blob: 3a61914ec44debb27eb40bd58056369ae3613716 [file] [log] [blame]
/*
*******************************************************************************
* Copyright (C) 2008-2011, International Business Machines Corporation and *
* others. All Rights Reserved. *
*******************************************************************************
*/
package com.ibm.icu.charset;
import java.nio.ByteBuffer;
import java.nio.CharBuffer;
import java.nio.IntBuffer;
import java.nio.charset.CharsetDecoder;
import java.nio.charset.CharsetEncoder;
import java.nio.charset.CoderResult;
import com.ibm.icu.charset.CharsetMBCS.CharsetDecoderMBCS;
import com.ibm.icu.charset.CharsetMBCS.CharsetEncoderMBCS;
import com.ibm.icu.text.UnicodeSet;
import com.ibm.icu.util.ULocale;
/**
* @author Michael Ow
*
*/
/*
* LMBCS
*
* (Lotus Multi-Byte Character Set)
*
* LMBS was invented in the alte 1980's and is primarily used in Lotus Notes
* databases and in Lotus 1-2-3 files. Programmers who work with the APIs
* into these products will sometimes need to deal with strings in this format.
*
* The code in this file provides an implementation for an ICU converter of
* LMBCS to and from Unicode.
*
* Since the LMBCS character set is only sparsely documented in existing
* printed or online material, we have added extensive annotation to this
* file to serve as a guide to understanding LMBCS.
*
* LMBCS was originally designed with these four sometimes-competing design goals:
* -Provide encodings for characters in 12 existing national standards
* (plus a few other characters)
* -Minimal memory footprint
* -Maximal speed of conversion into the existing national character sets
* -No need to track a changing state as you interpret a string.
*
* All of the national character sets LMBCS was trying to encode are 'ANSI'
* based, in that the bytes from 0x20 - 0x7F are almost exactly the
* same common Latin unaccented characters and symbols in all character sets.
*
* So, in order to help meet the speed & memory design goals, the common ANSI
* bytes from 0x20-0x7F are represented by the same single-byte values in LMBCS.
*/
class CharsetLMBCS extends CharsetICU {
/*
* The general LMBCS code unit is from 1-3 bytes. We can describe the 3 bytes as
* follows:
* [G] D1 [D2]
* That is, a sometimes-optional 'group' byte, followed by 1 and sometimes 2
* data bytes. The maximum size of a LMBCS character is 3 bytes:
*/
private static final short ULMBCS_CHARSIZE_MAX = 3;
/*
* The single-byte values from 0x20 to 0x7F are examples of single D1 bytes.
* We often have to figure out if byte values are below or above this, so we
* use the ANSI nomenclature 'C0' and 'C1' to refer to the range of control
* characters just above & below the common lower-ANSI range.
*/
private static final short ULMBCS_C0END = 0x1F;
private static final short ULMBCS_C1START = 0x80;
/*
* Most of the values less than 0x20 are reserved in LMBCS to announce
* which national character standard is being used for the 'D' bytes.
* In the comments we show that common name and the IBM character-set ID
* for these character-set announcers:
*/
private static final short ULMBCS_GRP_L1 = 0x01; /* Latin-1 :ibm-850 */
private static final short ULMBCS_GRP_GR = 0x02; /* Greek :ibm-851 */
private static final short ULMBCS_GRP_HE = 0x03; /* Hebrew :ibm-1255 */
private static final short ULMBCS_GRP_AR = 0x04; /* Arabic :ibm-1256 */
private static final short ULMBCS_GRP_RU = 0x05; /* Cyrillic :ibm-1251 */
private static final short ULMBCS_GRP_L2 = 0x06; /* Latin-2 :ibm-852 */
private static final short ULMBCS_GRP_TR = 0x08; /* Turkish :ibm-1254 */
private static final short ULMBCS_GRP_TH = 0x0B; /* Thai :ibm-874 */
private static final short ULMBCS_GRP_JA = 0x10; /* Japanese :ibm-943 */
private static final short ULMBCS_GRP_KO = 0x11; /* Korean :ibm-1261 */
private static final short ULMBCS_GRP_TW = 0x12; /* Chinese SC :ibm-950 */
private static final short ULMBCS_GRP_CN = 0x13; /* Chinese TC :ibm-1386 */
/*
* So, the beginnning of understanding LMBCS is that IF the first byte of a LMBCS
* character is one of those 12 values, you can interpret the remaining bytes of
* that character as coming from one of those character sets. Since the lower
* ANSI bytes already are represented in singl bytes, using one of the chracter
* set announcers is used to announce a character that starts with a byte of
* 0x80 or greater.
*
* The character sets are arranged so that the single byte sets all appear
* before the multi-byte character sets. When we need to tell whether a
* group byte is for a single byte char set or not we use this definition:
*/
private static final short ULMBCS_DOUBLEOPTGROUP_START = 0x10;
/*
* However, to fully understand LMBCS, you must also understand a series of
* exceptions & optimizations made in service of the design goals.
*
* First, those of you who are character set mavens may have noticed that
* the 'double-byte' character sets are actually multi-byte chracter sets
* that can have 1 or two bytes, even in upper-ascii range. To force
* each group byte to introduce a fixed-width encoding (to make it faster to
* count characters), we use a convention of doubling up on the group byte
* to introduce any single-byte character > 0x80 in an otherwise double-byte
* character set. So, for example, the LMBCS sequence x10 x10 xAE is the
* same as '0xAE' in the Japanese code page 943.
*
* Next, you will notice that the list of group bytes has some gaps.
* These are used in various ways.
*
* We reserve a few special single byte values for common control
* characters. These are in the same place as their ANSI equivalents for speed.
*/
private static final short ULMBCS_HT = 0x09; /* Fixed control-char - Horizontal Tab */
private static final short ULMBCS_LF = 0x0A; /* Fixed control-char - Line Feed */
private static final short ULMBCS_CR = 0x0D; /* Fixed control-char - Carriage Return */
/*
* Then, 1-2-3 reserved a special single-byte character to put at the
* beginning of internal 'system' range names:
*/
private static final short ULMBCS_123SYSTEMRANGE = 0x19;
/*
* Then we needed a place to put all the other ansi control characters
* that must be moved to different values because LMBCS reserves those
* values for other purposes. To represent the control characters, we start
* with a first byte of 0x0F & add the control character value as the
* second byte.
*/
private static final short ULMBCS_GRP_CTRL = 0x0F;
/*
* For the C0 controls (less than 0x20), we add 0x20 to preserve the
* useful doctrine that any byte less than 0x20 in a LMBCS char must be
* the first byte of a character:
*/
private static final short ULMBCS_CTRLOFFSET = 0x20;
/*
* Where to put the characters that aren't part of any of the 12 national
* character sets? The first thing that was done, in the earlier years of
* LMBCS, was to use up the spaces of the form
* [G] D1,
* where 'G' was one of the single-byte character groups, and
* D1 was less than 0x80. These sequences are gathered together
* into a Lotus-invented doublebyte character set to represent a
* lot of stray values. Internally, in this implementation, we track this
* as group '0', as a place to tuck this exceptions list.
*/
private static final short ULMBCS_GRP_EXCEPT = 0x00;
/*
* Finally, as the durability and usefulness of UNICODE became clear,
* LOTUS added a new group 0x14 to hold Unicode values not otherwise
* represented in LMBCS:
*/
private static final short ULMBCS_GRP_UNICODE = 0x14;
/*
* The two bytes appearing after a 0x14 are interpreted as UTF-16 BE
* (Big Endian) characters. The exception comes when UTF16
* representation would have a zero as the second byte. In that case,
* 'F6' is used in its place, and the bytes are swapped. (This prevents
* LMBCS from encoding any Unicode values of the form U+F6xx, but that's OK:
* 0xF6xx is in the middle of the Private Use Area.)
*/
private static char ULMBCS_UNICOMPATZERO = 0x00F6;
/*
* It is also useful in our code to have a constant for the size of
* a LMBCS char that holds a literal Unicode value.
*/
private static final short ULMBCS_UNICODE_SIZE = 3;
/*
* To squish the LMBCS representation down even further, and to make
* translations even faster, sometimes the optimization group byte can be dropped
* from a LMBCS character. This is decided on a process-by-process basis. The
* group byte that is dropped is called the 'optimization group.'
*
* For Notes, the optimization group is always 0x1.
*/
//private static final short ULMBCS_DEFAULTOPTGROUP = 0x01;
/* For 1-2-3 files, the optimization group is stored in the header of the 1-2-3
* file.
* In any case, when using ICU, you either pass in the
* optimization group as part of the name of the converter (LMBCS-1, LMBCS-2,
* etc.). Using plain 'LMBCS' as the name of the converter will give you
* LMBCS-1.
*/
/* Implementation strategy */
/*
* Because of the extensive use of other character sets, the LMBCS converter
* keeps a mapping between optimization groups and IBM character sets, so that
* ICU converters can be created and used as needed.
*
* As you can see, even though any byte below 0x20 could be an optimization
* byte, only those at 0x13 or below can map to an actual converter. To limit
* some loops and searches, we define a value for that last group converter:
*/
private static final short ULMBCS_GRP_LAST = 0x13; /* last LMBCS group that has a converter */
private static final String[] OptGroupByteToCPName = {
/* 0x0000 */ "lmb-excp", /* internal home for the LOTUS exceptions list */
/* 0x0001 */ "ibm-850",
/* 0x0002 */ "ibm-851",
/* 0x0003 */ "windows-1255",
/* 0x0004 */ "windows-1256",
/* 0x0005 */ "windows-1251",
/* 0x0006 */ "ibm-852",
/* 0x0007 */ null, /* Unused */
/* 0x0008 */ "windows-1254",
/* 0x0009 */ null, /* Control char HT */
/* 0x000A */ null, /* Control char LF */
/* 0x000B */ "windows-874",
/* 0x000C */ null, /* Unused */
/* 0x000D */ null, /* Control char CR */
/* 0x000E */ null, /* Unused */
/* 0x000F */ null, /* Control chars: 0x0F20 + C0/C1 character: algorithmic */
/* 0x0010 */ "windows-932",
/* 0x0011 */ "windows-949",
/* 0x0012 */ "windows-950",
/* 0x0013 */ "windows-936",
/* The rest are null, including the 0x0014 Unicode compatibility region
* and 0x0019, the 1-2-3 system range control char */
/* 0x0014 */ null
};
/* That's approximately all the data that's needed for translating
* LMBCS to Unicode.
*
* However, to translate Unicode to LMBCS, we need some more support.
*
* That's because there are often more than one possible mappings from a Unicode
* code point back into LMBCS. The first thing we do is look up into a table
* to figure out if there are more than one possible mapplings. This table,
* arranged by Unicode values (including ranges) either lists which group
* to use, or says that it could go into one or more of the SBCS sets, or
* into one or more of the DBCS sets. (If the character exists in both DBCS &
* SBCS, the table will place it in the SBCS sets, to make the LMBCS code point
* length as small as possible. Here's the two special markers we use to indicate
* ambiguous mappings:
*/
private static final short ULMBCS_AMBIGUOUS_SBCS = 0x80; /* could fit in more than one
LMBCS sbcs native encoding
(example: most accented latin) */
private static final short ULMBCS_AMBIGUOUS_MBCS = 0x81; /* could fit in more than one
LMBCS mbcs native encoding
(example: Unihan) */
private static final short ULMBCS_AMBIGUOUS_ALL = 0x82;
/* And here's a simple way to see if a group falls in an appropriate range */
private boolean ULMBCS_AMBIGUOUS_MATCH(short agroup, short xgroup) {
return (((agroup == ULMBCS_AMBIGUOUS_SBCS) &&
(xgroup < ULMBCS_DOUBLEOPTGROUP_START)) ||
((agroup == ULMBCS_AMBIGUOUS_MBCS) &&
(xgroup >= ULMBCS_DOUBLEOPTGROUP_START)) ||
((agroup) == ULMBCS_AMBIGUOUS_ALL));
}
/* The table & some code to use it: */
private static class _UniLMBCSGrpMap {
int uniStartRange;
int uniEndRange;
short GrpType;
_UniLMBCSGrpMap(int uniStartRange, int uniEndRange, short GrpType) {
this.uniStartRange = uniStartRange;
this.uniEndRange = uniEndRange;
this.GrpType = GrpType;
}
}
private static final _UniLMBCSGrpMap[] UniLMBCSGrpMap = {
new _UniLMBCSGrpMap(0x0001, 0x001F, ULMBCS_GRP_CTRL),
new _UniLMBCSGrpMap(0x0080, 0x009F, ULMBCS_GRP_CTRL),
new _UniLMBCSGrpMap(0x00A0, 0x00A6, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0x00A7, 0x00A8, ULMBCS_AMBIGUOUS_ALL),
new _UniLMBCSGrpMap(0x00A9, 0x00AF, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0x00B0, 0x00B1, ULMBCS_AMBIGUOUS_ALL),
new _UniLMBCSGrpMap(0x00B2, 0x00B3, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0x00B4, 0x00B4, ULMBCS_AMBIGUOUS_ALL),
new _UniLMBCSGrpMap(0x00B5, 0x00B5, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0x00B6, 0x00B6, ULMBCS_AMBIGUOUS_ALL),
new _UniLMBCSGrpMap(0x00B7, 0x00D6, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0x00D7, 0x00D7, ULMBCS_AMBIGUOUS_ALL),
new _UniLMBCSGrpMap(0x00D8, 0x00F6, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0x00F7, 0x00F7, ULMBCS_AMBIGUOUS_ALL),
new _UniLMBCSGrpMap(0x00F8, 0x01CD, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0x01CE, 0x01CE, ULMBCS_GRP_TW ),
new _UniLMBCSGrpMap(0x01CF, 0x02B9, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0x02BA, 0x02BA, ULMBCS_GRP_CN),
new _UniLMBCSGrpMap(0x02BC, 0x02C8, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0x02C9, 0x02D0, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x02D8, 0x02DD, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0x0384, 0x0390, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0x0391, 0x03A9, ULMBCS_AMBIGUOUS_ALL),
new _UniLMBCSGrpMap(0x03AA, 0x03B0, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0x03B1, 0x03C9, ULMBCS_AMBIGUOUS_ALL),
new _UniLMBCSGrpMap(0x03CA, 0x03CE, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0x0400, 0x0400, ULMBCS_GRP_RU),
new _UniLMBCSGrpMap(0x0401, 0x0401, ULMBCS_AMBIGUOUS_ALL),
new _UniLMBCSGrpMap(0x0402, 0x040F, ULMBCS_GRP_RU),
new _UniLMBCSGrpMap(0x0410, 0x0431, ULMBCS_AMBIGUOUS_ALL),
new _UniLMBCSGrpMap(0x0432, 0x044E, ULMBCS_GRP_RU),
new _UniLMBCSGrpMap(0x044F, 0x044F, ULMBCS_AMBIGUOUS_ALL),
new _UniLMBCSGrpMap(0x0450, 0x0491, ULMBCS_GRP_RU),
new _UniLMBCSGrpMap(0x05B0, 0x05F2, ULMBCS_GRP_HE),
new _UniLMBCSGrpMap(0x060C, 0x06AF, ULMBCS_GRP_AR),
new _UniLMBCSGrpMap(0x0E01, 0x0E5B, ULMBCS_GRP_TH),
new _UniLMBCSGrpMap(0x200C, 0x200F, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0x2010, 0x2010, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x2013, 0x2014, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0x2015, 0x2015, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x2016, 0x2016, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x2017, 0x2017, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0x2018, 0x2019, ULMBCS_AMBIGUOUS_ALL),
new _UniLMBCSGrpMap(0x201A, 0x201B, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0x201C, 0x201D, ULMBCS_AMBIGUOUS_ALL),
new _UniLMBCSGrpMap(0x201E, 0x201F, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0x2020, 0x2021, ULMBCS_AMBIGUOUS_ALL),
new _UniLMBCSGrpMap(0x2022, 0x2024, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0x2025, 0x2025, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x2026, 0x2026, ULMBCS_AMBIGUOUS_ALL),
new _UniLMBCSGrpMap(0x2027, 0x2027, ULMBCS_GRP_TW),
new _UniLMBCSGrpMap(0x2030, 0x2030, ULMBCS_AMBIGUOUS_ALL),
new _UniLMBCSGrpMap(0x2031, 0x2031, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0x2032, 0x2033, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x2035, 0x2035, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x2039, 0x203A, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0x203B, 0x203B, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x203C, 0x203C, ULMBCS_GRP_EXCEPT),
new _UniLMBCSGrpMap(0x2074, 0x2074, ULMBCS_GRP_KO),
new _UniLMBCSGrpMap(0x207F, 0x207F, ULMBCS_GRP_EXCEPT),
new _UniLMBCSGrpMap(0x2081, 0x2084, ULMBCS_GRP_KO),
new _UniLMBCSGrpMap(0x20A4, 0x20AC, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0x2103, 0x2109, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x2111, 0x2120, ULMBCS_AMBIGUOUS_SBCS),
/*zhujin: upgrade, for regressiont test, spr HKIA4YHTSU*/
new _UniLMBCSGrpMap(0x2121, 0x2121, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x2122, 0x2126, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0x212B, 0x212B, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x2135, 0x2135, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0x2153, 0x2154, ULMBCS_GRP_KO),
new _UniLMBCSGrpMap(0x215B, 0x215E, ULMBCS_GRP_EXCEPT),
new _UniLMBCSGrpMap(0x2160, 0x2179, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x2190, 0x2193, ULMBCS_AMBIGUOUS_ALL),
new _UniLMBCSGrpMap(0x2194, 0x2195, ULMBCS_GRP_EXCEPT),
new _UniLMBCSGrpMap(0x2196, 0x2199, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x21A8, 0x21A8, ULMBCS_GRP_EXCEPT),
new _UniLMBCSGrpMap(0x21B8, 0x21B9, ULMBCS_GRP_CN),
new _UniLMBCSGrpMap(0x21D0, 0x21D1, ULMBCS_GRP_EXCEPT),
new _UniLMBCSGrpMap(0x21D2, 0x21D2, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x21D3, 0x21D3, ULMBCS_GRP_EXCEPT),
new _UniLMBCSGrpMap(0x21D4, 0x21D4, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x21D5, 0x21D5, ULMBCS_GRP_EXCEPT),
new _UniLMBCSGrpMap(0x21E7, 0x21E7, ULMBCS_GRP_CN),
new _UniLMBCSGrpMap(0x2200, 0x2200, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x2201, 0x2201, ULMBCS_GRP_EXCEPT),
new _UniLMBCSGrpMap(0x2202, 0x2202, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x2203, 0x2203, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x2204, 0x2206, ULMBCS_GRP_EXCEPT),
new _UniLMBCSGrpMap(0x2207, 0x2208, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x2209, 0x220A, ULMBCS_GRP_EXCEPT),
new _UniLMBCSGrpMap(0x220B, 0x220B, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x220F, 0x2215, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x2219, 0x2219, ULMBCS_GRP_EXCEPT),
new _UniLMBCSGrpMap(0x221A, 0x221A, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x221B, 0x221C, ULMBCS_GRP_EXCEPT),
new _UniLMBCSGrpMap(0x221D, 0x221E, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x221F, 0x221F, ULMBCS_GRP_EXCEPT),
new _UniLMBCSGrpMap(0x2220, 0x2220, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x2223, 0x222A, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x222B, 0x223D, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x2245, 0x2248, ULMBCS_GRP_EXCEPT),
new _UniLMBCSGrpMap(0x224C, 0x224C, ULMBCS_GRP_TW),
new _UniLMBCSGrpMap(0x2252, 0x2252, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x2260, 0x2261, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x2262, 0x2265, ULMBCS_GRP_EXCEPT),
new _UniLMBCSGrpMap(0x2266, 0x226F, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x2282, 0x2283, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x2284, 0x2285, ULMBCS_GRP_EXCEPT),
new _UniLMBCSGrpMap(0x2286, 0x2287, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x2288, 0x2297, ULMBCS_GRP_EXCEPT),
new _UniLMBCSGrpMap(0x2299, 0x22BF, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x22C0, 0x22C0, ULMBCS_GRP_EXCEPT),
new _UniLMBCSGrpMap(0x2310, 0x2310, ULMBCS_GRP_EXCEPT),
new _UniLMBCSGrpMap(0x2312, 0x2312, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x2318, 0x2321, ULMBCS_GRP_EXCEPT),
new _UniLMBCSGrpMap(0x2318, 0x2321, ULMBCS_GRP_CN),
new _UniLMBCSGrpMap(0x2460, 0x24E9, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x2500, 0x2500, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0x2501, 0x2501, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x2502, 0x2502, ULMBCS_AMBIGUOUS_ALL),
new _UniLMBCSGrpMap(0x2503, 0x2503, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x2504, 0x2505, ULMBCS_GRP_TW),
new _UniLMBCSGrpMap(0x2506, 0x2665, ULMBCS_AMBIGUOUS_ALL),
new _UniLMBCSGrpMap(0x2666, 0x2666, ULMBCS_GRP_EXCEPT),
new _UniLMBCSGrpMap(0x2667, 0x2669, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0x266A, 0x266A, ULMBCS_AMBIGUOUS_ALL),
new _UniLMBCSGrpMap(0x266B, 0x266C, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0x266D, 0x266D, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0x266E, 0x266E, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0x266F, 0x266F, ULMBCS_GRP_JA),
new _UniLMBCSGrpMap(0x2670, 0x2E7F, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0x2E80, 0xF861, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0xF862, 0xF8FF, ULMBCS_GRP_EXCEPT),
new _UniLMBCSGrpMap(0xF900, 0xFA2D, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0xFB00, 0xFEFF, ULMBCS_AMBIGUOUS_SBCS),
new _UniLMBCSGrpMap(0xFF01, 0xFFEE, ULMBCS_AMBIGUOUS_MBCS),
new _UniLMBCSGrpMap(0xFFFF, 0xFFFF, ULMBCS_GRP_UNICODE)
};
static short FindLMBCSUniRange(char uniChar) {
int index = 0;
while (uniChar > UniLMBCSGrpMap[index].uniEndRange) {
index++;
}
if (uniChar >= UniLMBCSGrpMap[index].uniStartRange) {
return UniLMBCSGrpMap[index].GrpType;
}
return ULMBCS_GRP_UNICODE;
}
/*
* We also ask the creator of a converter to send in a preferred locale
* that we can use in resolving ambiguous mappings. They send the locale
* in as a string, and we map it, if possible, to one of the
* LMBCS groups. We use this table, and the associated code, to
* do the lookup:
*
* This table maps locale ID's to LMBCS opt groups.
* The default return is group 0x01. Note that for
* performance reasons, the table is sorted in
* increasing alphabetic order, with the notable
* exception of zhTW. This is to force the check
* for Traditional Chinese before dropping back to
* Simplified.
* Note too that the Latin-1 groups have been
* commented out because it's the default, and
* this shortens the table, allowing a serial
* search to go quickly.
*/
private static class _LocaleLMBCSGrpMap {
String LocaleID;
short OptGroup;
_LocaleLMBCSGrpMap(String LocaleID, short OptGroup) {
this.LocaleID = LocaleID;
this.OptGroup = OptGroup;
}
}
private static final _LocaleLMBCSGrpMap[] LocaleLMBCSGrpMap = {
new _LocaleLMBCSGrpMap("ar", ULMBCS_GRP_AR),
new _LocaleLMBCSGrpMap("be", ULMBCS_GRP_RU),
new _LocaleLMBCSGrpMap("bg", ULMBCS_GRP_L2),
// new _LocaleLMBCSGrpMap("ca", ULMBCS_GRP_L1),
new _LocaleLMBCSGrpMap("cs", ULMBCS_GRP_L2),
// new _LocaleLMBCSGrpMap("da", ULMBCS_GRP_L1),
// new _LocaleLMBCSGrpMap("de", ULMBCS_GRP_L1),
new _LocaleLMBCSGrpMap("el", ULMBCS_GRP_GR),
// new _LocaleLMBCSGrpMap("en", ULMBCS_GRP_L1),
// new _LocaleLMBCSGrpMap("es", ULMBCS_GRP_L1),
// new _LocaleLMBCSGrpMap("et", ULMBCS_GRP_L1),
// new _LocaleLMBCSGrpMap("fi", ULMBCS_GRP_L1),
// new _LocaleLMBCSGrpMap("fr", ULMBCS_GRP_L1),
new _LocaleLMBCSGrpMap("he", ULMBCS_GRP_HE),
new _LocaleLMBCSGrpMap("hu", ULMBCS_GRP_L2),
// new _LocaleLMBCSGrpMap("is", ULMBCS_GRP_L1),
// new _LocaleLMBCSGrpMap("it", ULMBCS_GRP_L1),
new _LocaleLMBCSGrpMap("iw", ULMBCS_GRP_HE),
new _LocaleLMBCSGrpMap("ja", ULMBCS_GRP_JA),
new _LocaleLMBCSGrpMap("ko", ULMBCS_GRP_KO),
// new _LocaleLMBCSGrpMap("lt", ULMBCS_GRP_L1),
// new _LocaleLMBCSGrpMap("lv", ULMBCS_GRP_L1),
new _LocaleLMBCSGrpMap("mk", ULMBCS_GRP_RU),
// new _LocaleLMBCSGrpMap("nl", ULMBCS_GRP_L1),
// new _LocaleLMBCSGrpMap("no", ULMBCS_GRP_L1),
new _LocaleLMBCSGrpMap("pl", ULMBCS_GRP_L2),
// new _LocaleLMBCSGrpMap("pt", ULMBCS_GRP_L1),
new _LocaleLMBCSGrpMap("ro", ULMBCS_GRP_L2),
new _LocaleLMBCSGrpMap("ru", ULMBCS_GRP_RU),
new _LocaleLMBCSGrpMap("sh", ULMBCS_GRP_L2),
new _LocaleLMBCSGrpMap("sk", ULMBCS_GRP_L2),
new _LocaleLMBCSGrpMap("sl", ULMBCS_GRP_L2),
new _LocaleLMBCSGrpMap("sq", ULMBCS_GRP_L2),
new _LocaleLMBCSGrpMap("sr", ULMBCS_GRP_RU),
// new _LocaleLMBCSGrpMap("sv", ULMBCS_GRP_L1),
new _LocaleLMBCSGrpMap("th", ULMBCS_GRP_TH),
new _LocaleLMBCSGrpMap("tr", ULMBCS_GRP_TR),
new _LocaleLMBCSGrpMap("uk", ULMBCS_GRP_RU),
// new _LocaleLMBCSGrpMap("vi", ULMBCS_GRP_L1),
new _LocaleLMBCSGrpMap("zhTW", ULMBCS_GRP_TW),
new _LocaleLMBCSGrpMap("zh", ULMBCS_GRP_CN),
new _LocaleLMBCSGrpMap(null, ULMBCS_GRP_L1)
};
static short FindLMBCSLocale(String LocaleID) {
int index = 0;
if (LocaleID == null) {
return 0;
}
while (LocaleLMBCSGrpMap[index].LocaleID != null) {
if (LocaleLMBCSGrpMap[index].LocaleID == LocaleID) {
return LocaleLMBCSGrpMap[index].OptGroup;
} else if (LocaleLMBCSGrpMap[index].LocaleID.compareTo(LocaleID) > 0){
break;
}
index++;
}
return ULMBCS_GRP_L1;
}
/*
* Before we get to the main body of code, here's how we hook up the rest
* of ICU. ICU converters are required to define a structure that includes
* some function pointers, and some common data, in the style of a C++
* vtable. There is also room in there for converter-specific data. LMBCS
* uses that converter-specific data to keep track of the 12 subconverters
* we use, the optimization group, and the group (if any) that matches the
* locale. We have one structure instantiated for each of the 12 possible
* optimization groups.
*/
private static class UConverterDataLMBCS {
UConverterSharedData[] OptGrpConverter; /* Converter per Opt. grp. */
short OptGroup; /* default Opt. grp. for this LMBCS session */
short localeConverterIndex; /* reasonable locale match for index */
CharsetDecoderMBCS decoder;
CharsetEncoderMBCS encoder;
CharsetMBCS charset;
UConverterDataLMBCS() {
OptGrpConverter = new UConverterSharedData[ULMBCS_GRP_LAST + 1];
charset = (CharsetMBCS)CharsetICU.forNameICU("ibm-850");
encoder = (CharsetEncoderMBCS)charset.newEncoder();
decoder = (CharsetDecoderMBCS)charset.newDecoder();
}
}
private UConverterDataLMBCS extraInfo; /* extraInfo in ICU4C implementation */
public CharsetLMBCS(String icuCanonicalName, String javaCanonicalName, String[] aliases) {
super(icuCanonicalName, javaCanonicalName, aliases);
maxBytesPerChar = ULMBCS_CHARSIZE_MAX;
minBytesPerChar = 1;
maxCharsPerByte = 1;
extraInfo = new UConverterDataLMBCS();
for (int i = 0; i <= ULMBCS_GRP_LAST; i++) {
if (OptGroupByteToCPName[i] != null) {
extraInfo.OptGrpConverter[i] = ((CharsetMBCS)CharsetICU.forNameICU(OptGroupByteToCPName[i])).sharedData;
}
}
//get the Opt Group number for the LMBCS converter
int option = Integer.parseInt(icuCanonicalName.substring(6));
extraInfo.OptGroup = (short)option;
extraInfo.localeConverterIndex = FindLMBCSLocale(ULocale.getDefault().getBaseName());
}
class CharsetDecoderLMBCS extends CharsetDecoderICU {
public CharsetDecoderLMBCS(CharsetICU cs) {
super(cs);
implReset();
}
protected void implReset() {
super.implReset();
}
/* A function to call when we are looking at the Unicode group byte in LMBCS */
private char GetUniFromLMBCSUni(ByteBuffer ppLMBCSin) {
short HighCh = (short)(ppLMBCSin.get() & UConverterConstants.UNSIGNED_BYTE_MASK);
short LowCh = (short)(ppLMBCSin.get() & UConverterConstants.UNSIGNED_BYTE_MASK);
if (HighCh == ULMBCS_UNICOMPATZERO) {
HighCh = LowCh;
LowCh = 0; /* zero-byte in LSB special character */
}
return (char)((HighCh << 8) | LowCh);
}
private int LMBCS_SimpleGetNextUChar(UConverterSharedData cnv, ByteBuffer source, int positionOffset, int length) {
int uniChar;
int oldSourceLimit;
int oldSourcePos;
extraInfo.charset.sharedData = cnv;
oldSourceLimit = source.limit();
oldSourcePos = source.position();
source.position(oldSourcePos + positionOffset);
source.limit(source.position() + length);
uniChar = extraInfo.decoder.simpleGetNextUChar(source, false);
source.limit(oldSourceLimit);
source.position(oldSourcePos);
return uniChar;
}
/* Return the Unicode representation for the current LMBCS character. */
/*
* Note: Because there is no U_TRUNCATED_CHAR_FOUND error code in ICU4J, we
* are going to use BufferOverFlow. The error will be handled correctly
* by the calling function.
*/
private int LMBCSGetNextUCharWorker(ByteBuffer source, CoderResult[] err) {
int uniChar = 0; /* an output Unicode char */
short CurByte; /* A byte from the input stream */
/* error check */
if (!source.hasRemaining()) {
err[0] = CoderResult.malformedForLength(0);
return 0xffff;
}
/* Grab first byte & save address for error recovery */
CurByte = (short)(source.get() & UConverterConstants.UNSIGNED_BYTE_MASK);
/*
* at entry of each if clause:
* 1. 'CurByte' points at the first byte of a LMBCS character
* 2. 'source' points to the next byte of the source stream after 'CurByte'
*
* the job of each if clause is:
* 1. set 'source' to the point at the beginning of the next char (not if LMBCS char is only 1 byte)
* 2. set 'uniChar' up with the right Unicode value, or set 'err' appropriately
*/
/* First lets check the simple fixed values. */
if ((CurByte > ULMBCS_C0END && CurByte < ULMBCS_C1START) /* ascii range */ ||
CurByte == 0 || CurByte == ULMBCS_HT || CurByte == ULMBCS_CR || CurByte == ULMBCS_LF ||
CurByte == ULMBCS_123SYSTEMRANGE) {
uniChar = CurByte;
} else {
short group;
UConverterSharedData cnv;
if (CurByte == ULMBCS_GRP_CTRL) { /* Control character group - no opt group update */
short C0C1byte;
/* CHECK_SOURCE_LIMIT(1) */
if (source.position() + 1 > source.limit()) {
err[0] = CoderResult.OVERFLOW;
source.position(source.limit());
return 0xFFFF;
}
C0C1byte = (short)(source.get() & UConverterConstants.UNSIGNED_BYTE_MASK);
uniChar = (C0C1byte < ULMBCS_C1START) ? C0C1byte - ULMBCS_CTRLOFFSET : C0C1byte;
} else if (CurByte == ULMBCS_GRP_UNICODE) { /* Unicode Compatibility group: Big Endian UTF16 */
/* CHECK_SOURCE_LIMIT(2) */
if (source.position() + 2 > source.limit()) {
err[0] = CoderResult.OVERFLOW;
source.position(source.limit());
return 0xFFFF;
}
/* don't check for error indicators fffe/ffff below */
return GetUniFromLMBCSUni(source);
} else if (CurByte <= ULMBCS_CTRLOFFSET) {
group = CurByte;
if (group > ULMBCS_GRP_LAST || (cnv = extraInfo.OptGrpConverter[group]) == null) {
/* this is not a valid group byte - no converter */
err[0] = CoderResult.unmappableForLength(1);
} else if (group >= ULMBCS_DOUBLEOPTGROUP_START) {
/* CHECK_SOURCE_LIMIT(2) */
if (source.position() + 2 > source.limit()) {
err[0] = CoderResult.OVERFLOW;
source.position(source.limit());
return 0xFFFF;
}
/* check for LMBCS doubled-group-byte case */
if (source.get(source.position()) == group) {
/* single byte */
source.get();
uniChar = LMBCS_SimpleGetNextUChar(cnv, source, 0, 1);
source.get();
} else {
/* double byte */
uniChar = LMBCS_SimpleGetNextUChar(cnv, source, 0, 2);
source.get();
source.get();
}
} else { /* single byte conversion */
/* CHECK_SOURCE_LIMIT(1) */
if (source.position() + 1 > source.limit()) {
err[0] = CoderResult.OVERFLOW;
source.position(source.limit());
return 0xFFFF;
}
CurByte = (short)(source.get() & UConverterConstants.UNSIGNED_BYTE_MASK);
if (CurByte >= ULMBCS_C1START) {
uniChar = CharsetMBCS.MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv.mbcs, CurByte);
} else {
/*
* The non-optimizable oddballs where there is an explicit byte
* AND the second byte is not in the upper ascii range
*/
byte[] bytes = new byte[2];
cnv = extraInfo.OptGrpConverter[ULMBCS_GRP_EXCEPT];
/* Lookup value must include opt group */
bytes[0] = (byte)group;
bytes[1] = (byte)CurByte;
uniChar = LMBCS_SimpleGetNextUChar(cnv, ByteBuffer.wrap(bytes), 0, 2);
}
}
} else if (CurByte >= ULMBCS_C1START) { /* group byte is implicit */
group = extraInfo.OptGroup;
cnv = extraInfo.OptGrpConverter[group];
if (group >= ULMBCS_DOUBLEOPTGROUP_START) { /* double byte conversion */
if (CharsetMBCS.MBCS_ENTRY_IS_TRANSITION(cnv.mbcs.stateTable[0][CurByte]) /* isLeadByte */) {
/* CHECK_SOURCE_LIMIT(0) */
if (source.position() + 0 > source.limit()) {
err[0] = CoderResult.OVERFLOW;
source.position(source.limit());
return 0xFFFF;
}
/* let the MBCS conversion consume CurByte again */
uniChar = LMBCS_SimpleGetNextUChar(cnv, source, -1, 1);
} else {
/* CHECK_SOURCE_LIMIT(1) */
if (source.position() + 1 > source.limit()) {
err[0] = CoderResult.OVERFLOW;
source.position(source.limit());
return 0xFFFF;
}
/* let the MBCS conversion consume CurByte again */
uniChar = LMBCS_SimpleGetNextUChar(cnv, source, -1, 2);
source.get();
}
} else {
uniChar = CharsetMBCS.MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv.mbcs, CurByte);
}
}
}
return uniChar;
}
protected CoderResult decodeLoop(ByteBuffer source, CharBuffer target, IntBuffer offsets, boolean flush) {
CoderResult[] err = new CoderResult[1];
err[0] = CoderResult.UNDERFLOW;
byte[] LMBCS = new byte[ULMBCS_CHARSIZE_MAX * 2]; /* Increase the size for proper handling in subsequent calls to MBCS functions */
char uniChar; /* one output Unicode char */
int saveSource; /* beginning of current code point */
int errSource = 0; /* index to actual input in case an error occurs */
byte savebytes = 0;
/* Process from source to limit, or until error */
while (err[0].isUnderflow() && source.hasRemaining() && target.hasRemaining()) {
saveSource = source.position(); /* beginning of current code point */
if (toULength > 0) { /* reassemble char from previous call */
int size_old = toULength;
ByteBuffer tmpSourceBuffer;
/* limit from source is either remainder of temp buffer, or user limit on source */
int size_new_maybe_1 = ULMBCS_CHARSIZE_MAX - size_old;
int size_new_maybe_2 = source.remaining();
int size_new = (size_new_maybe_1 < size_new_maybe_2) ? size_new_maybe_1 : size_new_maybe_2;
savebytes = (byte)(size_old + size_new);
for (int i = 0; i < savebytes; i++) {
if (i < size_old) {
LMBCS[i] = toUBytesArray[i];
} else {
LMBCS[i] = source.get();
}
}
tmpSourceBuffer = ByteBuffer.wrap(LMBCS);
tmpSourceBuffer.limit(savebytes);
uniChar = (char)LMBCSGetNextUCharWorker(tmpSourceBuffer, err);
source.position(saveSource + tmpSourceBuffer.position() - size_old);
errSource = saveSource - size_old;
if (err[0].isOverflow()) { /* err == U_TRUNCATED_CHAR_FOUND */
/* evil special case: source buffers so small a char spans more than 2 buffers */
toULength = savebytes;
for (int i = 0; i < savebytes; i++) {
toUBytesArray[i] = LMBCS[i];
}
source.position(source.limit());
err[0] = CoderResult.UNDERFLOW;
return err[0];
} else {
/* clear the partial-char marker */
toULength = 0;
}
} else {
errSource = saveSource;
uniChar = (char)LMBCSGetNextUCharWorker(source, err);
savebytes = (byte)(source.position() - saveSource);
}
if (err[0].isUnderflow()) {
if (uniChar < 0x0fffe) {
target.put(uniChar);
if (offsets != null) {
offsets.put(saveSource);
}
} else if (uniChar == 0xfffe) {
err[0] = CoderResult.unmappableForLength(source.position() - saveSource);
} else /* if (uniChar == 0xffff) */ {
err[0] = CoderResult.malformedForLength(source.position() - saveSource);
}
}
}
/* If target ran out before source, return over flow buffer error. */
if (err[0].isUnderflow() && source.hasRemaining() && !target.hasRemaining()) {
err[0] = CoderResult.OVERFLOW;
} else if (!err[0].isUnderflow()) {
/* If character incomplete or unmappable/illegal, store it in toUBytesArray[] */
toULength = savebytes;
if (savebytes > 0) {
for (int i = 0; i < savebytes; i++) {
toUBytesArray[i] = source.get(errSource + i);
}
}
if (err[0].isOverflow()) { /* err == U_TRUNCATED_CHAR_FOUND */
err[0] = CoderResult.UNDERFLOW;
}
}
return err[0];
}
}
class CharsetEncoderLMBCS extends CharsetEncoderICU {
public CharsetEncoderLMBCS(CharsetICU cs) {
super(cs, fromUSubstitution);
implReset();
}
protected void implReset() {
super.implReset();
}
/*
* Here's the basic helper function that we use when converting from
* Unicode to LMBCS, and we suspect that a Unicode character will fit into
* one of the 12 groups. The return value is the number of bytes written
* starting at pStartLMBCS (if any).
*/
@SuppressWarnings("fallthrough")
private int LMBCSConversionWorker(short group, byte[] LMBCS, char pUniChar, short[] lastConverterIndex, boolean[] groups_tried) {
byte pLMBCS = 0;
UConverterSharedData xcnv = extraInfo.OptGrpConverter[group];
int bytesConverted;
int[] value = new int[1];
short firstByte;
extraInfo.charset.sharedData = xcnv;
bytesConverted = extraInfo.encoder.fromUChar32(pUniChar, value, false);
/* get the first result byte */
if (bytesConverted > 0) {
firstByte = (short)((value[0] >> ((bytesConverted - 1) * 8)) & UConverterConstants.UNSIGNED_BYTE_MASK);
} else {
/* most common failure mode is an unassigned character */
groups_tried[group] = true;
return 0;
}
lastConverterIndex[0] = group;
/*
* All initial byte values in lower ascii range should have been caught by now,
* except with the exception group.
*/
/* use converted data: first write 0, 1 or two group bytes */
if (group != ULMBCS_GRP_EXCEPT && extraInfo.OptGroup != group) {
LMBCS[pLMBCS++] = (byte)group;
if (bytesConverted == 1 && group >= ULMBCS_DOUBLEOPTGROUP_START) {
LMBCS[pLMBCS++] = (byte)group;
}
}
/* don't emit control chars */
if (bytesConverted == 1 && firstByte < 0x20) {
return 0;
}
/* then move over the converted data */
switch (bytesConverted) {
case 4:
LMBCS[pLMBCS++] = (byte)(value[0] >> 24);
case 3:
LMBCS[pLMBCS++] = (byte)(value[0] >> 16);
case 2:
LMBCS[pLMBCS++] = (byte)(value[0] >> 8);
case 1:
LMBCS[pLMBCS++] = (byte)value[0];
default:
/* will never occur */
break;
}
return pLMBCS;
}
/*
* This is a much simpler version of above, when we
* know we are writing LMBCS using the Unicode group.
*/
private int LMBCSConvertUni(byte[] LMBCS, char uniChar) {
int index = 0;
short LowCh = (short)(uniChar & UConverterConstants.UNSIGNED_BYTE_MASK);
short HighCh = (short)((uniChar >> 8) & UConverterConstants.UNSIGNED_BYTE_MASK);
LMBCS[index++] = (byte)ULMBCS_GRP_UNICODE;
if (LowCh == 0) {
LMBCS[index++] = (byte)ULMBCS_UNICOMPATZERO;
LMBCS[index++] = (byte)HighCh;
} else {
LMBCS[index++] = (byte)HighCh;
LMBCS[index++] = (byte)LowCh;
}
return ULMBCS_UNICODE_SIZE;
}
/* The main Unicode to LMBCS conversion function */
protected CoderResult encodeLoop(CharBuffer source, ByteBuffer target, IntBuffer offsets, boolean flush) {
CoderResult err = CoderResult.UNDERFLOW;
short[] lastConverterIndex = new short[1];
char uniChar;
byte[] LMBCS = new byte[ULMBCS_CHARSIZE_MAX];
byte pLMBCS;
int bytes_written;
boolean[] groups_tried = new boolean[ULMBCS_GRP_LAST+1];
int sourceIndex = 0;
/*
* Basic strategy: attempt to fill in local LMBCS 1-char buffer.(LMBCS)
* If that succeeds, see if it will all fit into the target & copy it over
* if it does.
*
* We try conversions in the following order:
* 1. Single-byte ascii & special fixed control chars (&null)
* 2. Look up group in table & try that (could b
* A) Unicode group
* B) control group
* C) national encodeing
* or ambiguous SBCS or MBCS group (on to step 4...)
* 3. If its ambiguous, try this order:
* A) The optimization group
* B) The locale group
* C) The last group that succeeded with this string.
* D) every other group that's relevant
* E) If its single-byte ambiguous, try the exceptions group
* 4. And as a grand fallback: Unicode
*/
short OldConverterIndex = 0;
while (source.hasRemaining() && err.isUnderflow()) {
OldConverterIndex = extraInfo.localeConverterIndex;
if (!target.hasRemaining()) {
err = CoderResult.OVERFLOW;
break;
}
uniChar = source.get(source.position());
bytes_written = 0;
pLMBCS = 0;
/* check cases in rough order of how common they are, for speed */
/* single-byte matches: strategy 1 */
if((uniChar>=0x80) && (uniChar<=0xff) && (uniChar!=0xB1) && (uniChar!=0xD7) && (uniChar!=0xF7) &&
(uniChar!=0xB0) && (uniChar!=0xB4) && (uniChar!=0xB6) && (uniChar!=0xA7) && (uniChar!=0xA8)) {
extraInfo.localeConverterIndex = ULMBCS_GRP_L1;
}
if (((uniChar > ULMBCS_C0END) && (uniChar < ULMBCS_C1START)) ||
uniChar == 0 || uniChar == ULMBCS_HT || uniChar == ULMBCS_CR ||
uniChar == ULMBCS_LF || uniChar == ULMBCS_123SYSTEMRANGE) {
LMBCS[pLMBCS++] = (byte)uniChar;
bytes_written = 1;
}
if (bytes_written == 0) {
/* Check by Unicode rage (Strategy 2) */
short group = FindLMBCSUniRange(uniChar);
if (group == ULMBCS_GRP_UNICODE) { /* (Strategy 2A) */
bytes_written = LMBCSConvertUni(LMBCS, uniChar);
} else if (group == ULMBCS_GRP_CTRL) { /* Strategy 2B) */
/* Handle control characters here */
if (uniChar <= ULMBCS_C0END) {
LMBCS[pLMBCS++] = ULMBCS_GRP_CTRL;
LMBCS[pLMBCS++] = (byte)(ULMBCS_CTRLOFFSET + uniChar);
} else if (uniChar >= ULMBCS_C1START && uniChar <= (ULMBCS_C1START + ULMBCS_CTRLOFFSET)) {
LMBCS[pLMBCS++] = ULMBCS_GRP_CTRL;
LMBCS[pLMBCS++] = (byte)uniChar;
}
bytes_written = pLMBCS;
} else if (group < ULMBCS_GRP_UNICODE) { /* (Strategy 2C) */
/* a specific converter has been identified - use it */
bytes_written = LMBCSConversionWorker(group, LMBCS, uniChar, lastConverterIndex, groups_tried);
}
if (bytes_written == 0) { /* the ambiguous group cases (Strategy 3) */
groups_tried = new boolean[ULMBCS_GRP_LAST+1];
/* check for non-default optimization group (Strategy 3A) */
if (extraInfo.OptGroup != 1 && ULMBCS_AMBIGUOUS_MATCH(group, extraInfo.OptGroup)) {
if(extraInfo.localeConverterIndex < ULMBCS_DOUBLEOPTGROUP_START) {
bytes_written = LMBCSConversionWorker (ULMBCS_GRP_L1, LMBCS, uniChar, lastConverterIndex, groups_tried);
if(bytes_written == 0) {
bytes_written = LMBCSConversionWorker (ULMBCS_GRP_EXCEPT, LMBCS, uniChar, lastConverterIndex, groups_tried);
}
if(bytes_written == 0) {
bytes_written = LMBCSConversionWorker (extraInfo.localeConverterIndex, LMBCS, uniChar, lastConverterIndex, groups_tried);
}
} else {
bytes_written = LMBCSConversionWorker (extraInfo.localeConverterIndex, LMBCS, uniChar, lastConverterIndex, groups_tried);
}
}
/* check for locale optimization group (Strategy 3B) */
if (bytes_written == 0 && extraInfo.localeConverterIndex > 0 && ULMBCS_AMBIGUOUS_MATCH(group, extraInfo.localeConverterIndex)) {
bytes_written = LMBCSConversionWorker(extraInfo.localeConverterIndex, LMBCS, uniChar, lastConverterIndex, groups_tried);
}
/* check for last optimization group used for this string (Strategy 3C) */
if (bytes_written == 0 && lastConverterIndex[0] > 0 && ULMBCS_AMBIGUOUS_MATCH(group, lastConverterIndex[0])) {
bytes_written = LMBCSConversionWorker(lastConverterIndex[0], LMBCS, uniChar, lastConverterIndex, groups_tried);
}
if (bytes_written == 0) {
/* just check every possible matching converter (Strategy 3D) */
short grp_start;
short grp_end;
short grp_ix;
grp_start = (group == ULMBCS_AMBIGUOUS_MBCS) ? ULMBCS_DOUBLEOPTGROUP_START : ULMBCS_GRP_L1;
grp_end = (group == ULMBCS_AMBIGUOUS_MBCS) ? ULMBCS_GRP_LAST : ULMBCS_GRP_TH;
if(group == ULMBCS_AMBIGUOUS_ALL) {
grp_start = ULMBCS_GRP_L1;
grp_end = ULMBCS_GRP_LAST;
}
for (grp_ix = grp_start; grp_ix <= grp_end && bytes_written == 0; grp_ix++) {
if (extraInfo.OptGrpConverter[grp_ix] != null && !groups_tried[grp_ix]) {
bytes_written = LMBCSConversionWorker(grp_ix, LMBCS, uniChar, lastConverterIndex, groups_tried);
}
}
/*
* a final conversion fallback to the exceptions group if its likely
* to be single byte (Strategy 3E)
*/
if (bytes_written == 0 && grp_start == ULMBCS_GRP_L1) {
bytes_written = LMBCSConversionWorker(ULMBCS_GRP_EXCEPT, LMBCS, uniChar, lastConverterIndex, groups_tried);
}
}
/* all of our other strategies failed. Fallback to Unicode. (Strategy 4) */
if (bytes_written == 0) {
bytes_written = LMBCSConvertUni(LMBCS, uniChar);
}
}
}
/* we have a translation. increment source and write as much as possible to target */
source.get();
pLMBCS = 0;
while (target.hasRemaining() && bytes_written > 0) {
bytes_written--;
target.put(LMBCS[pLMBCS++]);
if (offsets != null) {
offsets.put(sourceIndex);
}
}
sourceIndex++;
if (bytes_written > 0) {
/*
* write any bytes that didn't fit in target to the error buffer,
* common code will move this to target if we get called back with
* enough target room
*/
err = CoderResult.OVERFLOW;
errorBufferLength = bytes_written;
for (int i = 0; bytes_written > 0; i++, bytes_written--) {
errorBuffer[i] = LMBCS[pLMBCS++];
}
}
extraInfo.localeConverterIndex = OldConverterIndex;
}
return err;
}
}
public CharsetDecoder newDecoder() {
return new CharsetDecoderLMBCS(this);
}
public CharsetEncoder newEncoder() {
return new CharsetEncoderLMBCS(this);
}
void getUnicodeSetImpl(UnicodeSet setFillIn, int which){
getCompleteUnicodeSet(setFillIn);
}
private byte[] fromUSubstitution = new byte[]{ 0x3F };
}