blob: 0d603130559f6dc58453ce41245dc1b5c86b48ac [file] [log] [blame]
package com.ibm.text;
import com.ibm.Utility;
import java.util.Enumeration;
import java.util.Vector;
/**
* A transliterator that is composed of two or more other
* transliterator objects linked together. For example, if one
* transliterator transliterates from script A to script B, and
* another transliterates from script B to script C, the two may be
* combined to form a new transliterator from A to C.
*
* <p>Composed transliterators may not behave as expected. For
* example, inverses may not combine to form the identity
* transliterator. See the class documentation for {@link
* Transliterator} for details.
*
* <p>If a non-<tt>null</tt> <tt>UnicodeFilter</tt> is applied to a
* <tt>CompoundTransliterator</tt>, it has the effect of being
* logically <b>and</b>ed with the filter of each transliterator in
* the chain.
*
* <p>Copyright &copy; IBM Corporation 1999. All rights reserved.
*
* @author Alan Liu
* @version $RCSfile: CompoundTransliterator.java,v $ $Revision: 1.5 $ $Date: 2000/01/27 18:59:19 $
*/
public class CompoundTransliterator extends Transliterator {
private static final boolean DEBUG = false;
private Transliterator[] trans;
private static final String COPYRIGHT =
"\u00A9 IBM Corporation 1999. All rights reserved.";
/**
* Constructs a new compound transliterator given an array of
* transliterators. The array of transliterators may be of any
* length, including zero or one, however, useful compound
* transliterators have at least two components.
* @param transliterators array of <code>Transliterator</code>
* objects
* @param filter the filter. Any character for which
* <tt>filter.contains()</tt> returns <tt>false</tt> will not be
* altered by this transliterator. If <tt>filter</tt> is
* <tt>null</tt> then no filtering is applied.
*/
public CompoundTransliterator(Transliterator[] transliterators,
UnicodeFilter filter) {
super(joinIDs(transliterators), filter);
trans = new Transliterator[transliterators.length];
System.arraycopy(transliterators, 0, trans, 0, trans.length);
computeMaximumContextLength();
}
/**
* Constructs a new compound transliterator given an array of
* transliterators. The array of transliterators may be of any
* length, including zero or one, however, useful compound
* transliterators have at least two components.
* @param transliterators array of <code>Transliterator</code>
* objects
*/
public CompoundTransliterator(Transliterator[] transliterators) {
this(transliterators, null);
}
/**
* Splits an ID of the form "ID;ID;..." into a compound using each
* of the IDs.
* @param ID of above form
* @param forward if false, does the list in reverse order, and
* takes the inverse of each ID.
*/
public CompoundTransliterator(String ID, int direction,
UnicodeFilter filter) {
// changed MED
// Later, add "rule1[filter];rule2...
super(ID, filter);
String[] list = split(ID, ';');
trans = new Transliterator[list.length];
for (int i = 0; i < list.length; ++i) {
trans[i] = getInstance(list[direction==FORWARD ? i : (list.length-1-i)],
direction);
}
computeMaximumContextLength();
}
public CompoundTransliterator(String ID, int direction) {
this(ID, direction, null);
}
public CompoundTransliterator(String ID) {
this(ID, FORWARD, null);
}
/**
* Return the IDs of the given list of transliterators, concatenated
* with ';' delimiting them. Equivalent to the perlish expression
* join(';', map($_.getID(), transliterators).
*/
private static String joinIDs(Transliterator[] transliterators) {
StringBuffer id = new StringBuffer();
for (int i=0; i<transliterators.length; ++i) {
if (i > 0) {
id.append(';');
}
id.append(transliterators[i].getID());
}
return id.toString();
}
/**
* Splits a string, as in JavaScript
*/
private static String[] split(String s, char divider) {
// changed MED
// see how many there are
int count = 1;
for (int i = 0; i < s.length(); ++i) {
if (s.charAt(i) == divider) ++count;
}
// make an array with them
String[] result = new String[count];
int last = 0;
int current = 0;
int i;
for (i = 0; i < s.length(); ++i) {
if (s.charAt(i) == divider) {
result[current++] = s.substring(last,i);
last = i+1;
}
}
result[current++] = s.substring(last,i);
return result;
}
/**
* Returns the number of transliterators in this chain.
* @return number of transliterators in this chain.
*/
public int getCount() {
return trans.length;
}
/**
* Returns the transliterator at the given index in this chain.
* @param index index into chain, from 0 to <code>getCount() - 1</code>
* @return transliterator at the given index
*/
public Transliterator getTransliterator(int index) {
return trans[index];
}
/**
* Implements {@link Transliterator#handleTransliterate}.
*/
protected void handleTransliterate(Replaceable text,
Position index, boolean incremental) {
/* Call each transliterator with the same start value and
* initial cursor index, but with the limit index as modified
* by preceding transliterators. The cursor index must be
* reset for each transliterator to give each a chance to
* transliterate the text. The initial cursor index is known
* to still point to the same place after each transliterator
* is called because each transliterator will not change the
* text between start and the initial value of cursor.
*
* IMPORTANT: After the first transliterator, each subsequent
* transliterator only gets to transliterate text committed by
* preceding transliterators; that is, the cursor (output
* value) of transliterator i becomes the limit (input value)
* of transliterator i+1. Finally, the overall limit is fixed
* up before we return.
*
* Assumptions we make here:
* (1) start <= cursor <= limit ;cursor valid on entry
* (2) cursor <= cursor' <= limit' ;cursor doesn't move back
* (3) cursor <= limit' ;text before cursor unchanged
* - cursor' is the value of cursor after calling handleKT
* - limit' is the value of limit after calling handleKT
*/
/**
* Example: 3 transliterators. This example illustrates the
* mechanics we need to implement. S, C, and L are the start,
* cursor, and limit. gl is the globalLimit.
*
* 1. h-u, changes hex to Unicode
*
* 4 7 a d 0 4 7 a
* abc/u0061/u => abca/u
* S C L S C L gl=f->a
*
* 2. upup, changes "x" to "XX"
*
* 4 7 a 4 7 a
* abca/u => abcAA/u
* S CL S C
* L gl=a->b
* 3. u-h, changes Unicode to hex
*
* 4 7 a 4 7 a d 0 3
* abcAA/u => abc/u0041/u0041/u
* S C L S C
* L gl=b->15
* 4. return
*
* 4 7 a d 0 3
* abc/u0041/u0041/u
* S C L
*/
/**
* One more wrinkle. If there is a filter F for the compound
* transliterator as a whole, then we need to modify every
* non-null filter f in the chain to be f' = F & f. Then,
* when we're done, we restore the original filters.
*
* A possible future optimization is to change f to f' at
* construction time, but then if anyone else is using the
* transliterators in the chain outside of this context, they
* will get unexpected results.
*/
UnicodeFilter F = getFilter();
UnicodeFilter[] f = null;
if (F != null) {
f = new UnicodeFilter[trans.length];
for (int i=0; i<f.length; ++i) {
f[i] = trans[i].getFilter();
trans[i].setFilter(UnicodeFilterLogic.and(F, f[i]));
}
}
try {
int cursor = index.cursor;
int limit = index.limit;
int globalLimit = limit;
/* globalLimit is the overall limit. We keep track of this
* since we overwrite index.limit with the previous
* index.cursor. After each transliteration, we update
* globalLimit for insertions or deletions that have happened.
*/
for (int i=0; i<trans.length; ++i) {
index.cursor = cursor; // Reset cursor
index.limit = limit;
if (DEBUG) {
System.out.print(Utility.escape(i + ": \"" +
substring(text, index.start, index.cursor) + '|' +
substring(text, index.cursor, index.limit) +
"\" -> \""));
}
trans[i].handleTransliterate(text, index, incremental);
if (DEBUG) {
System.out.println(Utility.escape(
substring(text, index.start, index.cursor) + '|' +
substring(text, index.cursor, index.limit) +
'"'));
}
// Adjust overall limit for insertions/deletions
globalLimit += index.limit - limit;
limit = index.cursor; // Move limit to end of committed text
}
// Cursor is good where it is -- where the last
// transliterator left it. Limit needs to be put back
// where it was, modulo adjustments for deletions/insertions.
index.limit = globalLimit;
} finally {
// Fixup the transliterator filters, if we had to modify them.
if (f != null) {
for (int i=0; i<f.length; ++i) {
trans[i].setFilter(f[i]);
}
}
}
}
/**
* Compute and set the length of the longest context required by this transliterator.
* This is <em>preceding</em> context.
*/
private void computeMaximumContextLength() {
int max = 0;
for (int i=0; i<trans.length; ++i) {
int len = trans[i].getMaximumContextLength();
if (len > max) {
max = len;
}
}
setMaximumContextLength(max);
}
/**
* DEBUG
* Returns a substring of a Replaceable.
*/
private static final String substring(Replaceable str, int start, int limit) {
StringBuffer buf = new StringBuffer();
while (start < limit) {
buf.append(str.charAt(start++));
}
return buf.toString();
}
}