charAt(2*i)) << 16) | (int) s.charAt(2*i+1);
}
/**
* Construct an array of shorts from a run-length encoded string.
*/
static public final short[] RLEStringToShortArray(String s) {
int length = (((int) s.charAt(0)) << 16) | ((int) s.charAt(1));
short[] array = new short[length];
int ai = 0;
for (int i=2; i<s.length(); ++i) {
char c = s.charAt(i);
if (c == ESCAPE) {
c = s.charAt(++i);
if (c == ESCAPE) {
array[ai++] = (short) c;
} else {
int runLength = (int) c;
short runValue = (short) s.charAt(++i);
for (int j=0; j<runLength; ++j) array[ai++] = runValue;
}
}
else {
array[ai++] = (short) c;
}
}
if (ai != length)
throw new InternalError("Bad run-length encoded short array");
return array;
}
/**
* Construct an array of shorts from a run-length encoded string.
*/
static public final char[] RLEStringToCharArray(String s) {
int length = (((int) s.charAt(0)) << 16) | ((int) s.charAt(1));
char[] array = new char[length];
int ai = 0;
for (int i=2; i<s.length(); ++i) {
char c = s.charAt(i);
if (c == ESCAPE) {
c = s.charAt(++i);
if (c == ESCAPE) {
array[ai++] = c;
} else {
int runLength = (int) c;
char runValue = s.charAt(++i);
for (int j=0; j<runLength; ++j) array[ai++] = runValue;
}
}
else {
array[ai++] = c;
}
}
if (ai != length)
throw new InternalError("Bad run-length encoded short array");
return array;
}
/**
* Construct an array of bytes from a run-length encoded string.
*/
static public final byte[] RLEStringToByteArray(String s) {
int length = (((int) s.charAt(0)) << 16) | ((int) s.charAt(1));
byte[] array = new byte[length];
boolean nextChar = true;
char c = 0;
int node = 0;
int runLength = 0;
int i = 2;
for (int ai=0; ai<length; ) {
// This part of the loop places the next byte into the local
// variable 'b' each time through the loop. It keeps the
// current character in 'c' and uses the boolean 'nextChar'
// to see if we've taken both bytes out of 'c' yet.
byte b;
if (nextChar) {
c = s.charAt(i++);
b = (byte) (c >> 8);
nextChar = false;
}
else {
b = (byte) (c & 0xFF);
nextChar = true;
}
// This part of the loop is a tiny state machine which handles
// the parsing of the run-length encoding. This would be simpler
// if we could look ahead, but we can't, so we use 'node' to
// move between three nodes in the state machine.
switch (node) {
case 0:
// Normal idle node
if (b == ESCAPE_BYTE) {
node = 1;
}
else {
array[ai++] = b;
}
break;
case 1:
// We have seen one ESCAPE_BYTE; we expect either a second
// one, or a run length and value.
if (b == ESCAPE_BYTE) {
array[ai++] = ESCAPE_BYTE;
node = 0;
}
else {
runLength = b;
// Interpret signed byte as unsigned
if (runLength < 0) runLength += 0x100;
node = 2;
}
break;
case 2:
// We have seen an ESCAPE_BYTE and length byte. We interpret
// the next byte as the value to be repeated.
for (int j=0; j<runLength; ++j) array[ai++] = b;
node = 0;
break;
}
}
if (node != 0)
throw new InternalError("Bad run-length encoded byte array");
if (i != s.length())
throw new InternalError("Excess data in RLE byte array string");
return array;
}
static public String LINE_SEPARATOR = System.getProperty("line.separator");
/**
* Format a String for representation in a source file. This includes
* breaking it into lines and escaping characters using octal notation
* when necessary (control characters and double quotes).
*/
static public final String formatForSource(String s) {
StringBuffer buffer = new StringBuffer();
for (int i=0; i<s.length();) {
if (i > 0) buffer.append('+').append(LINE_SEPARATOR);
buffer.append(" \"");
int count = 11;
while (i<s.length() && count<80) {
char c = s.charAt(i++);
if (c < '\u0020' || c == '"' || c == '\\') {
// Represent control characters, backslash and double quote
// using octal notation; otherwise the string we form
// won't compile, since Unicode escape sequences are
// processed before tokenization.
buffer.append('\\');
buffer.append(HEX_DIGIT[(c & 0700) >> 6]); // HEX_DIGIT works for octal
buffer.append(HEX_DIGIT[(c & 0070) >> 3]);
buffer.append(HEX_DIGIT[(c & 0007)]);
count += 4;
}
else if (c <= '\u007E') {
buffer.append(c);
count += 1;
}
else {
buffer.append("\\u");
buffer.append(HEX_DIGIT[(c & 0xF000) >> 12]);
buffer.append(HEX_DIGIT[(c & 0x0F00) >> 8]);
buffer.append(HEX_DIGIT[(c & 0x00F0) >> 4]);
buffer.append(HEX_DIGIT[(c & 0x000F)]);
count += 6;
}
}
buffer.append('"');
}
return buffer.toString();
}
static final char[] HEX_DIGIT = {'0','1','2','3','4','5','6','7',
'8','9','A','B','C','D','E','F'};
/**
* Convert characters outside the range U+0020 to U+007F to
* Unicode escapes, and convert backslash to a double backslash.
*/
public static final String escape(String s) {
StringBuffer buf = new StringBuffer();
for (int i=0; i<s.length(); ++i) {
char c = s.charAt(i);
if (c >= ' ' && c <= 0x007F) {
if (c == '\\') {
buf.append("\\\\"); // That is, "\\"
} else {
buf.append(c);
}
} else {
buf.append("\\u");
if (c < 0x1000) {
buf.append('0');
if (c < 0x100) {
buf.append('0');
if (c < 0x10) {
buf.append('0');
}
}
}
buf.append(Integer.toHexString(c));
}
}
return buf.toString();
}
/**
* Convert a char to 4 hex uppercase digits. E.g., hex('a') =>
* "0041".
*/
public static String hex(char ch) {
StringBuffer temp = new StringBuffer();
return hex(ch, temp).toString();
}
/**
* Convert a string to comma-separated groups of 4 hex uppercase
* digits. E.g., hex('ab') => "0041,0042".
*/
public static String hex(String s) {
StringBuffer temp = new StringBuffer();
return hex(s, temp).toString();
}
/**
* Convert a string to comma-separated groups of 4 hex uppercase
* digits. E.g., hex('ab') => "0041,0042".
*/
public static String hex(StringBuffer s) {
return hex(s.toString());
}
/**
* Convert a char to 4 hex uppercase digits. E.g., hex('a') =>
* "0041". Append the output to the given StringBuffer.
*/
public static StringBuffer hex(char ch, StringBuffer output) {
String foo = Integer.toString(ch,16).toUpperCase();
for (int i = foo.length(); i < 4; ++i) {
output.append('0');
}
output.append(foo);
return output;
}
/**
* Convert a string to comma-separated groups of 4 hex uppercase
* digits. E.g., hex('ab') => "0041,0042". Append the output
* to the given StringBuffer.
*/
public static StringBuffer hex(String s, StringBuffer result) {
for (int i = 0; i < s.length(); ++i) {
if (i != 0) result.append(',');
hex(s.charAt(i), result);
}
return result;
}
/**
* Split a string into pieces based on the given divider character
* @param s the string to split
* @param divider the character on which to split. Occurrences of
* this character are not included in the output
* @param output an array to receive the substrings between
* instances of divider. It must be large enough on entry to
* accomodate all output. Adjacent instances of the divider
* character will place empty strings into output. Before
* returning, output is padded out with empty strings.
*/
public static void split(String s, char divider, String[] output) {
int last = 0;
int current = 0;
int i;
for (i = 0; i < s.length(); ++i) {
if (s.charAt(i) == divider) {
output[current++] = s.substring(last,i);
last = i+1;
}
}
output[current++] = s.substring(last,i);
while (current < output.length) {
output[current++] = "";
}
}
/**
* Look up a given string in a string array. Returns the index at
* which the first occurrence of the string was found in the
* array, or -1 if it was not found.
* @param source the string to search for
* @param target the array of zero or more strings in which to
* look for source
* @return the index of target at which source first occurs, or -1
* if not found
*/
public static int lookup(String source, String[] target) {
for (int i = 0; i < target.length; ++i) {
if (source.equals(target[i])) return i;
}
return -1;
}
}