blob: 31fb8e1d017f5d5534ddc9ee7a0d5f76ef8c8923 [file] [log] [blame]
/*
*******************************************************************************
* Copyright (C) 2003-2011, International Business Machines Corporation and others. All Rights Reserved.
*******************************************************************************
*/
package com.ibm.icu.text;
import java.text.ParsePosition;
import java.util.HashMap;
import com.ibm.icu.impl.Assert;
import com.ibm.icu.impl.Utility;
import com.ibm.icu.lang.UCharacter;
/**
* This class is part of the Rule Based Break Iterator rule compiler.
* It scans the rules and builds the parse tree.
* There is no public API here.
*/
class RBBIRuleScanner {
private final static int kStackSize = 100; // The size of the state stack for
// rules parsing. Corresponds roughly
// to the depth of parentheses nesting
// that is allowed in the rules.
static class RBBIRuleChar {
int fChar;
boolean fEscaped;
}
RBBIRuleBuilder fRB; // The rule builder that we are part of.
int fScanIndex; // Index of current character being processed
// in the rule input string.
int fNextIndex; // Index of the next character, which
// is the first character not yet scanned.
boolean fQuoteMode; // Scan is in a 'quoted region'
int fLineNum; // Line number in input file.
int fCharNum; // Char position within the line.
int fLastChar; // Previous char, needed to count CR-LF
// as a single line, not two.
RBBIRuleChar fC = new RBBIRuleChar(); // Current char for parse state machine
// processing.
String fVarName; // $variableName, valid when we've just
// scanned one.
short fStack[] = new short[kStackSize]; // State stack, holds state pushes
int fStackPtr; // and pops as specified in the state
// transition rules.
RBBINode fNodeStack[] = new RBBINode[kStackSize]; // Node stack, holds nodes created
// during the parse of a rule
int fNodeStackPtr;
boolean fReverseRule; // True if the rule currently being scanned
// is a reverse direction rule (if it
// starts with a '!')
boolean fLookAheadRule; // True if the rule includes a '/'
// somewhere within it.
RBBISymbolTable fSymbolTable; // symbol table, holds definitions of
// $variable symbols.
HashMap<String, RBBISetTableEl> fSetTable = new HashMap<String, RBBISetTableEl>(); // UnicocodeSet hash table, holds indexes to
// the sets created while parsing rules.
// The key is the string used for creating
// the set.
UnicodeSet fRuleSets[] = new UnicodeSet[10]; // Unicode Sets that are needed during
// the scanning of RBBI rules. The
// indicies for these are assigned by the
// perl script that builds the state tables.
// See rbbirpt.h.
int fRuleNum; // Counts each rule as it is scanned.
int fOptionStart; // Input index of start of a !!option
// keyword, while being scanned.
static private String gRuleSet_rule_char_pattern = "[^[\\p{Z}\\u0020-\\u007f]-[\\p{L}]-[\\p{N}]]";
static private String gRuleSet_name_char_pattern = "[_\\p{L}\\p{N}]";
static private String gRuleSet_digit_char_pattern = "[0-9]";
static private String gRuleSet_name_start_char_pattern = "[_\\p{L}]";
static private String gRuleSet_white_space_pattern = "[\\p{Pattern_White_Space}]";
static private String kAny = "any";
//----------------------------------------------------------------------------------------
//
// Constructor.
//
//----------------------------------------------------------------------------------------
RBBIRuleScanner(RBBIRuleBuilder rb) {
fRB = rb;
fLineNum = 1;
//
// Set up the constant Unicode Sets.
// Note: These could be made static and shared among
// all instances of RBBIRuleScanners.
fRuleSets[RBBIRuleParseTable.kRuleSet_rule_char - 128] = new UnicodeSet(gRuleSet_rule_char_pattern);
fRuleSets[RBBIRuleParseTable.kRuleSet_white_space - 128] = new UnicodeSet(gRuleSet_white_space_pattern);
fRuleSets[RBBIRuleParseTable.kRuleSet_name_char - 128] = new UnicodeSet(gRuleSet_name_char_pattern);
fRuleSets[RBBIRuleParseTable.kRuleSet_name_start_char - 128] = new UnicodeSet(gRuleSet_name_start_char_pattern);
fRuleSets[RBBIRuleParseTable.kRuleSet_digit_char - 128] = new UnicodeSet(gRuleSet_digit_char_pattern);
fSymbolTable = new RBBISymbolTable(this, rb.fRules);
}
//----------------------------------------------------------------------------------------
//
// doParseAction Do some action during rule parsing.
// Called by the parse state machine.
// Actions build the parse tree and Unicode Sets,
// and maintain the parse stack for nested expressions.
//
//----------------------------------------------------------------------------------------
boolean doParseActions(int action) {
RBBINode n = null;
boolean returnVal = true;
switch (action) {
case RBBIRuleParseTable.doExprStart:
pushNewNode(RBBINode.opStart);
fRuleNum++;
break;
case RBBIRuleParseTable.doExprOrOperator: {
fixOpStack(RBBINode.precOpCat);
RBBINode operandNode = fNodeStack[fNodeStackPtr--];
RBBINode orNode = pushNewNode(RBBINode.opOr);
orNode.fLeftChild = operandNode;
operandNode.fParent = orNode;
}
break;
case RBBIRuleParseTable.doExprCatOperator:
// concatenation operator.
// For the implicit concatenation of adjacent terms in an expression
// that are
// not separated by any other operator. Action is invoked between the
// actions for the two terms.
{
fixOpStack(RBBINode.precOpCat);
RBBINode operandNode = fNodeStack[fNodeStackPtr--];
RBBINode catNode = pushNewNode(RBBINode.opCat);
catNode.fLeftChild = operandNode;
operandNode.fParent = catNode;
}
break;
case RBBIRuleParseTable.doLParen:
// Open Paren.
// The openParen node is a dummy operation type with a low
// precedence,
// which has the affect of ensuring that any real binary op that
// follows within the parens binds more tightly to the operands than
// stuff outside of the parens.
pushNewNode(RBBINode.opLParen);
break;
case RBBIRuleParseTable.doExprRParen:
fixOpStack(RBBINode.precLParen);
break;
case RBBIRuleParseTable.doNOP:
break;
case RBBIRuleParseTable.doStartAssign:
// We've just scanned "$variable = "
// The top of the node stack has the $variable ref node.
// Save the start position of the RHS text in the StartExpression
// node
// that precedes the $variableReference node on the stack.
// This will eventually be used when saving the full $variable
// replacement
// text as a string.
n = fNodeStack[fNodeStackPtr - 1];
n.fFirstPos = fNextIndex; // move past the '='
// Push a new start-of-expression node; needed to keep parse of the
// RHS expression happy.
pushNewNode(RBBINode.opStart);
break;
case RBBIRuleParseTable.doEndAssign: {
// We have reached the end of an assignement statement.
// Current scan char is the ';' that terminates the assignment.
// Terminate expression, leaves expression parse tree rooted in TOS
// node.
fixOpStack(RBBINode.precStart);
RBBINode startExprNode = fNodeStack[fNodeStackPtr - 2];
RBBINode varRefNode = fNodeStack[fNodeStackPtr - 1];
RBBINode RHSExprNode = fNodeStack[fNodeStackPtr];
// Save original text of right side of assignment, excluding the
// terminating ';'
// in the root of the node for the right-hand-side expression.
RHSExprNode.fFirstPos = startExprNode.fFirstPos;
RHSExprNode.fLastPos = fScanIndex;
// fRB.fRules.extractBetween(RHSExprNode.fFirstPos,
// RHSExprNode.fLastPos, RHSExprNode.fText);
RHSExprNode.fText = fRB.fRules.substring(RHSExprNode.fFirstPos,
RHSExprNode.fLastPos);
// Expression parse tree becomes l. child of the $variable reference
// node.
varRefNode.fLeftChild = RHSExprNode;
RHSExprNode.fParent = varRefNode;
// Make a symbol table entry for the $variableRef node.
fSymbolTable.addEntry(varRefNode.fText, varRefNode);
// Clean up the stack.
fNodeStackPtr -= 3;
break;
}
case RBBIRuleParseTable.doEndOfRule: {
fixOpStack(RBBINode.precStart); // Terminate expression, leaves
// expression
if (fRB.fDebugEnv != null && fRB.fDebugEnv.indexOf("rtree") >= 0) {
printNodeStack("end of rule");
}
Assert.assrt(fNodeStackPtr == 1);
// If this rule includes a look-ahead '/', add a endMark node to the
// expression tree.
if (fLookAheadRule) {
RBBINode thisRule = fNodeStack[fNodeStackPtr];
RBBINode endNode = pushNewNode(RBBINode.endMark);
RBBINode catNode = pushNewNode(RBBINode.opCat);
fNodeStackPtr -= 2;
catNode.fLeftChild = thisRule;
catNode.fRightChild = endNode;
fNodeStack[fNodeStackPtr] = catNode;
endNode.fVal = fRuleNum;
endNode.fLookAheadEnd = true;
}
// All rule expressions are ORed together.
// The ';' that terminates an expression really just functions as a
// '|' with
// a low operator prededence.
//
// Each of the four sets of rules are collected separately.
// (forward, reverse, safe_forward, safe_reverse)
// OR this rule into the appropriate group of them.
//
int destRules = (fReverseRule ? RBBIRuleBuilder.fReverseTree : fRB.fDefaultTree);
if (fRB.fTreeRoots[destRules] != null) {
// This is not the first rule encounted.
// OR previous stuff (from *destRules)
// with the current rule expression (on the Node Stack)
// with the resulting OR expression going to *destRules
//
RBBINode thisRule = fNodeStack[fNodeStackPtr];
RBBINode prevRules = fRB.fTreeRoots[destRules];
RBBINode orNode = pushNewNode(RBBINode.opOr);
orNode.fLeftChild = prevRules;
prevRules.fParent = orNode;
orNode.fRightChild = thisRule;
thisRule.fParent = orNode;
fRB.fTreeRoots[destRules] = orNode;
} else {
// This is the first rule encountered (for this direction).
// Just move its parse tree from the stack to *destRules.
fRB.fTreeRoots[destRules] = fNodeStack[fNodeStackPtr];
}
fReverseRule = false; // in preparation for the next rule.
fLookAheadRule = false;
fNodeStackPtr = 0;
}
break;
case RBBIRuleParseTable.doRuleError:
error(RBBIRuleBuilder.U_BRK_RULE_SYNTAX);
returnVal = false;
break;
case RBBIRuleParseTable.doVariableNameExpectedErr:
error(RBBIRuleBuilder.U_BRK_RULE_SYNTAX);
break;
//
// Unary operands + ? *
// These all appear after the operand to which they apply.
// When we hit one, the operand (may be a whole sub expression)
// will be on the top of the stack.
// Unary Operator becomes TOS, with the old TOS as its one child.
case RBBIRuleParseTable.doUnaryOpPlus: {
RBBINode operandNode = fNodeStack[fNodeStackPtr--];
RBBINode plusNode = pushNewNode(RBBINode.opPlus);
plusNode.fLeftChild = operandNode;
operandNode.fParent = plusNode;
}
break;
case RBBIRuleParseTable.doUnaryOpQuestion: {
RBBINode operandNode = fNodeStack[fNodeStackPtr--];
RBBINode qNode = pushNewNode(RBBINode.opQuestion);
qNode.fLeftChild = operandNode;
operandNode.fParent = qNode;
}
break;
case RBBIRuleParseTable.doUnaryOpStar: {
RBBINode operandNode = fNodeStack[fNodeStackPtr--];
RBBINode starNode = pushNewNode(RBBINode.opStar);
starNode.fLeftChild = operandNode;
operandNode.fParent = starNode;
}
break;
case RBBIRuleParseTable.doRuleChar:
// A "Rule Character" is any single character that is a literal part
// of the regular expression. Like a, b and c in the expression "(abc*)
// | [:L:]"
// These are pretty uncommon in break rules; the terms are more commonly
// sets. To keep things uniform, treat these characters like as
// sets that just happen to contain only one character.
{
n = pushNewNode(RBBINode.setRef);
String s = String.valueOf((char)fC.fChar);
findSetFor(s, n, null);
n.fFirstPos = fScanIndex;
n.fLastPos = fNextIndex;
n.fText = fRB.fRules.substring(n.fFirstPos, n.fLastPos);
break;
}
case RBBIRuleParseTable.doDotAny:
// scanned a ".", meaning match any single character.
{
n = pushNewNode(RBBINode.setRef);
findSetFor(kAny, n, null);
n.fFirstPos = fScanIndex;
n.fLastPos = fNextIndex;
n.fText = fRB.fRules.substring(n.fFirstPos, n.fLastPos);
break;
}
case RBBIRuleParseTable.doSlash:
// Scanned a '/', which identifies a look-ahead break position in a
// rule.
n = pushNewNode(RBBINode.lookAhead);
n.fVal = fRuleNum;
n.fFirstPos = fScanIndex;
n.fLastPos = fNextIndex;
n.fText = fRB.fRules.substring(n.fFirstPos, n.fLastPos);
fLookAheadRule = true;
break;
case RBBIRuleParseTable.doStartTagValue:
// Scanned a '{', the opening delimiter for a tag value within a
// rule.
n = pushNewNode(RBBINode.tag);
n.fVal = 0;
n.fFirstPos = fScanIndex;
n.fLastPos = fNextIndex;
break;
case RBBIRuleParseTable.doTagDigit:
// Just scanned a decimal digit that's part of a tag value
{
n = fNodeStack[fNodeStackPtr];
int v = UCharacter.digit((char) fC.fChar, 10);
n.fVal = n.fVal * 10 + v;
break;
}
case RBBIRuleParseTable.doTagValue:
n = fNodeStack[fNodeStackPtr];
n.fLastPos = fNextIndex;
n.fText = fRB.fRules.substring(n.fFirstPos, n.fLastPos);
break;
case RBBIRuleParseTable.doTagExpectedError:
error(RBBIRuleBuilder.U_BRK_MALFORMED_RULE_TAG);
returnVal = false;
break;
case RBBIRuleParseTable.doOptionStart:
// Scanning a !!option. At the start of string.
fOptionStart = fScanIndex;
break;
case RBBIRuleParseTable.doOptionEnd: {
String opt = fRB.fRules.substring(fOptionStart, fScanIndex);
if (opt.equals("chain")) {
fRB.fChainRules = true;
} else if (opt.equals("LBCMNoChain")) {
fRB.fLBCMNoChain = true;
} else if (opt.equals("forward")) {
fRB.fDefaultTree = RBBIRuleBuilder.fForwardTree;
} else if (opt.equals("reverse")) {
fRB.fDefaultTree = RBBIRuleBuilder.fReverseTree;
} else if (opt.equals("safe_forward")) {
fRB.fDefaultTree = RBBIRuleBuilder.fSafeFwdTree;
} else if (opt.equals("safe_reverse")) {
fRB.fDefaultTree = RBBIRuleBuilder.fSafeRevTree;
} else if (opt.equals("lookAheadHardBreak")) {
fRB.fLookAheadHardBreak = true;
} else {
error(RBBIRuleBuilder.U_BRK_UNRECOGNIZED_OPTION);
}
break;
}
case RBBIRuleParseTable.doReverseDir:
fReverseRule = true;
break;
case RBBIRuleParseTable.doStartVariableName:
n = pushNewNode(RBBINode.varRef);
n.fFirstPos = fScanIndex;
break;
case RBBIRuleParseTable.doEndVariableName:
n = fNodeStack[fNodeStackPtr];
if (n == null || n.fType != RBBINode.varRef) {
error(RBBIRuleBuilder.U_BRK_INTERNAL_ERROR);
break;
}
n.fLastPos = fScanIndex;
n.fText = fRB.fRules.substring(n.fFirstPos + 1, n.fLastPos);
// Look the newly scanned name up in the symbol table
// If there's an entry, set the l. child of the var ref to the
// replacement expression.
// (We also pass through here when scanning assignments, but no harm
// is done, other
// than a slight wasted effort that seems hard to avoid. Lookup will
// be null)
n.fLeftChild = fSymbolTable.lookupNode(n.fText);
break;
case RBBIRuleParseTable.doCheckVarDef:
n = fNodeStack[fNodeStackPtr];
if (n.fLeftChild == null) {
error(RBBIRuleBuilder.U_BRK_UNDEFINED_VARIABLE);
returnVal = false;
}
break;
case RBBIRuleParseTable.doExprFinished:
break;
case RBBIRuleParseTable.doRuleErrorAssignExpr:
error(RBBIRuleBuilder.U_BRK_ASSIGN_ERROR);
returnVal = false;
break;
case RBBIRuleParseTable.doExit:
returnVal = false;
break;
case RBBIRuleParseTable.doScanUnicodeSet:
scanSet();
break;
default:
error(RBBIRuleBuilder.U_BRK_INTERNAL_ERROR);
returnVal = false;
break;
}
return returnVal;
}
//----------------------------------------------------------------------------------------
//
// Error Throw and IllegalArgumentException in response to a rule parse
// error.
//
//----------------------------------------------------------------------------------------
void error(int e) {
String s = "Error " + e + " at line " + fLineNum + " column "
+ fCharNum;
IllegalArgumentException ex = new IllegalArgumentException(s);
throw ex;
}
//----------------------------------------------------------------------------------------
//
// fixOpStack The parse stack holds partially assembled chunks of the parse
// tree.
// An entry on the stack may be as small as a single setRef node,
// or as large as the parse tree
// for an entire expression (this will be the one item left on the stack
// when the parsing of an RBBI rule completes.
//
// This function is called when a binary operator is encountered.
// It looks back up the stack for operators that are not yet associated
// with a right operand, and if the precedence of the stacked operator >=
// the precedence of the current operator, binds the operand left,
// to the previously encountered operator.
//
//----------------------------------------------------------------------------------------
void fixOpStack(int p) {
RBBINode n;
// printNodeStack("entering fixOpStack()");
for (;;) {
n = fNodeStack[fNodeStackPtr - 1]; // an operator node
if (n.fPrecedence == 0) {
System.out.print("RBBIRuleScanner.fixOpStack, bad operator node");
error(RBBIRuleBuilder.U_BRK_INTERNAL_ERROR);
return;
}
if (n.fPrecedence < p || n.fPrecedence <= RBBINode.precLParen) {
// The most recent operand goes with the current operator,
// not with the previously stacked one.
break;
}
// Stack operator is a binary op ( '|' or concatenation)
// TOS operand becomes right child of this operator.
// Resulting subexpression becomes the TOS operand.
n.fRightChild = fNodeStack[fNodeStackPtr];
fNodeStack[fNodeStackPtr].fParent = n;
fNodeStackPtr--;
// printNodeStack("looping in fixOpStack() ");
}
if (p <= RBBINode.precLParen) {
// Scan is at a right paren or end of expression.
// The scanned item must match the stack, or else there was an
// error.
// Discard the left paren (or start expr) node from the stack,
// leaving the completed (sub)expression as TOS.
if (n.fPrecedence != p) {
// Right paren encountered matched start of expression node, or
// end of expression matched with a left paren node.
error(RBBIRuleBuilder.U_BRK_MISMATCHED_PAREN);
}
fNodeStack[fNodeStackPtr - 1] = fNodeStack[fNodeStackPtr];
fNodeStackPtr--;
// Delete the now-discarded LParen or Start node.
// delete n;
}
// printNodeStack("leaving fixOpStack()");
}
//----------------------------------------------------------------------------
//
// RBBISetTableEl is an entry in the hash table of UnicodeSets that have
// been encountered. The val Node will be of nodetype uset
// and contain pointers to the actual UnicodeSets.
// The Key is the source string for initializing the set.
//
// The hash table is used to avoid creating duplicate
// unnamed (not $var references) UnicodeSets.
//
//----------------------------------------------------------------------------
static class RBBISetTableEl {
String key;
RBBINode val;
}
//----------------------------------------------------------------------------------------
//
// findSetFor given a String,
// - find the corresponding Unicode Set (uset node)
// (create one if necessary)
// - Set fLeftChild of the caller's node (should be a setRef node)
// to the uset node
// Maintain a hash table of uset nodes, so the same one is always used
// for the same string.
// If a "to adopt" set is provided and we haven't seen this key before,
// add the provided set to the hash table.
// If the string is one (32 bit) char in length, the set contains
// just one element which is the char in question.
// If the string is "any", return a set containing all chars.
//
//----------------------------------------------------------------------------------------
void findSetFor(String s, RBBINode node, UnicodeSet setToAdopt) {
RBBISetTableEl el;
// First check whether we've already cached a set for this string.
// If so, just use the cached set in the new node.
// delete any set provided by the caller, since we own it.
el = fSetTable.get(s);
if (el != null) {
node.fLeftChild = el.val;
Assert.assrt(node.fLeftChild.fType == RBBINode.uset);
return;
}
// Haven't seen this set before.
// If the caller didn't provide us with a prebuilt set,
// create a new UnicodeSet now.
if (setToAdopt == null) {
if (s.equals(kAny)) {
setToAdopt = new UnicodeSet(0x000000, 0x10ffff);
} else {
int c;
c = UTF16.charAt(s, 0);
setToAdopt = new UnicodeSet(c, c);
}
}
//
// Make a new uset node to refer to this UnicodeSet
// This new uset node becomes the child of the caller's setReference
// node.
//
RBBINode usetNode = new RBBINode(RBBINode.uset);
usetNode.fInputSet = setToAdopt;
usetNode.fParent = node;
node.fLeftChild = usetNode;
usetNode.fText = s;
//
// Add the new uset node to the list of all uset nodes.
//
fRB.fUSetNodes.add(usetNode);
//
// Add the new set to the set hash table.
//
el = new RBBISetTableEl();
el.key = s;
el.val = usetNode;
fSetTable.put(el.key, el);
return;
}
//
// Assorted Unicode character constants.
// Numeric because there is no portable way to enter them as literals.
// (Think EBCDIC).
//
static final int chNEL = 0x85; // NEL newline variant
static final int chLS = 0x2028; // Unicode Line Separator
//----------------------------------------------------------------------------------------
//
// stripRules Return a rules string without unnecessary
// characters.
//
//----------------------------------------------------------------------------------------
static String stripRules(String rules) {
StringBuilder strippedRules = new StringBuilder();
int rulesLength = rules.length();
for (int idx = 0; idx < rulesLength;) {
char ch = rules.charAt(idx++);
if (ch == '#') {
while (idx < rulesLength
&& ch != '\r' && ch != '\n' && ch != chNEL) {
ch = rules.charAt(idx++);
}
}
if (!UCharacter.isISOControl(ch)) {
strippedRules.append(ch);
}
}
return strippedRules.toString();
}
//----------------------------------------------------------------------------------------
//
// nextCharLL Low Level Next Char from rule input source.
// Get a char from the input character iterator,
// keep track of input position for error reporting.
//
//----------------------------------------------------------------------------------------
int nextCharLL() {
int ch;
if (fNextIndex >= fRB.fRules.length()) {
return -1;
}
ch = UTF16.charAt(fRB.fRules, fNextIndex);
fNextIndex = UTF16.moveCodePointOffset(fRB.fRules, fNextIndex, 1);
if (ch == '\r' ||
ch == chNEL ||
ch == chLS ||
ch == '\n' && fLastChar != '\r') {
// Character is starting a new line. Bump up the line number, and
// reset the column to 0.
fLineNum++;
fCharNum = 0;
if (fQuoteMode) {
error(RBBIRuleBuilder.U_BRK_NEW_LINE_IN_QUOTED_STRING);
fQuoteMode = false;
}
} else {
// Character is not starting a new line. Except in the case of a
// LF following a CR, increment the column position.
if (ch != '\n') {
fCharNum++;
}
}
fLastChar = ch;
return ch;
}
//---------------------------------------------------------------------------------
//
// nextChar for rules scanning. At this level, we handle stripping
// out comments and processing backslash character escapes.
// The rest of the rules grammar is handled at the next level up.
//
//---------------------------------------------------------------------------------
void nextChar(RBBIRuleChar c) {
// Unicode Character constants needed for the processing done by nextChar(),
// in hex because literals wont work on EBCDIC machines.
fScanIndex = fNextIndex;
c.fChar = nextCharLL();
c.fEscaped = false;
//
// check for '' sequence.
// These are recognized in all contexts, whether in quoted text or not.
//
if (c.fChar == '\'') {
if (UTF16.charAt(fRB.fRules, fNextIndex) == '\'') {
c.fChar = nextCharLL(); // get nextChar officially so character counts
c.fEscaped = true; // stay correct.
} else {
// Single quote, by itself.
// Toggle quoting mode.
// Return either '(' or ')', because quotes cause a grouping of the quoted text.
fQuoteMode = !fQuoteMode;
if (fQuoteMode == true) {
c.fChar = '(';
} else {
c.fChar = ')';
}
c.fEscaped = false; // The paren that we return is not escaped.
return;
}
}
if (fQuoteMode) {
c.fEscaped = true;
} else {
// We are not in a 'quoted region' of the source.
//
if (c.fChar == '#') {
// Start of a comment. Consume the rest of it.
// The new-line char that terminates the comment is always returned.
// It will be treated as white-space, and serves to break up anything
// that might otherwise incorrectly clump together with a comment in
// the middle (a variable name, for example.)
for (;;) {
c.fChar = nextCharLL();
if (c.fChar == -1 || // EOF
c.fChar == '\r' ||
c.fChar == '\n' ||
c.fChar == chNEL ||
c.fChar == chLS)
{
break;
}
}
}
if (c.fChar == -1) {
return;
}
//
// check for backslash escaped characters.
// Use String.unescapeAt() to handle them.
//
if (c.fChar == '\\') {
c.fEscaped = true;
int[] unescapeIndex = new int[1];
unescapeIndex[0] = fNextIndex;
c.fChar = Utility.unescapeAt(fRB.fRules, unescapeIndex);
if (unescapeIndex[0] == fNextIndex) {
error(RBBIRuleBuilder.U_BRK_HEX_DIGITS_EXPECTED);
}
fCharNum += unescapeIndex[0] - fNextIndex;
fNextIndex = unescapeIndex[0];
}
}
// putc(c.fChar, stdout);
}
//---------------------------------------------------------------------------------
//
// Parse RBBI rules. The state machine for rules parsing is here.
// The state tables are hand-written in the file rbbirpt.txt,
// and converted to the form used here by a perl
// script rbbicst.pl
//
//---------------------------------------------------------------------------------
void parse() {
int state;
RBBIRuleParseTable.RBBIRuleTableElement tableEl;
state = 1;
nextChar(fC);
//
// Main loop for the rule parsing state machine.
// Runs once per state transition.
// Each time through optionally performs, depending on the state table,
// - an advance to the the next input char
// - an action to be performed.
// - pushing or popping a state to/from the local state return stack.
//
for (;;) {
// Quit if state == 0. This is the normal way to exit the state machine.
//
if (state == 0) {
break;
}
// Find the state table element that matches the input char from the rule, or the
// class of the input character. Start with the first table row for this
// state, then linearly scan forward until we find a row that matches the
// character. The last row for each state always matches all characters, so
// the search will stop there, if not before.
//
tableEl = RBBIRuleParseTable.gRuleParseStateTable[state];
if (fRB.fDebugEnv != null && fRB.fDebugEnv.indexOf("scan") >= 0) {
System.out.println("char, line, col = (\'" + (char) fC.fChar
+ "\', " + fLineNum + ", " + fCharNum + " state = "
+ tableEl.fStateName);
}
for (int tableRow = state;; tableRow++) { // loop over the state table rows associated with this state.
tableEl = RBBIRuleParseTable.gRuleParseStateTable[tableRow];
if (fRB.fDebugEnv != null && fRB.fDebugEnv.indexOf("scan") >= 0) {
System.out.print(".");
}
if (tableEl.fCharClass < 127 && fC.fEscaped == false
&& tableEl.fCharClass == fC.fChar) {
// Table row specified an individual character, not a set, and
// the input character is not escaped, and
// the input character matched it.
break;
}
if (tableEl.fCharClass == 255) {
// Table row specified default, match anything character class.
break;
}
if (tableEl.fCharClass == 254 && fC.fEscaped) {
// Table row specified "escaped" and the char was escaped.
break;
}
if (tableEl.fCharClass == 253 && fC.fEscaped
&& (fC.fChar == 0x50 || fC.fChar == 0x70)) {
// Table row specified "escaped P" and the char is either 'p' or 'P'.
break;
}
if (tableEl.fCharClass == 252 && fC.fChar == -1) {
// Table row specified eof and we hit eof on the input.
break;
}
if (tableEl.fCharClass >= 128 && tableEl.fCharClass < 240 && // Table specs a char class &&
fC.fEscaped == false && // char is not escaped &&
fC.fChar != -1) { // char is not EOF
UnicodeSet uniset = fRuleSets[tableEl.fCharClass - 128];
if (uniset.contains(fC.fChar)) {
// Table row specified a character class, or set of characters,
// and the current char matches it.
break;
}
}
}
if (fRB.fDebugEnv != null && fRB.fDebugEnv.indexOf("scan") >= 0) {
System.out.println("");
}
//
// We've found the row of the state table that matches the current input
// character from the rules string.
// Perform any action specified by this row in the state table.
if (doParseActions(tableEl.fAction) == false) {
// Break out of the state machine loop if the
// the action signalled some kind of error, or
// the action was to exit, occurs on normal end-of-rules-input.
break;
}
if (tableEl.fPushState != 0) {
fStackPtr++;
if (fStackPtr >= kStackSize) {
System.out.println("RBBIRuleScanner.parse() - state stack overflow.");
error(RBBIRuleBuilder.U_BRK_INTERNAL_ERROR);
}
fStack[fStackPtr] = tableEl.fPushState;
}
if (tableEl.fNextChar) {
nextChar(fC);
}
// Get the next state from the table entry, or from the
// state stack if the next state was specified as "pop".
if (tableEl.fNextState != 255) {
state = tableEl.fNextState;
} else {
state = fStack[fStackPtr];
fStackPtr--;
if (fStackPtr < 0) {
System.out.println("RBBIRuleScanner.parse() - state stack underflow.");
error(RBBIRuleBuilder.U_BRK_INTERNAL_ERROR);
}
}
}
//
// If there were NO user specified reverse rules, set up the equivalent of ".*;"
//
if (fRB.fTreeRoots[RBBIRuleBuilder.fReverseTree] == null) {
fRB.fTreeRoots[RBBIRuleBuilder.fReverseTree] = pushNewNode(RBBINode.opStar);
RBBINode operand = pushNewNode(RBBINode.setRef);
findSetFor(kAny, operand, null);
fRB.fTreeRoots[RBBIRuleBuilder.fReverseTree].fLeftChild = operand;
operand.fParent = fRB.fTreeRoots[RBBIRuleBuilder.fReverseTree];
fNodeStackPtr -= 2;
}
//
// Parsing of the input RBBI rules is complete.
// We now have a parse tree for the rule expressions
// and a list of all UnicodeSets that are referenced.
//
if (fRB.fDebugEnv != null && fRB.fDebugEnv.indexOf("symbols") >= 0) {
fSymbolTable.rbbiSymtablePrint();
}
if (fRB.fDebugEnv != null && fRB.fDebugEnv.indexOf("ptree") >= 0) {
System.out.println("Completed Forward Rules Parse Tree...");
fRB.fTreeRoots[RBBIRuleBuilder.fForwardTree].printTree(true);
System.out.println("\nCompleted Reverse Rules Parse Tree...");
fRB.fTreeRoots[RBBIRuleBuilder.fReverseTree].printTree(true);
System.out.println("\nCompleted Safe Point Forward Rules Parse Tree...");
if (fRB.fTreeRoots[RBBIRuleBuilder.fSafeFwdTree] == null) {
System.out.println(" -- null -- ");
} else {
fRB.fTreeRoots[RBBIRuleBuilder.fSafeFwdTree].printTree(true);
}
System.out.println("\nCompleted Safe Point Reverse Rules Parse Tree...");
if (fRB.fTreeRoots[RBBIRuleBuilder.fSafeRevTree] == null) {
System.out.println(" -- null -- ");
} else {
fRB.fTreeRoots[RBBIRuleBuilder.fSafeRevTree].printTree(true);
}
}
}
//---------------------------------------------------------------------------------
//
// printNodeStack for debugging...
//
//---------------------------------------------------------------------------------
///CLOVER:OFF
void printNodeStack(String title) {
int i;
System.out.println(title + ". Dumping node stack...\n");
for (i = fNodeStackPtr; i > 0; i--) {
fNodeStack[i].printTree(true);
}
}
///CLOVER:ON
//---------------------------------------------------------------------------------
//
// pushNewNode create a new RBBINode of the specified type and push it
// onto the stack of nodes.
//
//---------------------------------------------------------------------------------
RBBINode pushNewNode(int nodeType) {
fNodeStackPtr++;
if (fNodeStackPtr >= kStackSize) {
System.out.println("RBBIRuleScanner.pushNewNode - stack overflow.");
error(RBBIRuleBuilder.U_BRK_INTERNAL_ERROR);
}
fNodeStack[fNodeStackPtr] = new RBBINode(nodeType);
return fNodeStack[fNodeStackPtr];
}
//---------------------------------------------------------------------------------
//
// scanSet Construct a UnicodeSet from the text at the current scan
// position. Advance the scan position to the first character
// after the set.
//
// A new RBBI setref node referring to the set is pushed onto the node
// stack.
//
// The scan position is normally under the control of the state machine
// that controls rule parsing. UnicodeSets, however, are parsed by
// the UnicodeSet constructor, not by the RBBI rule parser.
//
//---------------------------------------------------------------------------------
void scanSet() {
UnicodeSet uset = null;
int startPos;
ParsePosition pos = new ParsePosition(fScanIndex);
int i;
startPos = fScanIndex;
try {
uset = new UnicodeSet(fRB.fRules, pos, fSymbolTable, UnicodeSet.IGNORE_SPACE);
} catch (Exception e) { // TODO: catch fewer exception types.
// Repackage UnicodeSet errors as RBBI rule builder errors, with location info.
error(RBBIRuleBuilder.U_BRK_MALFORMED_SET);
}
// Verify that the set contains at least one code point.
//
if (uset.isEmpty()) {
// This set is empty.
// Make it an error, because it almost certainly is not what the user wanted.
// Also, avoids having to think about corner cases in the tree manipulation code
// that occurs later on.
// TODO: this shouldn't be an error; it does happen.
error(RBBIRuleBuilder.U_BRK_RULE_EMPTY_SET);
}
// Advance the RBBI parse postion over the UnicodeSet pattern.
// Don't just set fScanIndex because the line/char positions maintained
// for error reporting would be thrown off.
i = pos.getIndex();
for (;;) {
if (fNextIndex >= i) {
break;
}
nextCharLL();
}
RBBINode n;
n = pushNewNode(RBBINode.setRef);
n.fFirstPos = startPos;
n.fLastPos = fNextIndex;
n.fText = fRB.fRules.substring(n.fFirstPos, n.fLastPos);
// findSetFor() serves several purposes here:
// - Adopts storage for the UnicodeSet, will be responsible for deleting.
// - Mantains collection of all sets in use, needed later for establishing
// character categories for run time engine.
// - Eliminates mulitiple instances of the same set.
// - Creates a new uset node if necessary (if this isn't a duplicate.)
findSetFor(n.fText, n, uset);
}
}