blob: e70c0f09b32ba2dedfbd08b032e9deb763f349bd [file] [log] [blame]
/*
*******************************************************************************
* Copyright (C) 2009-2010, International Business Machines
* Corporation and others. All Rights Reserved.
*******************************************************************************
*/
package com.ibm.icu.impl;
import java.io.BufferedInputStream;
import java.io.DataInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.util.ArrayList;
import java.util.Iterator;
import com.ibm.icu.text.UTF16;
import com.ibm.icu.text.UnicodeSet;
import com.ibm.icu.util.VersionInfo;
public final class Normalizer2Impl {
public static final class Hangul {
/* Korean Hangul and Jamo constants */
public static final int JAMO_L_BASE=0x1100; /* "lead" jamo */
public static final int JAMO_V_BASE=0x1161; /* "vowel" jamo */
public static final int JAMO_T_BASE=0x11a7; /* "trail" jamo */
public static final int HANGUL_BASE=0xac00;
public static final int JAMO_L_COUNT=19;
public static final int JAMO_V_COUNT=21;
public static final int JAMO_T_COUNT=28;
public static final int JAMO_L_LIMIT=JAMO_L_BASE+JAMO_L_COUNT;
public static final int JAMO_V_LIMIT=JAMO_V_BASE+JAMO_V_COUNT;
public static final int JAMO_VT_COUNT=JAMO_V_COUNT*JAMO_T_COUNT;
public static final int HANGUL_COUNT=JAMO_L_COUNT*JAMO_V_COUNT*JAMO_T_COUNT;
public static final int HANGUL_LIMIT=HANGUL_BASE+HANGUL_COUNT;
public static boolean isHangul(int c) {
return HANGUL_BASE<=c && c<HANGUL_LIMIT;
}
public static boolean isHangulWithoutJamoT(char c) {
c-=HANGUL_BASE;
return c<HANGUL_COUNT && c%JAMO_T_COUNT==0;
}
public static boolean isJamoL(int c) {
return JAMO_L_BASE<=c && c<JAMO_L_LIMIT;
}
public static boolean isJamoV(int c) {
return JAMO_V_BASE<=c && c<JAMO_V_LIMIT;
}
/**
* Decomposes c, which must be a Hangul syllable, into buffer
* and returns the length of the decomposition (2 or 3).
*/
public static int decompose(int c, Appendable buffer) {
try {
c-=HANGUL_BASE;
int c2=c%JAMO_T_COUNT;
c/=JAMO_T_COUNT;
buffer.append((char)(JAMO_L_BASE+c/JAMO_V_COUNT));
buffer.append((char)(JAMO_V_BASE+c%JAMO_V_COUNT));
if(c2==0) {
return 2;
} else {
buffer.append((char)(JAMO_T_BASE+c2));
return 3;
}
} catch(IOException e) {
// Will not occur because we do not write to I/O.
throw new RuntimeException(e);
}
}
}
/**
* Writable buffer that takes care of canonical ordering.
* Its Appendable methods behave like the C++ implementation's
* appendZeroCC() methods.
* <p>
* If dest is a StringBuilder, then the buffer writes directly to it.
* Otherwise, the buffer maintains a StringBuilder for intermediate text segments
* until no further changes are necessary and whole segments are appended.
* append() methods that take combining-class values always write to the StringBuilder.
* Other append() methods flush and append to the Appendable.
*/
public static final class ReorderingBuffer implements Appendable {
public ReorderingBuffer(Normalizer2Impl ni, Appendable dest, int destCapacity) {
impl=ni;
app=dest;
if(app instanceof StringBuilder) {
appIsStringBuilder=true;
str=(StringBuilder)dest;
// In Java, the constructor subsumes public void init(int destCapacity) {
str.ensureCapacity(destCapacity);
reorderStart=0;
if(str.length()==0) {
lastCC=0;
} else {
setIterator();
lastCC=previousCC();
// Set reorderStart after the last code point with cc<=1 if there is one.
if(lastCC>1) {
while(previousCC()>1) {}
}
reorderStart=codePointLimit;
}
} else {
appIsStringBuilder=false;
str=new StringBuilder();
reorderStart=0;
lastCC=0;
}
}
public boolean isEmpty() { return str.length()==0; }
public int length() { return str.length(); }
public int getLastCC() { return lastCC; }
public StringBuilder getStringBuilder() { return str; }
public boolean equals(CharSequence s, int start, int limit) {
return UTF16Plus.equal(str, 0, str.length(), s, start, limit);
}
// For Hangul composition, replacing the Leading consonant Jamo with the syllable.
public void setLastChar(char c) {
str.setCharAt(str.length()-1, c);
}
public void append(int c, int cc) {
if(lastCC<=cc || cc==0) {
str.appendCodePoint(c);
lastCC=cc;
if(cc<=1) {
reorderStart=str.length();
}
} else {
insert(c, cc);
}
}
// s must be in NFD, otherwise change the implementation.
public void append(CharSequence s, int start, int limit,
int leadCC, int trailCC) {
if(start==limit) {
return;
}
if(lastCC<=leadCC || leadCC==0) {
if(trailCC<=1) {
reorderStart=str.length()+(limit-start);
} else if(leadCC<=1) {
reorderStart=str.length()+1; // Ok if not a code point boundary.
}
str.append(s, start, limit);
lastCC=trailCC;
} else {
int c=Character.codePointAt(s, start);
start+=Character.charCount(c);
insert(c, leadCC); // insert first code point
while(start<limit) {
c=Character.codePointAt(s, start);
start+=Character.charCount(c);
if(start<limit) {
// s must be in NFD, otherwise we need to use getCC().
leadCC=getCCFromYesOrMaybe(impl.getNorm16(c));
} else {
leadCC=trailCC;
}
append(c, leadCC);
}
}
}
// The following append() methods work like C++ appendZeroCC().
// They assume that the cc or trailCC of their input is 0.
// Most of them implement Appendable interface methods.
// @Override when we switch to Java 6
public ReorderingBuffer append(char c) {
str.append(c);
lastCC=0;
reorderStart=str.length();
return this;
}
public void appendZeroCC(int c) {
str.appendCodePoint(c);
lastCC=0;
reorderStart=str.length();
}
// @Override when we switch to Java 6
public ReorderingBuffer append(CharSequence s) {
if(s.length()!=0) {
str.append(s);
lastCC=0;
reorderStart=str.length();
}
return this;
}
// @Override when we switch to Java 6
public ReorderingBuffer append(CharSequence s, int start, int limit) {
if(start!=limit) {
str.append(s, start, limit);
lastCC=0;
reorderStart=str.length();
}
return this;
}
/**
* Flushes from the intermediate StringBuilder to the Appendable,
* if they are different objects.
* Used after recomposition.
* Must be called at the end when writing to a non-StringBuilder Appendable.
*/
public void flush() {
if(appIsStringBuilder) {
reorderStart=str.length();
} else {
try {
app.append(str);
str.setLength(0);
reorderStart=0;
} catch(IOException e) {
throw new RuntimeException(e); // Avoid declaring "throws IOException".
}
}
lastCC=0;
}
/**
* Flushes from the intermediate StringBuilder to the Appendable,
* if they are different objects.
* Then appends the new text to the Appendable or StringBuilder.
* Normally used after quick check loops find a non-empty sequence.
*/
public ReorderingBuffer flushAndAppendZeroCC(CharSequence s, int start, int limit) {
if(appIsStringBuilder) {
str.append(s, start, limit);
reorderStart=str.length();
} else {
try {
app.append(str).append(s, start, limit);
str.setLength(0);
reorderStart=0;
} catch(IOException e) {
throw new RuntimeException(e); // Avoid declaring "throws IOException".
}
}
lastCC=0;
return this;
}
public void remove() {
str.setLength(0);
lastCC=0;
reorderStart=0;
}
public void removeSuffix(int suffixLength) {
int oldLength=str.length();
str.delete(oldLength-suffixLength, oldLength);
lastCC=0;
reorderStart=str.length();
}
/*
* TODO: Revisit whether it makes sense to track reorderStart.
* It is set to after the last known character with cc<=1,
* which stops previousCC() before it reads that character and looks up its cc.
* previousCC() is normally only called from insert().
* In other words, reorderStart speeds up the insertion of a combining mark
* into a multi-combining mark sequence where it does not belong at the end.
* This might not be worth the trouble.
* On the other hand, it's not a huge amount of trouble.
*
* We probably need it for UNORM_SIMPLE_APPEND.
*/
// Inserts c somewhere before the last character.
// Requires 0<cc<lastCC which implies reorderStart<limit.
private void insert(int c, int cc) {
for(setIterator(), skipPrevious(); previousCC()>cc;) {}
// insert c at codePointLimit, after the character with prevCC<=cc
if(c<=0xffff) {
str.insert(codePointLimit, (char)c);
if(cc<=1) {
reorderStart=codePointLimit+1;
}
} else {
str.insert(codePointLimit, Character.toChars(c));
if(cc<=1) {
reorderStart=codePointLimit+2;
}
}
}
private final Normalizer2Impl impl;
private final Appendable app;
private final StringBuilder str;
private final boolean appIsStringBuilder;
private int reorderStart;
private int lastCC;
// private backward iterator
private void setIterator() { codePointStart=str.length(); }
private void skipPrevious() { // Requires 0<codePointStart.
codePointLimit=codePointStart;
codePointStart=str.offsetByCodePoints(codePointStart, -1);
}
private int previousCC() { // Returns 0 if there is no previous character.
codePointLimit=codePointStart;
if(reorderStart>=codePointStart) {
return 0;
}
int c=str.codePointBefore(codePointStart);
codePointStart-=Character.charCount(c);
if(c<MIN_CCC_LCCC_CP) {
return 0;
}
return getCCFromYesOrMaybe(impl.getNorm16(c));
}
private int codePointStart, codePointLimit;
}
// TODO: Propose as public API on the UTF16 class.
// TODO: Propose widening UTF16 methods that take char to take int.
// TODO: Propose widening UTF16 methods that take String to take CharSequence.
public static final class UTF16Plus {
/**
* Assuming c is a surrogate code point (UTF16.isSurrogate(c)),
* is it a lead surrogate?
* @param c code unit or code point
* @return true or false
* @draft ICU 4.6
*/
public static boolean isSurrogateLead(int c) { return (c&0x400)==0; }
/**
* Compares two CharSequence objects for binary equality.
* @param s1 first sequence
* @param s2 second sequence
* @return true if s1 contains the same text as s2
* @draft ICU 4.6
*/
public static boolean equal(CharSequence s1, CharSequence s2) {
if(s1==s2) {
return true;
}
int length=s1.length();
if(length!=s2.length()) {
return false;
}
for(int i=0; i<length; ++i) {
if(s1.charAt(i)!=s2.charAt(i)) {
return false;
}
}
return true;
}
/**
* Compares two CharSequence subsequences for binary equality.
* @param s1 first sequence
* @param start1 start offset in first sequence
* @param limit1 limit offset in first sequence
* @param s2 second sequence
* @param start2 start offset in second sequence
* @param limit2 limit offset in second sequence
* @return true if s1.subSequence(start1, limit1) contains the same text
* as s2.subSequence(start2, limit2)
* @draft ICU 4.6
*/
public static boolean equal(CharSequence s1, int start1, int limit1,
CharSequence s2, int start2, int limit2) {
if((limit1-start1)!=(limit2-start2)) {
return false;
}
if(s1==s2 && start1==start2) {
return true;
}
while(start1<limit1) {
if(s1.charAt(start1++)!=s2.charAt(start2++)) {
return false;
}
}
return true;
}
}
public Normalizer2Impl() {}
private static final class IsAcceptable implements ICUBinary.Authenticate {
// @Override when we switch to Java 6
public boolean isDataVersionAcceptable(byte version[]) {
return version[0]==1;
}
}
private static final IsAcceptable IS_ACCEPTABLE = new IsAcceptable();
private static final byte DATA_FORMAT[] = { 0x4e, 0x72, 0x6d, 0x32 }; // "Nrm2"
public Normalizer2Impl load(InputStream data) {
try {
BufferedInputStream bis=new BufferedInputStream(data);
dataVersion=ICUBinary.readHeaderAndDataVersion(bis, DATA_FORMAT, IS_ACCEPTABLE);
DataInputStream ds=new DataInputStream(bis);
int indexesLength=ds.readInt()/4; // inIndexes[IX_NORM_TRIE_OFFSET]/4
if(indexesLength<=IX_MIN_MAYBE_YES) {
throw new IOException("Normalizer2 data: not enough indexes");
}
int[] inIndexes=new int[indexesLength];
inIndexes[0]=indexesLength*4;
for(int i=1; i<indexesLength; ++i) {
inIndexes[i]=ds.readInt();
}
minDecompNoCP=inIndexes[IX_MIN_DECOMP_NO_CP];
minCompNoMaybeCP=inIndexes[IX_MIN_COMP_NO_MAYBE_CP];
minYesNo=inIndexes[IX_MIN_YES_NO];
minNoNo=inIndexes[IX_MIN_NO_NO];
limitNoNo=inIndexes[IX_LIMIT_NO_NO];
minMaybeYes=inIndexes[IX_MIN_MAYBE_YES];
// Read the normTrie.
int offset=inIndexes[IX_NORM_TRIE_OFFSET];
int nextOffset=inIndexes[IX_EXTRA_DATA_OFFSET];
normTrie=Trie2_16.createFromSerialized(ds);
int trieLength=normTrie.getSerializedLength();
if(trieLength>(nextOffset-offset)) {
throw new IOException("Normalizer2 data: not enough bytes for normTrie");
}
ds.skipBytes((nextOffset-offset)-trieLength); // skip padding after trie bytes
// Read the composition and mapping data.
offset=nextOffset;
nextOffset=inIndexes[IX_RESERVED2_OFFSET];
int numChars=(nextOffset-offset)/2;
char[] chars;
if(numChars!=0) {
chars=new char[numChars];
for(int i=0; i<numChars; ++i) {
chars[i]=ds.readChar();
}
maybeYesCompositions=new String(chars);
extraData=maybeYesCompositions.substring(MIN_NORMAL_MAYBE_YES-minMaybeYes);
}
data.close();
return this;
} catch(IOException e) {
throw new RuntimeException(e);
}
}
public Normalizer2Impl load(String name) {
return load(ICUData.getRequiredStream(name));
}
public void addPropertyStarts(UnicodeSet set) {
/* add the start code point of each same-value range of each trie */
Iterator<Trie2.Range> trieIterator=normTrie.iterator();
Trie2.Range range;
while(trieIterator.hasNext() && !(range=trieIterator.next()).leadSurrogate) {
/* add the start code point to the USet */
set.add(range.startCodePoint);
}
/* add Hangul LV syllables and LV+1 because of skippables */
for(int c=Hangul.HANGUL_BASE; c<Hangul.HANGUL_LIMIT; c+=Hangul.JAMO_T_COUNT) {
set.add(c);
set.add(c+1);
}
set.add(Hangul.HANGUL_LIMIT); /* add Hangul+1 to continue with other properties */
}
public void addCanonIterPropertyStarts(UnicodeSet set) {
/* add the start code point of each same-value range of the canonical iterator data trie */
ensureCanonIterData();
// currently only used for the SEGMENT_STARTER property
Iterator<Trie2.Range> trieIterator=canonIterData.iterator(segmentStarterMapper);
Trie2.Range range;
while(trieIterator.hasNext() && !(range=trieIterator.next()).leadSurrogate) {
/* add the start code point to the USet */
set.add(range.startCodePoint);
}
}
private static final Trie2.ValueMapper segmentStarterMapper=new Trie2.ValueMapper() {
public int map(int in) {
return in&CANON_NOT_SEGMENT_STARTER;
}
};
// low-level properties ------------------------------------------------ ***
public Trie2_16 getNormTrie() { return normTrie; }
public synchronized Trie2_16 getFCDTrie() {
if(fcdTrie!=null) {
return fcdTrie;
}
Trie2Writable newFCDTrie=new Trie2Writable(0, 0);
Iterator<Trie2.Range> trieIterator=normTrie.iterator();
Trie2.Range range;
while(trieIterator.hasNext() && !(range=trieIterator.next()).leadSurrogate) {
// Set the FCD value for a range of same-norm16 characters.
if(range.value!=0) {
setFCD16FromNorm16(range.startCodePoint, range.endCodePoint, range.value, newFCDTrie);
}
}
for(char lead=0xd800; lead<0xdc00; ++lead) {
// Collect (OR together) the FCD values for a range of supplementary characters,
// for their lead surrogate code unit.
int oredValue=newFCDTrie.get(lead);
trieIterator=normTrie.iteratorForLeadSurrogate(lead);
while(trieIterator.hasNext()) {
oredValue|=trieIterator.next().value;
}
if(oredValue!=0) {
// Set a "bad" value for makeFCD() to break the quick check loop
// and look up the value for the supplementary code point.
// If there is any lccc, then set the worst-case lccc of 1.
// The ORed-together value's tccc is already the worst case.
if(oredValue>0xff) {
oredValue=0x100|(oredValue&0xff);
}
newFCDTrie.setForLeadSurrogateCodeUnit(lead, oredValue);
}
}
return fcdTrie=newFCDTrie.toTrie2_16();
}
public synchronized Normalizer2Impl ensureCanonIterData() {
if(canonIterData==null) {
Trie2Writable newData=new Trie2Writable(0, 0);
canonStartSets=new ArrayList<UnicodeSet>();
Iterator<Trie2.Range> trieIterator=normTrie.iterator();
Trie2.Range range;
while(trieIterator.hasNext() && !(range=trieIterator.next()).leadSurrogate) {
final int norm16=range.value;
if(norm16==0 || (minYesNo<=norm16 && norm16<minNoNo)) {
// Inert, or 2-way mapping (including Hangul syllable).
// We do not write a canonStartSet for any yesNo character.
// Composites from 2-way mappings are added at runtime from the
// starter's compositions list, and the other characters in
// 2-way mappings get CANON_NOT_SEGMENT_STARTER set because they are
// "maybe" characters.
continue;
}
for(int c=range.startCodePoint; c<=range.endCodePoint; ++c) {
final int oldValue=newData.get(c);
int newValue=oldValue;
if(norm16>=minMaybeYes) {
// not a segment starter if it occurs in a decomposition or has cc!=0
newValue|=CANON_NOT_SEGMENT_STARTER;
if(norm16<MIN_NORMAL_MAYBE_YES) {
newValue|=CANON_HAS_COMPOSITIONS;
}
} else if(norm16<minYesNo) {
newValue|=CANON_HAS_COMPOSITIONS;
} else {
// c has a one-way decomposition
int c2=c;
int norm16_2=norm16;
while(limitNoNo<=norm16_2 && norm16_2<minMaybeYes) {
c2=this.mapAlgorithmic(c2, norm16_2);
norm16_2=getNorm16(c2);
}
if(minYesNo<=norm16_2 && norm16_2<limitNoNo) {
// c decomposes, get everything from the variable-length extra data
int firstUnit=extraData.charAt(norm16_2++);
int length=firstUnit&MAPPING_LENGTH_MASK;
if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD)!=0) {
if(c==c2 && (extraData.charAt(norm16_2)&0xff)!=0) {
newValue|=CANON_NOT_SEGMENT_STARTER; // original c has cc!=0
}
++norm16_2;
}
// Skip empty mappings (no characters in the decomposition).
if(length!=0) {
// add c to first code point's start set
int limit=norm16_2+length;
c2=extraData.codePointAt(norm16_2);
addToStartSet(newData, c, c2);
// Set CANON_NOT_SEGMENT_STARTER for each remaining code point of a
// one-way mapping. A 2-way mapping is possible here after
// intermediate algorithmic mapping.
if(norm16_2>=minNoNo) {
while((norm16_2+=Character.charCount(c2))<limit) {
c2=extraData.codePointAt(norm16_2);
int c2Value=newData.get(c2);
if((c2Value&CANON_NOT_SEGMENT_STARTER)==0) {
newData.set(c2, c2Value|CANON_NOT_SEGMENT_STARTER);
}
}
}
}
} else {
// c decomposed to c2 algorithmically; c has cc==0
addToStartSet(newData, c, c2);
}
}
if(newValue!=oldValue) {
newData.set(c, newValue);
}
}
}
canonIterData=newData.toTrie2_32();
}
return this;
}
public int getNorm16(int c) { return normTrie.get(c); }
public int getCompQuickCheck(int norm16) {
if(norm16<minNoNo || MIN_YES_YES_WITH_CC<=norm16) {
return 1; // yes
} else if(minMaybeYes<=norm16) {
return 2; // maybe
} else {
return 0; // no
}
}
public boolean isCompNo(int norm16) { return minNoNo<=norm16 && norm16<minMaybeYes; }
public boolean isDecompYes(int norm16) { return norm16<minYesNo || minMaybeYes<=norm16; }
public int getCC(int norm16) {
if(norm16>=MIN_NORMAL_MAYBE_YES) {
return norm16&0xff;
}
if(norm16<minNoNo || limitNoNo<=norm16) {
return 0;
}
return getCCFromNoNo(norm16);
}
public static int getCCFromYesOrMaybe(int norm16) {
return norm16>=MIN_NORMAL_MAYBE_YES ? norm16&0xff : 0;
}
public int getFCD16(int c) { return fcdTrie.get(c); }
public int getFCD16FromSingleLead(char c) { return fcdTrie.getFromU16SingleLead(c); }
void setFCD16FromNorm16(int start, int end, int norm16, Trie2Writable newFCDTrie) {
// Only loops for 1:1 algorithmic mappings.
for(;;) {
if(norm16>=MIN_NORMAL_MAYBE_YES) {
norm16&=0xff;
norm16|=norm16<<8;
} else if(norm16<=minYesNo || minMaybeYes<=norm16) {
// no decomposition or Hangul syllable, all zeros
break;
} else if(limitNoNo<=norm16) {
int delta=norm16-(minMaybeYes-MAX_DELTA-1);
if(start==end) {
start+=delta;
norm16=getNorm16(start);
} else {
// the same delta leads from different original characters to different mappings
do {
int c=start+delta;
setFCD16FromNorm16(c, c, getNorm16(c), newFCDTrie);
} while(++start<=end);
break;
}
} else {
// c decomposes, get everything from the variable-length extra data
int firstUnit=extraData.charAt(norm16);
if((firstUnit&MAPPING_LENGTH_MASK)==0) {
// A character that is deleted (maps to an empty string) must
// get the worst-case lccc and tccc values because arbitrary
// characters on both sides will become adjacent.
norm16=0x1ff;
} else {
if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD)!=0) {
norm16=extraData.charAt(norm16+1)&0xff00; // lccc
} else {
norm16=0;
}
norm16|=firstUnit>>8; // tccc
}
}
newFCDTrie.setRange(start, end, norm16, true);
break;
}
}
/**
* Get the decomposition for one code point.
* @param c code point
* @return c's decomposition, if it has one; returns null if it does not have a decomposition
*/
public String getDecomposition(int c) {
int decomp=-1;
int norm16;
for(;;) {
if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) {
// c does not decompose
} else if(isHangul(norm16)) {
// Hangul syllable: decompose algorithmically
StringBuilder buffer=new StringBuilder();
Hangul.decompose(c, buffer);
return buffer.toString();
} else if(isDecompNoAlgorithmic(norm16)) {
decomp=c=mapAlgorithmic(c, norm16);
continue;
} else {
// c decomposes, get everything from the variable-length extra data
int firstUnit=extraData.charAt(norm16++);
int length=firstUnit&MAPPING_LENGTH_MASK;
if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD)!=0) {
++norm16;
}
return extraData.substring(norm16, norm16+length);
}
if(decomp<0) {
return null;
} else {
return UTF16.valueOf(decomp);
}
}
}
public boolean isCanonSegmentStarter(int c) {
return canonIterData.get(c)>=0;
}
public boolean getCanonStartSet(int c, UnicodeSet set) {
int canonValue=canonIterData.get(c)&~CANON_NOT_SEGMENT_STARTER;
if(canonValue==0) {
return false;
}
set.clear();
int value=canonValue&CANON_VALUE_MASK;
if((canonValue&CANON_HAS_SET)!=0) {
set.addAll(canonStartSets.get(value));
} else if(value!=0) {
set.add(value);
}
if((canonValue&CANON_HAS_COMPOSITIONS)!=0) {
int norm16=getNorm16(c);
if(norm16==JAMO_L) {
int syllable=Hangul.HANGUL_BASE+(c-Hangul.JAMO_L_BASE)*Hangul.JAMO_VT_COUNT;
set.add(syllable, syllable+Hangul.JAMO_VT_COUNT-1);
} else {
addComposites(getCompositionsList(norm16), set);
}
}
return true;
}
public static final int MIN_CCC_LCCC_CP=0x300;
public static final int MIN_YES_YES_WITH_CC=0xff01;
public static final int JAMO_VT=0xff00;
public static final int MIN_NORMAL_MAYBE_YES=0xfe00;
public static final int JAMO_L=1;
public static final int MAX_DELTA=0x40;
// Byte offsets from the start of the data, after the generic header.
public static final int IX_NORM_TRIE_OFFSET=0;
public static final int IX_EXTRA_DATA_OFFSET=1;
public static final int IX_RESERVED2_OFFSET=2;
public static final int IX_TOTAL_SIZE=7;
// Code point thresholds for quick check codes.
public static final int IX_MIN_DECOMP_NO_CP=8;
public static final int IX_MIN_COMP_NO_MAYBE_CP=9;
// Norm16 value thresholds for quick check combinations and types of extra data.
public static final int IX_MIN_YES_NO=10;
public static final int IX_MIN_NO_NO=11;
public static final int IX_LIMIT_NO_NO=12;
public static final int IX_MIN_MAYBE_YES=13;
public static final int IX_COUNT=16;
public static final int MAPPING_HAS_CCC_LCCC_WORD=0x80;
public static final int MAPPING_PLUS_COMPOSITION_LIST=0x40;
public static final int MAPPING_NO_COMP_BOUNDARY_AFTER=0x20;
public static final int MAPPING_LENGTH_MASK=0x1f;
public static final int COMP_1_LAST_TUPLE=0x8000;
public static final int COMP_1_TRIPLE=1;
public static final int COMP_1_TRAIL_LIMIT=0x3400;
public static final int COMP_1_TRAIL_MASK=0x7ffe;
public static final int COMP_1_TRAIL_SHIFT=9; // 10-1 for the "triple" bit
public static final int COMP_2_TRAIL_SHIFT=6;
public static final int COMP_2_TRAIL_MASK=0xffc0;
// higher-level functionality ------------------------------------------ ***
// Dual functionality:
// buffer!=NULL: normalize
// buffer==NULL: isNormalized/quickCheck/spanQuickCheckYes
public int decompose(CharSequence s, int src, int limit,
ReorderingBuffer buffer) {
int minNoCP=minDecompNoCP;
int prevSrc;
int c=0;
int norm16=0;
// only for quick check
int prevBoundary=src;
int prevCC=0;
for(;;) {
// count code units below the minimum or with irrelevant data for the quick check
for(prevSrc=src; src!=limit;) {
if( (c=s.charAt(src))<minNoCP ||
isMostDecompYesAndZeroCC(norm16=normTrie.getFromU16SingleLead((char)c))
) {
++src;
} else if(!UTF16.isSurrogate((char)c)) {
break;
} else {
char c2;
if(UTF16Plus.isSurrogateLead(c)) {
if((src+1)!=limit && Character.isLowSurrogate(c2=s.charAt(src+1))) {
c=Character.toCodePoint((char)c, c2);
}
} else /* trail surrogate */ {
if(prevSrc<src && Character.isHighSurrogate(c2=s.charAt(src-1))) {
--src;
c=Character.toCodePoint(c2, (char)c);
}
}
if(isMostDecompYesAndZeroCC(norm16=getNorm16(c))) {
src+=Character.charCount(c);
} else {
break;
}
}
}
// copy these code units all at once
if(src!=prevSrc) {
if(buffer!=null) {
buffer.flushAndAppendZeroCC(s, prevSrc, src);
} else {
prevCC=0;
prevBoundary=src;
}
}
if(src==limit) {
break;
}
// Check one above-minimum, relevant code point.
src+=Character.charCount(c);
if(buffer!=null) {
decompose(c, norm16, buffer);
} else {
if(isDecompYes(norm16)) {
int cc=getCCFromYesOrMaybe(norm16);
if(prevCC<=cc || cc==0) {
prevCC=cc;
if(cc<=1) {
prevBoundary=src;
}
continue;
}
}
return prevBoundary; // "no" or cc out of order
}
}
return src;
}
public void decomposeAndAppend(CharSequence s, boolean doDecompose, ReorderingBuffer buffer) {
int limit=s.length();
if(limit==0) {
return;
}
if(doDecompose) {
decompose(s, 0, limit, buffer);
return;
}
// Just merge the strings at the boundary.
int c=Character.codePointAt(s, 0);
int src=0;
int firstCC, prevCC, cc;
firstCC=prevCC=cc=getCC(getNorm16(c));
while(cc!=0) {
prevCC=cc;
src+=Character.charCount(c);
if(src>=limit) {
break;
}
c=Character.codePointAt(s, src);
cc=getCC(getNorm16(c));
};
buffer.append(s, 0, src, firstCC, prevCC);
buffer.append(s, src, limit);
}
// Very similar to composeQuickCheck(): Make the same changes in both places if relevant.
// doCompose: normalize
// !doCompose: isNormalized (buffer must be empty and initialized)
public boolean compose(CharSequence s, int src, int limit,
boolean onlyContiguous,
boolean doCompose,
ReorderingBuffer buffer) {
int minNoMaybeCP=minCompNoMaybeCP;
/*
* prevBoundary points to the last character before the current one
* that has a composition boundary before it with ccc==0 and quick check "yes".
* Keeping track of prevBoundary saves us looking for a composition boundary
* when we find a "no" or "maybe".
*
* When we back out from prevSrc back to prevBoundary,
* then we also remove those same characters (which had been simply copied
* or canonically-order-inserted) from the ReorderingBuffer.
* Therefore, at all times, the [prevBoundary..prevSrc[ source units
* must correspond 1:1 to destination units at the end of the destination buffer.
*/
int prevBoundary=src;
int prevSrc;
int c=0;
int norm16=0;
// only for isNormalized
int prevCC=0;
for(;;) {
// count code units below the minimum or with irrelevant data for the quick check
for(prevSrc=src; src!=limit;) {
if( (c=s.charAt(src))<minNoMaybeCP ||
isCompYesAndZeroCC(norm16=normTrie.getFromU16SingleLead((char)c))
) {
++src;
} else if(!UTF16.isSurrogate((char)c)) {
break;
} else {
char c2;
if(UTF16Plus.isSurrogateLead(c)) {
if((src+1)!=limit && Character.isLowSurrogate(c2=s.charAt(src+1))) {
c=Character.toCodePoint((char)c, c2);
}
} else /* trail surrogate */ {
if(prevSrc<src && Character.isHighSurrogate(c2=s.charAt(src-1))) {
--src;
c=Character.toCodePoint(c2, (char)c);
}
}
if(isCompYesAndZeroCC(norm16=getNorm16(c))) {
src+=Character.charCount(c);
} else {
break;
}
}
}
// copy these code units all at once
if(src!=prevSrc) {
if(src==limit) {
if(doCompose) {
buffer.flushAndAppendZeroCC(s, prevSrc, src);
}
break;
}
// Set prevBoundary to the last character in the quick check loop.
prevBoundary=src-1;
if( Character.isLowSurrogate(s.charAt(prevBoundary)) && prevSrc<prevBoundary &&
Character.isHighSurrogate(s.charAt(prevBoundary-1))
) {
--prevBoundary;
}
if(doCompose) {
// The last "quick check yes" character is excluded from the
// flush-and-append call in case it needs to be modified.
buffer.flushAndAppendZeroCC(s, prevSrc, prevBoundary);
buffer.append(s, prevBoundary, src);
} else {
prevCC=0;
}
// The start of the current character (c).
prevSrc=src;
} else if(src==limit) {
break;
}
src+=Character.charCount(c);
/*
* isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
* c is either a "noNo" (has a mapping) or a "maybeYes" (combines backward)
* or has ccc!=0.
* Check for Jamo V/T, then for regular characters.
* c is not a Hangul syllable or Jamo L because those have "yes" properties.
*/
if(isJamoVT(norm16) && prevBoundary!=prevSrc) {
char prev=s.charAt(prevSrc-1);
boolean needToDecompose=false;
if(c<Hangul.JAMO_T_BASE) {
// c is a Jamo Vowel, compose with previous Jamo L and following Jamo T.
prev-=Hangul.JAMO_L_BASE;
if(prev<Hangul.JAMO_L_COUNT) {
if(!doCompose) {
return false;
}
char syllable=(char)
(Hangul.HANGUL_BASE+
(prev*Hangul.JAMO_V_COUNT+(c-Hangul.JAMO_V_BASE))*
Hangul.JAMO_T_COUNT);
char t;
if(src!=limit && (t=(char)(s.charAt(src)-Hangul.JAMO_T_BASE))<Hangul.JAMO_T_COUNT) {
++src;
syllable+=t; // The next character was a Jamo T.
prevBoundary=src;
buffer.setLastChar(syllable);
continue;
}
// If we see L+V+x where x!=T then we drop to the slow path,
// decompose and recompose.
// This is to deal with NFKC finding normal L and V but a
// compatibility variant of a T. We need to either fully compose that
// combination here (which would complicate the code and may not work
// with strange custom data) or use the slow path -- or else our replacing
// two input characters (L+V) with one output character (LV syllable)
// would violate the invariant that [prevBoundary..prevSrc[ has the same
// length as what we appended to the buffer since prevBoundary.
needToDecompose=true;
}
} else if(Hangul.isHangulWithoutJamoT(prev)) {
// c is a Jamo Trailing consonant,
// compose with previous Hangul LV that does not contain a Jamo T.
if(!doCompose) {
return false;
}
buffer.setLastChar((char)(prev+c-Hangul.JAMO_T_BASE));
prevBoundary=src;
continue;
}
if(!needToDecompose) {
// The Jamo V/T did not compose into a Hangul syllable.
if(doCompose) {
buffer.append((char)c);
} else {
prevCC=0;
}
continue;
}
}
/*
* Source buffer pointers:
*
* all done quick check current char not yet
* "yes" but (c) processed
* may combine
* forward
* [-------------[-------------[-------------[-------------[
* | | | | |
* orig. src prevBoundary prevSrc src limit
*
*
* Destination buffer pointers inside the ReorderingBuffer:
*
* all done might take not filled yet
* characters for
* reordering
* [-------------[-------------[-------------[
* | | | |
* start reorderStart limit |
* +remainingCap.+
*/
if(norm16>=MIN_YES_YES_WITH_CC) {
int cc=norm16&0xff; // cc!=0
if( onlyContiguous && // FCC
(doCompose ? buffer.getLastCC() : prevCC)==0 &&
prevBoundary<prevSrc &&
// buffer.getLastCC()==0 && prevBoundary<prevSrc tell us that
// [prevBoundary..prevSrc[ (which is exactly one character under these conditions)
// passed the quick check "yes && ccc==0" test.
// Check whether the last character was a "yesYes" or a "yesNo".
// If a "yesNo", then we get its trailing ccc from its
// mapping and check for canonical order.
// All other cases are ok.
getTrailCCFromCompYesAndZeroCC(s, prevBoundary, prevSrc)>cc
) {
// Fails FCD test, need to decompose and contiguously recompose.
if(!doCompose) {
return false;
}
} else if(doCompose) {
buffer.append(c, cc);
continue;
} else if(prevCC<=cc) {
prevCC=cc;
continue;
} else {
return false;
}
} else if(!doCompose && !isMaybeOrNonZeroCC(norm16)) {
return false;
}
/*
* Find appropriate boundaries around this character,
* decompose the source text from between the boundaries,
* and recompose it.
*
* We may need to remove the last few characters from the ReorderingBuffer
* to account for source text that was copied or appended
* but needs to take part in the recomposition.
*/
/*
* Find the last composition boundary in [prevBoundary..src[.
* It is either the decomposition of the current character (at prevSrc),
* or prevBoundary.
*/
if(hasCompBoundaryBefore(c, norm16)) {
prevBoundary=prevSrc;
} else if(doCompose) {
buffer.removeSuffix(prevSrc-prevBoundary);
}
// Find the next composition boundary in [src..limit[ -
// modifies src to point to the next starter.
src=findNextCompBoundary(s, src, limit);
// Decompose [prevBoundary..src[ into the buffer and then recompose that part of it.
int recomposeStartIndex=buffer.length();
decomposeShort(s, prevBoundary, src, buffer);
recompose(buffer, recomposeStartIndex, onlyContiguous);
if(!doCompose) {
if(!buffer.equals(s, prevBoundary, src)) {
return false;
}
buffer.remove();
prevCC=0;
}
// Move to the next starter. We never need to look back before this point again.
prevBoundary=src;
}
return true;
}
/**
* Very similar to compose(): Make the same changes in both places if relevant.
* doSpan: spanQuickCheckYes (ignore bit 0 of the return value)
* !doSpan: quickCheck
* @return bits 31..1: spanQuickCheckYes (==s.length() if "yes") and
* bit 0: set if "maybe"; otherwise, if the span length&lt;s.length()
* then the quick check result is "no"
*/
public int composeQuickCheck(CharSequence s, int src, int limit,
boolean onlyContiguous, boolean doSpan) {
int qcResult=0;
int minNoMaybeCP=minCompNoMaybeCP;
/*
* prevBoundary points to the last character before the current one
* that has a composition boundary before it with ccc==0 and quick check "yes".
*/
int prevBoundary=src;
int prevSrc;
int c=0;
int norm16=0;
int prevCC=0;
for(;;) {
// count code units below the minimum or with irrelevant data for the quick check
for(prevSrc=src;;) {
if(src==limit) {
return (src<<1)|qcResult; // "yes" or "maybe"
}
if( (c=s.charAt(src))<minNoMaybeCP ||
isCompYesAndZeroCC(norm16=normTrie.getFromU16SingleLead((char)c))
) {
++src;
} else if(!UTF16.isSurrogate((char)c)) {
break;
} else {
char c2;
if(UTF16Plus.isSurrogateLead(c)) {
if((src+1)!=limit && Character.isLowSurrogate(c2=s.charAt(src+1))) {
c=Character.toCodePoint((char)c, c2);
}
} else /* trail surrogate */ {
if(prevSrc<src && Character.isHighSurrogate(c2=s.charAt(src-1))) {
--src;
c=Character.toCodePoint(c2, (char)c);
}
}
if(isCompYesAndZeroCC(norm16=getNorm16(c))) {
src+=Character.charCount(c);
} else {
break;
}
}
}
if(src!=prevSrc) {
// Set prevBoundary to the last character in the quick check loop.
prevBoundary=src-1;
if( Character.isLowSurrogate(s.charAt(prevBoundary)) && prevSrc<prevBoundary &&
Character.isHighSurrogate(s.charAt(prevBoundary-1))
) {
--prevBoundary;
}
prevCC=0;
// The start of the current character (c).
prevSrc=src;
}
src+=Character.charCount(c);
/*
* isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
* c is either a "noNo" (has a mapping) or a "maybeYes" (combines backward)
* or has ccc!=0.
*/
if(isMaybeOrNonZeroCC(norm16)) {
int cc=getCCFromYesOrMaybe(norm16);
if( onlyContiguous && // FCC
cc!=0 &&
prevCC==0 &&
prevBoundary<prevSrc &&
// prevCC==0 && prevBoundary<prevSrc tell us that
// [prevBoundary..prevSrc[ (which is exactly one character under these conditions)
// passed the quick check "yes && ccc==0" test.
// Check whether the last character was a "yesYes" or a "yesNo".
// If a "yesNo", then we get its trailing ccc from its
// mapping and check for canonical order.
// All other cases are ok.
getTrailCCFromCompYesAndZeroCC(s, prevBoundary, prevSrc)>cc
) {
// Fails FCD test.
} else if(prevCC<=cc || cc==0) {
prevCC=cc;
if(norm16<MIN_YES_YES_WITH_CC) {
if(!doSpan) {
qcResult=1;
} else {
return prevBoundary<<1; // spanYes does not care to know it's "maybe"
}
}
continue;
}
}
return prevBoundary<<1; // "no"
}
}
public void composeAndAppend(CharSequence s,
boolean doCompose,
boolean onlyContiguous,
ReorderingBuffer buffer) {
int src=0, limit=s.length();
if(!buffer.isEmpty()) {
int firstStarterInSrc=findNextCompBoundary(s, 0, limit);
if(0!=firstStarterInSrc) {
int lastStarterInDest=findPreviousCompBoundary(buffer.getStringBuilder(),
buffer.length());
StringBuilder middle=new StringBuilder((buffer.length()-lastStarterInDest)+
firstStarterInSrc+16);
middle.append(buffer.getStringBuilder(), lastStarterInDest, buffer.length());
buffer.removeSuffix(buffer.length()-lastStarterInDest);
middle.append(s, 0, firstStarterInSrc);
compose(middle, 0, middle.length(), onlyContiguous, true, buffer);
src=firstStarterInSrc;
}
}
if(doCompose) {
compose(s, src, limit, onlyContiguous, true, buffer);
} else {
buffer.append(s, src, limit);
}
}
// Dual functionality:
// buffer!=NULL: normalize
// buffer==NULL: isNormalized/quickCheck/spanQuickCheckYes
public int makeFCD(CharSequence s, int src, int limit, ReorderingBuffer buffer) {
// Note: In this function we use buffer->appendZeroCC() because we track
// the lead and trail combining classes here, rather than leaving it to
// the ReorderingBuffer.
// The exception is the call to decomposeShort() which uses the buffer
// in the normal way.
// Tracks the last FCD-safe boundary, before lccc=0 or after properly-ordered tccc<=1.
// Similar to the prevBoundary in the compose() implementation.
int prevBoundary=src;
int prevSrc;
int c=0;
int prevFCD16=0;
int fcd16=0;
for(;;) {
// count code units with lccc==0
for(prevSrc=src; src!=limit;) {
if((c=s.charAt(src))<MIN_CCC_LCCC_CP) {
prevFCD16=~c;
++src;
} else if((fcd16=fcdTrie.getFromU16SingleLead((char)c))<=0xff) {
prevFCD16=fcd16;
++src;
} else if(!UTF16.isSurrogate((char)c)) {
break;
} else {
char c2;
if(UTF16Plus.isSurrogateLead(c)) {
if((src+1)!=limit && Character.isLowSurrogate(c2=s.charAt(src+1))) {
c=Character.toCodePoint((char)c, c2);
}
} else /* trail surrogate */ {
if(prevSrc<src && Character.isHighSurrogate(c2=s.charAt(src-1))) {
--src;
c=Character.toCodePoint(c2, (char)c);
}
}
if((fcd16=getFCD16(c))<=0xff) {
prevFCD16=fcd16;
src+=Character.charCount(c);
} else {
break;
}
}
}
// copy these code units all at once
if(src!=prevSrc) {
if(src==limit) {
if(buffer!=null) {
buffer.flushAndAppendZeroCC(s, prevSrc, src);
}
break;
}
prevBoundary=src;
// We know that the previous character's lccc==0.
if(prevFCD16<0) {
// Fetching the fcd16 value was deferred for this below-U+0300 code point.
prevFCD16=getFCD16FromSingleLead((char)~prevFCD16);
if(prevFCD16>1) {
--prevBoundary;
}
} else {
int p=src-1;
if( Character.isLowSurrogate(s.charAt(p)) && prevSrc<p &&
Character.isHighSurrogate(s.charAt(p-1))
) {
--p;
// Need to fetch the previous character's FCD value because
// prevFCD16 was just for the trail surrogate code point.
prevFCD16=getFCD16(Character.toCodePoint(s.charAt(p), s.charAt(p+1)));
// Still known to have lccc==0 because its lead surrogate unit had lccc==0.
}
if(prevFCD16>1) {
prevBoundary=p;
}
}
if(buffer!=null) {
// The last lccc==0 character is excluded from the
// flush-and-append call in case it needs to be modified.
buffer.flushAndAppendZeroCC(s, prevSrc, prevBoundary);
buffer.append(s, prevBoundary, src);
}
// The start of the current character (c).
prevSrc=src;
} else if(src==limit) {
break;
}
src+=Character.charCount(c);
// The current character (c) at [prevSrc..src[ has a non-zero lead combining class.
// Check for proper order, and decompose locally if necessary.
if((prevFCD16&0xff)<=(fcd16>>8)) {
// proper order: prev tccc <= current lccc
if((fcd16&0xff)<=1) {
prevBoundary=src;
}
if(buffer!=null) {
buffer.appendZeroCC(c);
}
prevFCD16=fcd16;
continue;
} else if(buffer==null) {
return prevBoundary; // quick check "no"
} else {
/*
* Back out the part of the source that we copied or appended
* already but is now going to be decomposed.
* prevSrc is set to after what was copied/appended.
*/
buffer.removeSuffix(prevSrc-prevBoundary);
/*
* Find the part of the source that needs to be decomposed,
* up to the next safe boundary.
*/
src=findNextFCDBoundary(s, src, limit);
/*
* The source text does not fulfill the conditions for FCD.
* Decompose and reorder a limited piece of the text.
*/
decomposeShort(s, prevBoundary, src, buffer);
prevBoundary=src;
prevFCD16=0;
}
}
return src;
}
public void makeFCDAndAppend(CharSequence s, boolean doMakeFCD, ReorderingBuffer buffer) {
int src=0, limit=s.length();
if(!buffer.isEmpty()) {
int firstBoundaryInSrc=findNextFCDBoundary(s, 0, limit);
if(0!=firstBoundaryInSrc) {
int lastBoundaryInDest=findPreviousFCDBoundary(buffer.getStringBuilder(),
buffer.length());
StringBuilder middle=new StringBuilder((buffer.length()-lastBoundaryInDest)+
firstBoundaryInSrc+16);
middle.append(buffer.getStringBuilder(), lastBoundaryInDest, buffer.length());
buffer.removeSuffix(buffer.length()-lastBoundaryInDest);
middle.append(s, 0, firstBoundaryInSrc);
makeFCD(middle, 0, middle.length(), buffer);
src=firstBoundaryInSrc;
}
}
if(doMakeFCD) {
makeFCD(s, src, limit, buffer);
} else {
buffer.append(s, src, limit);
}
}
// Note: hasDecompBoundary() could be implemented as aliases to
// hasFCDBoundaryBefore() and hasFCDBoundaryAfter()
// at the cost of building the FCD trie for a decomposition normalizer.
public boolean hasDecompBoundary(int c, boolean before) {
for(;;) {
if(c<minDecompNoCP) {
return true;
}
int norm16=getNorm16(c);
if(isHangul(norm16) || isDecompYesAndZeroCC(norm16)) {
return true;
} else if(norm16>MIN_NORMAL_MAYBE_YES) {
return false; // ccc!=0
} else if(isDecompNoAlgorithmic(norm16)) {
c=mapAlgorithmic(c, norm16);
} else {
// c decomposes, get everything from the variable-length extra data
int firstUnit=extraData.charAt(norm16++);
if((firstUnit&MAPPING_LENGTH_MASK)==0) {
return false;
}
if(!before) {
// decomp after-boundary: same as hasFCDBoundaryAfter(),
// fcd16<=1 || trailCC==0
if(firstUnit>0x1ff) {
return false; // trailCC>1
}
if(firstUnit<=0xff) {
return true; // trailCC==0
}
// if(trailCC==1) test leadCC==0, same as checking for before-boundary
}
// true if leadCC==0 (hasFCDBoundaryBefore())
return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (extraData.charAt(norm16)&0xff00)==0;
}
}
}
public boolean isDecompInert(int c) { return isDecompYesAndZeroCC(getNorm16(c)); }
public boolean hasCompBoundaryBefore(int c) {
return c<minCompNoMaybeCP || hasCompBoundaryBefore(c, getNorm16(c));
}
public boolean hasCompBoundaryAfter(int c, boolean onlyContiguous, boolean testInert) {
for(;;) {
int norm16=getNorm16(c);
if(isInert(norm16)) {
return true;
} else if(norm16<=minYesNo) {
// Hangul LVT (==minYesNo) has a boundary after it.
// Hangul LV and non-inert yesYes characters combine forward.
return isHangul(norm16) && !Hangul.isHangulWithoutJamoT((char)c);
} else if(norm16>= (testInert ? minNoNo : minMaybeYes)) {
return false;
} else if(isDecompNoAlgorithmic(norm16)) {
c=mapAlgorithmic(c, norm16);
} else {
// c decomposes, get everything from the variable-length extra data.
// If testInert, then c must be a yesNo character which has lccc=0,
// otherwise it could be a noNo.
int firstUnit=extraData.charAt(norm16);
// true if
// c is not deleted, and
// it and its decomposition do not combine forward, and it has a starter, and
// if FCC then trailCC<=1
return
(firstUnit&MAPPING_LENGTH_MASK)!=0 &&
(firstUnit&(MAPPING_PLUS_COMPOSITION_LIST|MAPPING_NO_COMP_BOUNDARY_AFTER))==0 &&
(!onlyContiguous || firstUnit<=0x1ff);
}
}
}
public boolean hasFCDBoundaryBefore(int c) { return c<MIN_CCC_LCCC_CP || getFCD16(c)<=0xff; }
public boolean hasFCDBoundaryAfter(int c) {
int fcd16=getFCD16(c);
return fcd16<=1 || (fcd16&0xff)==0;
}
public boolean isFCDInert(int c) { return getFCD16(c)<=1; }
private boolean isMaybe(int norm16) { return minMaybeYes<=norm16 && norm16<=JAMO_VT; }
private boolean isMaybeOrNonZeroCC(int norm16) { return norm16>=minMaybeYes; }
private static boolean isInert(int norm16) { return norm16==0; }
// static UBool isJamoL(uint16_t norm16) const { return norm16==1; }
private static boolean isJamoVT(int norm16) { return norm16==JAMO_VT; }
private boolean isHangul(int norm16) { return norm16==minYesNo; }
private boolean isCompYesAndZeroCC(int norm16) { return norm16<minNoNo; }
// UBool isCompYes(uint16_t norm16) const {
// return norm16>=MIN_YES_YES_WITH_CC || norm16<minNoNo;
// }
// UBool isCompYesOrMaybe(uint16_t norm16) const {
// return norm16<minNoNo || minMaybeYes<=norm16;
// }
// private boolean hasZeroCCFromDecompYes(int norm16) {
// return norm16<=MIN_NORMAL_MAYBE_YES || norm16==JAMO_VT;
// }
private boolean isDecompYesAndZeroCC(int norm16) {
return norm16<minYesNo ||
norm16==JAMO_VT ||
(minMaybeYes<=norm16 && norm16<=MIN_NORMAL_MAYBE_YES);
}
/**
* A little faster and simpler than isDecompYesAndZeroCC() but does not include
* the MaybeYes which combine-forward and have ccc=0.
* (Standard Unicode 5.2 normalization does not have such characters.)
*/
private boolean isMostDecompYesAndZeroCC(int norm16) {
return norm16<minYesNo || norm16==MIN_NORMAL_MAYBE_YES || norm16==JAMO_VT;
}
private boolean isDecompNoAlgorithmic(int norm16) { return norm16>=limitNoNo; }
// For use with isCompYes().
// Perhaps the compiler can combine the two tests for MIN_YES_YES_WITH_CC.
// static uint8_t getCCFromYes(uint16_t norm16) {
// return norm16>=MIN_YES_YES_WITH_CC ? (uint8_t)norm16 : 0;
// }
private int getCCFromNoNo(int norm16) {
if((extraData.charAt(norm16)&MAPPING_HAS_CCC_LCCC_WORD)!=0) {
return extraData.charAt(norm16+1)&0xff;
} else {
return 0;
}
}
// requires that the [cpStart..cpLimit[ character passes isCompYesAndZeroCC()
int getTrailCCFromCompYesAndZeroCC(CharSequence s, int cpStart, int cpLimit) {
int c;
if(cpStart==(cpLimit-1)) {
c=s.charAt(cpStart);
} else {
c=Character.codePointAt(s, cpStart);
}
int prevNorm16=getNorm16(c);
if(prevNorm16<=minYesNo) {
return 0; // yesYes and Hangul LV/LVT have ccc=tccc=0
} else {
return extraData.charAt(prevNorm16)>>8; // tccc from yesNo
}
}
// Requires algorithmic-NoNo.
private int mapAlgorithmic(int c, int norm16) {
return c+norm16-(minMaybeYes-MAX_DELTA-1);
}
// Requires minYesNo<norm16<limitNoNo.
// private int getMapping(int norm16) { return /*extraData+*/norm16; }
/**
* @return index into maybeYesCompositions, or -1
*/
private int getCompositionsListForDecompYes(int norm16) {
if(norm16==0 || MIN_NORMAL_MAYBE_YES<=norm16) {
return -1;
} else {
if((norm16-=minMaybeYes)<0) {
// norm16<minMaybeYes: index into extraData which is a substring at
// maybeYesCompositions[MIN_NORMAL_MAYBE_YES-minMaybeYes]
// same as (MIN_NORMAL_MAYBE_YES-minMaybeYes)+norm16
norm16+=MIN_NORMAL_MAYBE_YES; // for yesYes; if Jamo L: harmless empty list
}
return norm16;
}
}
/**
* @return index into maybeYesCompositions
*/
private int getCompositionsListForComposite(int norm16) {
// composite has both mapping & compositions list
int firstUnit=extraData.charAt(norm16);
return (MIN_NORMAL_MAYBE_YES-minMaybeYes)+norm16+ // mapping in maybeYesCompositions
1+ // +1 to skip the first unit with the mapping lenth
(firstUnit&MAPPING_LENGTH_MASK)+ // + mapping length
((firstUnit>>7)&1); // +1 if MAPPING_HAS_CCC_LCCC_WORD
}
/**
* @param c code point must have compositions
* @return index into maybeYesCompositions
*/
private int getCompositionsList(int norm16) {
return isDecompYes(norm16) ?
getCompositionsListForDecompYes(norm16) :
getCompositionsListForComposite(norm16);
}
// Decompose a short piece of text which is likely to contain characters that
// fail the quick check loop and/or where the quick check loop's overhead
// is unlikely to be amortized.
// Called by the compose() and makeFCD() implementations.
// Public in Java for collation implementation code.
public void decomposeShort(CharSequence s, int src, int limit,
ReorderingBuffer buffer) {
while(src<limit) {
int c=Character.codePointAt(s, src);
src+=Character.charCount(c);
decompose(c, getNorm16(c), buffer);
}
}
private void decompose(int c, int norm16,
ReorderingBuffer buffer) {
// Only loops for 1:1 algorithmic mappings.
for(;;) {
// get the decomposition and the lead and trail cc's
if(isDecompYes(norm16)) {
// c does not decompose
buffer.append(c, getCCFromYesOrMaybe(norm16));
} else if(isHangul(norm16)) {
// Hangul syllable: decompose algorithmically
Hangul.decompose(c, buffer);
} else if(isDecompNoAlgorithmic(norm16)) {
c=mapAlgorithmic(c, norm16);
norm16=getNorm16(c);
continue;
} else {
// c decomposes, get everything from the variable-length extra data
int firstUnit=extraData.charAt(norm16++);
int length=firstUnit&MAPPING_LENGTH_MASK;
int leadCC, trailCC;
trailCC=firstUnit>>8;
if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD)!=0) {
leadCC=extraData.charAt(norm16++)>>8;
} else {
leadCC=0;
}
buffer.append(extraData, norm16, norm16+length, leadCC, trailCC);
}
return;
}
}
/*
* Finds the recomposition result for
* a forward-combining "lead" character,
* specified with a pointer to its compositions list,
* and a backward-combining "trail" character.
*
* If the lead and trail characters combine, then this function returns
* the following "compositeAndFwd" value:
* Bits 21..1 composite character
* Bit 0 set if the composite is a forward-combining starter
* otherwise it returns -1.
*
* The compositions list has (trail, compositeAndFwd) pair entries,
* encoded as either pairs or triples of 16-bit units.
* The last entry has the high bit of its first unit set.
*
* The list is sorted by ascending trail characters (there are no duplicates).
* A linear search is used.
*
* See normalizer2impl.h for a more detailed description
* of the compositions list format.
*/
private static int combine(String compositions, int list, int trail) {
int key1, firstUnit;
if(trail<COMP_1_TRAIL_LIMIT) {
// trail character is 0..33FF
// result entry may have 2 or 3 units
key1=(trail<<1);
while(key1>(firstUnit=compositions.charAt(list))) {
list+=2+(firstUnit&COMP_1_TRIPLE);
}
if(key1==(firstUnit&COMP_1_TRAIL_MASK)) {
if((firstUnit&COMP_1_TRIPLE)!=0) {
return ((int)compositions.charAt(list+1)<<16)|compositions.charAt(list+2);
} else {
return compositions.charAt(list+1);
}
}
} else {
// trail character is 3400..10FFFF
// result entry has 3 units
key1=COMP_1_TRAIL_LIMIT+(((trail>>COMP_1_TRAIL_SHIFT))&~COMP_1_TRIPLE);
int key2=(trail<<COMP_2_TRAIL_SHIFT)&0xffff;
int secondUnit;
for(;;) {
if(key1>(firstUnit=compositions.charAt(list))) {
list+=2+(firstUnit&COMP_1_TRIPLE);
} else if(key1==(firstUnit&COMP_1_TRAIL_MASK)) {
if(key2>(secondUnit=compositions.charAt(list+1))) {
if((firstUnit&COMP_1_LAST_TUPLE)!=0) {
break;
} else {
list+=3;
}
} else if(key2==(secondUnit&COMP_2_TRAIL_MASK)) {
return ((secondUnit&~COMP_2_TRAIL_MASK)<<16)|compositions.charAt(list+2);
} else {
break;
}
} else {
break;
}
}
}
return -1;
}
/**
* @param list some character's compositions list
* @param set recursively receives the composites from these compositions
*/
private void addComposites(int list, UnicodeSet set) {
int firstUnit, compositeAndFwd;
do {
firstUnit=maybeYesCompositions.charAt(list);
if((firstUnit&COMP_1_TRIPLE)==0) {
compositeAndFwd=maybeYesCompositions.charAt(list+1);
list+=2;
} else {
compositeAndFwd=(((int)maybeYesCompositions.charAt(list+1)&~COMP_2_TRAIL_MASK)<<16)|
maybeYesCompositions.charAt(list+2);
list+=3;
}
int composite=compositeAndFwd>>1;
if((compositeAndFwd&1)!=0) {
addComposites(getCompositionsListForComposite(getNorm16(composite)), set);
}
set.add(composite);
} while((firstUnit&COMP_1_LAST_TUPLE)==0);
}
/*
* Recomposes the buffer text starting at recomposeStartIndex
* (which is in NFD - decomposed and canonically ordered),
* and truncates the buffer contents.
*
* Note that recomposition never lengthens the text:
* Any character consists of either one or two code units;
* a composition may contain at most one more code unit than the original starter,
* while the combining mark that is removed has at least one code unit.
*/
private void recompose(ReorderingBuffer buffer, int recomposeStartIndex,
boolean onlyContiguous) {
StringBuilder sb=buffer.getStringBuilder();
int p=recomposeStartIndex;
if(p==sb.length()) {
return;
}
int starter, pRemove;
int compositionsList;
int c, compositeAndFwd;
int norm16;
int cc, prevCC;
boolean starterIsSupplementary;
// Some of the following variables are not used until we have a forward-combining starter
// and are only initialized now to avoid compiler warnings.
compositionsList=-1; // used as indicator for whether we have a forward-combining starter
starter=-1;
starterIsSupplementary=false;
prevCC=0;
for(;;) {
c=sb.codePointAt(p);
p+=Character.charCount(c);
norm16=getNorm16(c);
cc=getCCFromYesOrMaybe(norm16);
if( // this character combines backward and
isMaybe(norm16) &&
// we have seen a starter that combines forward and
compositionsList>=0 &&
// the backward-combining character is not blocked
(prevCC<cc || prevCC==0)
) {
if(isJamoVT(norm16)) {
// c is a Jamo V/T, see if we can compose it with the previous character.
if(c<Hangul.JAMO_T_BASE) {
// c is a Jamo Vowel, compose with previous Jamo L and following Jamo T.
char prev=(char)(sb.charAt(starter)-Hangul.JAMO_L_BASE);
if(prev<Hangul.JAMO_L_COUNT) {
pRemove=p-1;
char syllable=(char)
(Hangul.HANGUL_BASE+
(prev*Hangul.JAMO_V_COUNT+(c-Hangul.JAMO_V_BASE))*
Hangul.JAMO_T_COUNT);
char t;
if(p!=sb.length() && (t=(char)(sb.charAt(p)-Hangul.JAMO_T_BASE))<Hangul.JAMO_T_COUNT) {
++p;
syllable+=t; // The next character was a Jamo T.
}
sb.setCharAt(starter, syllable);
// remove the Jamo V/T
sb.delete(pRemove, p);
p=pRemove;
}
}
/*
* No "else" for Jamo T:
* Since the input is in NFD, there are no Hangul LV syllables that
* a Jamo T could combine with.
* All Jamo Ts are combined above when handling Jamo Vs.
*/
if(p==sb.length()) {
break;
}
compositionsList=-1;
continue;
} else if((compositeAndFwd=combine(maybeYesCompositions, compositionsList, c))>=0) {
// The starter and the combining mark (c) do combine.
int composite=compositeAndFwd>>1;
// Remove the combining mark.
pRemove=p-Character.charCount(c); // pRemove & p: start & limit of the combining mark
sb.delete(pRemove, p);
p=pRemove;
// Replace the starter with the composite.
if(starterIsSupplementary) {
if(composite>0xffff) {
// both are supplementary
sb.setCharAt(starter, UTF16.getLeadSurrogate(composite));
sb.setCharAt(starter+1, UTF16.getTrailSurrogate(composite));
} else {
sb.setCharAt(starter, (char)c);
sb.deleteCharAt(starter+1);
// The composite is shorter than the starter,
// move the intermediate characters forward one.
starterIsSupplementary=false;
--p;
}
} else if(composite>0xffff) {
// The composite is longer than the starter,
// move the intermediate characters back one.
starterIsSupplementary=true;
sb.setCharAt(starter, UTF16.getLeadSurrogate(composite));
sb.insert(starter+1, UTF16.getTrailSurrogate(composite));
++p;
} else {
// both are on the BMP
sb.setCharAt(starter, (char)composite);
}
// Keep prevCC because we removed the combining mark.
if(p==sb.length()) {
break;
}
// Is the composite a starter that combines forward?
if((compositeAndFwd&1)!=0) {
compositionsList=
getCompositionsListForComposite(getNorm16(composite));
} else {
compositionsList=-1;
}
// We combined; continue with looking for compositions.
continue;
}
}
// no combination this time
prevCC=cc;
if(p==sb.length()) {
break;
}
// If c did not combine, then check if it is a starter.
if(cc==0) {
// Found a new starter.
if((compositionsList=getCompositionsListForDecompYes(norm16))>=0) {
// It may combine with something, prepare for it.
if(c<=0xffff) {
starterIsSupplementary=false;
starter=p-1;
} else {
starterIsSupplementary=true;
starter=p-2;
}
}
} else if(onlyContiguous) {
// FCC: no discontiguous compositions; any intervening character blocks.
compositionsList=-1;
}
}
buffer.flush();
}
/**
* Does c have a composition boundary before it?
* True if its decomposition begins with a character that has
* ccc=0 && NFC_QC=Yes (isCompYesAndZeroCC()).
* As a shortcut, this is true if c itself has ccc=0 && NFC_QC=Yes
* (isCompYesAndZeroCC()) so we need not decompose.
*/
private boolean hasCompBoundaryBefore(int c, int norm16) {
for(;;) {
if(isCompYesAndZeroCC(norm16)) {
return true;
} else if(isMaybeOrNonZeroCC(norm16)) {
return false;
} else if(isDecompNoAlgorithmic(norm16)) {
c=mapAlgorithmic(c, norm16);
norm16=getNorm16(c);
} else {
// c decomposes, get everything from the variable-length extra data
int firstUnit=extraData.charAt(norm16++);
if((firstUnit&MAPPING_LENGTH_MASK)==0) {
return false;
}
if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD)!=0 && (extraData.charAt(norm16++)&0xff00)!=0) {
return false; // non-zero leadCC
}
return isCompYesAndZeroCC(getNorm16(Character.codePointAt(extraData, norm16)));
}
}
}
private int findPreviousCompBoundary(CharSequence s, int p) {
while(p>0) {
int c=Character.codePointBefore(s, p);
p-=Character.charCount(c);
if(hasCompBoundaryBefore(c)) {
break;
}
// We could also test hasCompBoundaryAfter() and return iter.codePointLimit,
// but that's probably not worth the extra cost.
}
return p;
}
private int findNextCompBoundary(CharSequence s, int p, int limit) {
while(p<limit) {
int c=Character.codePointAt(s, p);
int norm16=normTrie.get(c);
if(hasCompBoundaryBefore(c, norm16)) {
break;
}
p+=Character.charCount(c);
}
return p;
}
private int findPreviousFCDBoundary(CharSequence s, int p) {
while(p>0) {
int c=Character.codePointBefore(s, p);
p-=Character.charCount(c);
if(fcdTrie.get(c)<=0xff) {
break;
}
}
return p;
}
private int findNextFCDBoundary(CharSequence s, int p, int limit) {
while(p<limit) {
int c=Character.codePointAt(s, p);
int fcd16=fcdTrie.get(c);
if(fcd16<=0xff) {
break;
}
p+=Character.charCount(c);
}
return p;
}
private void addToStartSet(Trie2Writable newData, int origin, int decompLead) {
int canonValue=newData.get(decompLead);
if((canonValue&(CANON_HAS_SET|CANON_VALUE_MASK))==0 && origin!=0) {
// origin is the first character whose decomposition starts with
// the character for which we are setting the value.
newData.set(decompLead, canonValue|origin);
} else {
// origin is not the first character, or it is U+0000.
UnicodeSet set;
if((canonValue&CANON_HAS_SET)==0) {
int firstOrigin=canonValue&CANON_VALUE_MASK;
canonValue=(canonValue&~CANON_VALUE_MASK)|CANON_HAS_SET|canonStartSets.size();
newData.set(decompLead, canonValue);
canonStartSets.add(set=new UnicodeSet());
if(firstOrigin!=0) {
set.add(firstOrigin);
}
} else {
set=canonStartSets.get(canonValue&CANON_VALUE_MASK);
}
set.add(origin);
}
}
@SuppressWarnings("unused")
private VersionInfo dataVersion;
// Code point thresholds for quick check codes.
private int minDecompNoCP;
private int minCompNoMaybeCP;
// Norm16 value thresholds for quick check combinations and types of extra data.
private int minYesNo;
private int minNoNo;
private int limitNoNo;
private int minMaybeYes;
private Trie2_16 normTrie;
private String maybeYesCompositions;
private String extraData; // mappings and/or compositions for yesYes, yesNo & noNo characters
private Trie2_16 fcdTrie;
private Trie2_32 canonIterData;
private ArrayList<UnicodeSet> canonStartSets;
// bits in canonIterData
private static final int CANON_NOT_SEGMENT_STARTER = 0x80000000;
private static final int CANON_HAS_COMPOSITIONS = 0x40000000;
private static final int CANON_HAS_SET = 0x200000;
private static final int CANON_VALUE_MASK = 0x1fffff;
}