blob: 91d21421d4cadd92bc2bbdd779b0670ca7214e67 [file] [log] [blame]
/********************************************************************
* COPYRIGHT:
* Copyright (c) 1997-2004, International Business Machines Corporation and
* others. All Rights Reserved.
********************************************************************/
/********************************************************************************
*
* File CNORMTST.C
*
* Modification History:
* Name Description
* Madhu Katragadda Ported for C API
* synwee added test for quick check
* synwee added test for checkFCD
*********************************************************************************/
/*tests for u_normalization*/
#include "unicode/utypes.h"
#include "unicode/unorm.h"
#include "unormimp.h"
#include "cintltst.h"
#if UCONFIG_NO_NORMALIZATION
void addNormTest(TestNode** root) {
/* no normalization - nothing to do */
}
#else
#include <stdlib.h>
#include <time.h>
#include "unicode/uchar.h"
#include "unicode/ustring.h"
#include "unicode/unorm.h"
#include "cnormtst.h"
#define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof ((array)[0]))
static void
TestAPI(void);
static void
TestNormCoverage(void);
static void
TestConcatenate(void);
static void
TestNextPrevious(void);
static void TestIsNormalized(void);
static void
TestFCNFKCClosure(void);
static void
TestQuickCheckPerCP(void);
static void
TestComposition(void);
const static char* canonTests[][3] = {
/* Input*/ /*Decomposed*/ /*Composed*/
{ "cat", "cat", "cat" },
{ "\\u00e0ardvark", "a\\u0300ardvark", "\\u00e0ardvark", },
{ "\\u1e0a", "D\\u0307", "\\u1e0a" }, /* D-dot_above*/
{ "D\\u0307", "D\\u0307", "\\u1e0a" }, /* D dot_above*/
{ "\\u1e0c\\u0307", "D\\u0323\\u0307", "\\u1e0c\\u0307" }, /* D-dot_below dot_above*/
{ "\\u1e0a\\u0323", "D\\u0323\\u0307", "\\u1e0c\\u0307" }, /* D-dot_above dot_below */
{ "D\\u0307\\u0323", "D\\u0323\\u0307", "\\u1e0c\\u0307" }, /* D dot_below dot_above */
{ "\\u1e10\\u0307\\u0323", "D\\u0327\\u0323\\u0307", "\\u1e10\\u0323\\u0307" }, /*D dot_below cedilla dot_above*/
{ "D\\u0307\\u0328\\u0323", "D\\u0328\\u0323\\u0307", "\\u1e0c\\u0328\\u0307" }, /* D dot_above ogonek dot_below*/
{ "\\u1E14", "E\\u0304\\u0300", "\\u1E14" }, /* E-macron-grave*/
{ "\\u0112\\u0300", "E\\u0304\\u0300", "\\u1E14" }, /* E-macron + grave*/
{ "\\u00c8\\u0304", "E\\u0300\\u0304", "\\u00c8\\u0304" }, /* E-grave + macron*/
{ "\\u212b", "A\\u030a", "\\u00c5" }, /* angstrom_sign*/
{ "\\u00c5", "A\\u030a", "\\u00c5" }, /* A-ring*/
{ "\\u00C4ffin", "A\\u0308ffin", "\\u00C4ffin" },
{ "\\u00C4\\uFB03n", "A\\u0308\\uFB03n", "\\u00C4\\uFB03n" },
{ "Henry IV", "Henry IV", "Henry IV" },
{ "Henry \\u2163", "Henry \\u2163", "Henry \\u2163" },
{ "\\u30AC", "\\u30AB\\u3099", "\\u30AC" }, /* ga (Katakana)*/
{ "\\u30AB\\u3099", "\\u30AB\\u3099", "\\u30AC" }, /*ka + ten*/
{ "\\uFF76\\uFF9E", "\\uFF76\\uFF9E", "\\uFF76\\uFF9E" }, /* hw_ka + hw_ten*/
{ "\\u30AB\\uFF9E", "\\u30AB\\uFF9E", "\\u30AB\\uFF9E" }, /* ka + hw_ten*/
{ "\\uFF76\\u3099", "\\uFF76\\u3099", "\\uFF76\\u3099" }, /* hw_ka + ten*/
{ "A\\u0300\\u0316", "A\\u0316\\u0300", "\\u00C0\\u0316" } /* hw_ka + ten*/
};
const static char* compatTests[][3] = {
/* Input*/ /*Decomposed */ /*Composed*/
{ "cat", "cat", "cat" },
{ "\\uFB4f", "\\u05D0\\u05DC", "\\u05D0\\u05DC" }, /* Alef-Lamed vs. Alef, Lamed*/
{ "\\u00C4ffin", "A\\u0308ffin", "\\u00C4ffin" },
{ "\\u00C4\\uFB03n", "A\\u0308ffin", "\\u00C4ffin" }, /* ffi ligature -> f + f + i*/
{ "Henry IV", "Henry IV", "Henry IV" },
{ "Henry \\u2163", "Henry IV", "Henry IV" },
{ "\\u30AC", "\\u30AB\\u3099", "\\u30AC" }, /* ga (Katakana)*/
{ "\\u30AB\\u3099", "\\u30AB\\u3099", "\\u30AC" }, /*ka + ten*/
{ "\\uFF76\\u3099", "\\u30AB\\u3099", "\\u30AC" }, /* hw_ka + ten*/
/*These two are broken in Unicode 2.1.2 but fixed in 2.1.5 and later*/
{ "\\uFF76\\uFF9E", "\\u30AB\\u3099", "\\u30AC" }, /* hw_ka + hw_ten*/
{ "\\u30AB\\uFF9E", "\\u30AB\\u3099", "\\u30AC" } /* ka + hw_ten*/
};
void addNormTest(TestNode** root);
void addNormTest(TestNode** root)
{
addTest(root, &TestAPI, "tscoll/cnormtst/TestAPI");
addTest(root, &TestDecomp, "tscoll/cnormtst/TestDecomp");
addTest(root, &TestCompatDecomp, "tscoll/cnormtst/TestCompatDecomp");
addTest(root, &TestCanonDecompCompose, "tscoll/cnormtst/TestCanonDecompCompose");
addTest(root, &TestCompatDecompCompose, "tscoll/cnormtst/CompatDecompCompose");
addTest(root, &TestNull, "tscoll/cnormtst/TestNull");
addTest(root, &TestQuickCheck, "tscoll/cnormtst/TestQuickCheck");
addTest(root, &TestQuickCheckPerCP, "tscoll/cnormtst/TestQuickCheckPerCP");
addTest(root, &TestIsNormalized, "tscoll/cnormtst/TestIsNormalized");
addTest(root, &TestCheckFCD, "tscoll/cnormtst/TestCheckFCD");
addTest(root, &TestNormCoverage, "tscoll/cnormtst/TestNormCoverage");
addTest(root, &TestConcatenate, "tscoll/cnormtst/TestConcatenate");
addTest(root, &TestNextPrevious, "tscoll/cnormtst/TestNextPrevious");
addTest(root, &TestFCNFKCClosure, "tscoll/cnormtst/TestFCNFKCClosure");
addTest(root, &TestComposition, "tscoll/cnormtst/TestComposition");
}
void TestDecomp()
{
UErrorCode status = U_ZERO_ERROR;
int32_t x, neededLen, resLen;
UChar *source=NULL, *result=NULL;
status = U_ZERO_ERROR;
resLen=0;
log_verbose("Testing unorm_normalize with Decomp canonical\n");
for(x=0; x < LENGTHOF(canonTests); x++)
{
source=CharsToUChars(canonTests[x][0]);
neededLen= unorm_normalize(source, u_strlen(source), UNORM_NFD, 0, NULL, 0, &status);
if(status==U_BUFFER_OVERFLOW_ERROR)
{
status=U_ZERO_ERROR;
resLen=neededLen+1;
result=(UChar*)malloc(sizeof(UChar*) * resLen);
unorm_normalize(source, u_strlen(source), UNORM_NFD, 0, result, resLen, &status);
}
if(U_FAILURE(status)){
log_err("ERROR in unorm_normalize at %s: %s\n", austrdup(source), myErrorName(status) );
} else {
assertEqual(result, canonTests[x][1], x);
}
free(result);
free(source);
}
}
void TestCompatDecomp()
{
UErrorCode status = U_ZERO_ERROR;
int32_t x, neededLen, resLen;
UChar *source=NULL, *result=NULL;
status = U_ZERO_ERROR;
resLen=0;
log_verbose("Testing unorm_normalize with Decomp compat\n");
for(x=0; x < LENGTHOF(compatTests); x++)
{
source=CharsToUChars(compatTests[x][0]);
neededLen= unorm_normalize(source, u_strlen(source), UNORM_NFKD, 0, NULL, 0, &status);
if(status==U_BUFFER_OVERFLOW_ERROR)
{
status=U_ZERO_ERROR;
resLen=neededLen+1;
result=(UChar*)malloc(sizeof(UChar*) * resLen);
unorm_normalize(source, u_strlen(source), UNORM_NFKD, 0, result, resLen, &status);
}
if(U_FAILURE(status)){
log_err("ERROR in unorm_normalize at %s: %s\n", austrdup(source), myErrorName(status) );
} else {
assertEqual(result, compatTests[x][1], x);
}
free(result);
free(source);
}
}
void TestCanonDecompCompose()
{
UErrorCode status = U_ZERO_ERROR;
int32_t x, neededLen, resLen;
UChar *source=NULL, *result=NULL;
status = U_ZERO_ERROR;
resLen=0;
log_verbose("Testing unorm_normalize with Decomp can compose compat\n");
for(x=0; x < LENGTHOF(canonTests); x++)
{
source=CharsToUChars(canonTests[x][0]);
neededLen= unorm_normalize(source, u_strlen(source), UNORM_NFC, 0, NULL, 0, &status);
if(status==U_BUFFER_OVERFLOW_ERROR)
{
status=U_ZERO_ERROR;
resLen=neededLen+1;
result=(UChar*)malloc(sizeof(UChar*) * resLen);
unorm_normalize(source, u_strlen(source), UNORM_NFC, 0, result, resLen, &status);
}
if(U_FAILURE(status)){
log_err("ERROR in unorm_normalize at %s: %s\n", austrdup(source),myErrorName(status) );
} else {
assertEqual(result, canonTests[x][2], x);
}
free(result);
free(source);
}
}
void TestCompatDecompCompose()
{
UErrorCode status = U_ZERO_ERROR;
int32_t x, neededLen, resLen;
UChar *source=NULL, *result=NULL;
status = U_ZERO_ERROR;
resLen=0;
log_verbose("Testing unorm_normalize with compat decomp compose can\n");
for(x=0; x < LENGTHOF(compatTests); x++)
{
source=CharsToUChars(compatTests[x][0]);
neededLen= unorm_normalize(source, u_strlen(source), UNORM_NFKC, 0, NULL, 0, &status);
if(status==U_BUFFER_OVERFLOW_ERROR)
{
status=U_ZERO_ERROR;
resLen=neededLen+1;
result=(UChar*)malloc(sizeof(UChar*) * resLen);
unorm_normalize(source, u_strlen(source), UNORM_NFKC, 0, result, resLen, &status);
}
if(U_FAILURE(status)){
log_err("ERROR in unorm_normalize at %s: %s\n", austrdup(source), myErrorName(status) );
} else {
assertEqual(result, compatTests[x][2], x);
}
free(result);
free(source);
}
}
/*
static void assertEqual(const UChar* result, const UChar* expected, int32_t index)
{
if(u_strcmp(result, expected)!=0){
log_err("ERROR in decomposition at index = %d. EXPECTED: %s , GOT: %s\n", index, austrdup(expected),
austrdup(result) );
}
}
*/
static void assertEqual(const UChar* result, const char* expected, int32_t index)
{
UChar *expectedUni = CharsToUChars(expected);
if(u_strcmp(result, expectedUni)!=0){
log_err("ERROR in decomposition at index = %d. EXPECTED: %s , GOT: %s\n", index, expected,
austrdup(result) );
}
free(expectedUni);
}
static void TestNull_check(UChar *src, int32_t srcLen,
UChar *exp, int32_t expLen,
UNormalizationMode mode,
const char *name)
{
UErrorCode status = U_ZERO_ERROR;
int32_t len, i;
UChar result[50];
status = U_ZERO_ERROR;
for(i=0;i<50;i++)
{
result[i] = 0xFFFD;
}
len = unorm_normalize(src, srcLen, mode, 0, result, 50, &status);
if(U_FAILURE(status)) {
log_err("unorm_normalize(%s) with 0x0000 failed: %s\n", name, u_errorName(status));
} else if (len != expLen) {
log_err("unorm_normalize(%s) with 0x0000 failed: Expected len %d, got %d\n", name, expLen, len);
}
{
for(i=0;i<len;i++){
if(exp[i] != result[i]) {
log_err("unorm_normalize(%s): @%d, expected \\u%04X got \\u%04X\n",
name,
i,
exp[i],
result[i]);
return;
}
log_verbose(" %d: \\u%04X\n", i, result[i]);
}
}
log_verbose("unorm_normalize(%s) with 0x0000: OK\n", name);
}
void TestNull()
{
UChar source_comp[] = { 0x0061, 0x0000, 0x0044, 0x0307 };
int32_t source_comp_len = 4;
UChar expect_comp[] = { 0x0061, 0x0000, 0x1e0a };
int32_t expect_comp_len = 3;
UChar source_dcmp[] = { 0x1e0A, 0x0000, 0x0929 };
int32_t source_dcmp_len = 3;
UChar expect_dcmp[] = { 0x0044, 0x0307, 0x0000, 0x0928, 0x093C };
int32_t expect_dcmp_len = 5;
TestNull_check(source_comp,
source_comp_len,
expect_comp,
expect_comp_len,
UNORM_NFC,
"UNORM_NFC");
TestNull_check(source_dcmp,
source_dcmp_len,
expect_dcmp,
expect_dcmp_len,
UNORM_NFD,
"UNORM_NFD");
TestNull_check(source_comp,
source_comp_len,
expect_comp,
expect_comp_len,
UNORM_NFKC,
"UNORM_NFKC");
}
static void TestQuickCheckResultNO()
{
const UChar CPNFD[] = {0x00C5, 0x0407, 0x1E00, 0x1F57, 0x220C,
0x30AE, 0xAC00, 0xD7A3, 0xFB36, 0xFB4E};
const UChar CPNFC[] = {0x0340, 0x0F93, 0x1F77, 0x1FBB, 0x1FEB,
0x2000, 0x232A, 0xF900, 0xFA1E, 0xFB4E};
const UChar CPNFKD[] = {0x00A0, 0x02E4, 0x1FDB, 0x24EA, 0x32FE,
0xAC00, 0xFB4E, 0xFA10, 0xFF3F, 0xFA2D};
const UChar CPNFKC[] = {0x00A0, 0x017F, 0x2000, 0x24EA, 0x32FE,
0x33FE, 0xFB4E, 0xFA10, 0xFF3F, 0xFA2D};
const int SIZE = 10;
int count = 0;
UErrorCode error = U_ZERO_ERROR;
for (; count < SIZE; count ++)
{
if (unorm_quickCheck(&(CPNFD[count]), 1, UNORM_NFD, &error) !=
UNORM_NO)
{
log_err("ERROR in NFD quick check at U+%04x\n", CPNFD[count]);
return;
}
if (unorm_quickCheck(&(CPNFC[count]), 1, UNORM_NFC, &error) !=
UNORM_NO)
{
log_err("ERROR in NFC quick check at U+%04x\n", CPNFC[count]);
return;
}
if (unorm_quickCheck(&(CPNFKD[count]), 1, UNORM_NFKD, &error) !=
UNORM_NO)
{
log_err("ERROR in NFKD quick check at U+%04x\n", CPNFKD[count]);
return;
}
if (unorm_quickCheck(&(CPNFKC[count]), 1, UNORM_NFKC, &error) !=
UNORM_NO)
{
log_err("ERROR in NFKC quick check at U+%04x\n", CPNFKC[count]);
return;
}
}
}
static void TestQuickCheckResultYES()
{
const UChar CPNFD[] = {0x00C6, 0x017F, 0x0F74, 0x1000, 0x1E9A,
0x2261, 0x3075, 0x4000, 0x5000, 0xF000};
const UChar CPNFC[] = {0x0400, 0x0540, 0x0901, 0x1000, 0x1500,
0x1E9A, 0x3000, 0x4000, 0x5000, 0xF000};
const UChar CPNFKD[] = {0x00AB, 0x02A0, 0x1000, 0x1027, 0x2FFB,
0x3FFF, 0x4FFF, 0xA000, 0xF000, 0xFA27};
const UChar CPNFKC[] = {0x00B0, 0x0100, 0x0200, 0x0A02, 0x1000,
0x2010, 0x3030, 0x4000, 0xA000, 0xFA0E};
const int SIZE = 10;
int count = 0;
UErrorCode error = U_ZERO_ERROR;
UChar cp = 0;
while (cp < 0xA0)
{
if (unorm_quickCheck(&cp, 1, UNORM_NFD, &error) != UNORM_YES)
{
log_err("ERROR in NFD quick check at U+%04x\n", cp);
return;
}
if (unorm_quickCheck(&cp, 1, UNORM_NFC, &error) !=
UNORM_YES)
{
log_err("ERROR in NFC quick check at U+%04x\n", cp);
return;
}
if (unorm_quickCheck(&cp, 1, UNORM_NFKD, &error) != UNORM_YES)
{
log_err("ERROR in NFKD quick check at U+%04x\n", cp);
return;
}
if (unorm_quickCheck(&cp, 1, UNORM_NFKC, &error) !=
UNORM_YES)
{
log_err("ERROR in NFKC quick check at U+%04x\n", cp);
return;
}
cp ++;
}
for (; count < SIZE; count ++)
{
if (unorm_quickCheck(&(CPNFD[count]), 1, UNORM_NFD, &error) !=
UNORM_YES)
{
log_err("ERROR in NFD quick check at U+%04x\n", CPNFD[count]);
return;
}
if (unorm_quickCheck(&(CPNFC[count]), 1, UNORM_NFC, &error)
!= UNORM_YES)
{
log_err("ERROR in NFC quick check at U+%04x\n", CPNFC[count]);
return;
}
if (unorm_quickCheck(&(CPNFKD[count]), 1, UNORM_NFKD, &error) !=
UNORM_YES)
{
log_err("ERROR in NFKD quick check at U+%04x\n", CPNFKD[count]);
return;
}
if (unorm_quickCheck(&(CPNFKC[count]), 1, UNORM_NFKC, &error) !=
UNORM_YES)
{
log_err("ERROR in NFKC quick check at U+%04x\n", CPNFKC[count]);
return;
}
}
}
static void TestQuickCheckResultMAYBE()
{
const UChar CPNFC[] = {0x0306, 0x0654, 0x0BBE, 0x102E, 0x1161,
0x116A, 0x1173, 0x1175, 0x3099, 0x309A};
const UChar CPNFKC[] = {0x0300, 0x0654, 0x0655, 0x09D7, 0x0B3E,
0x0DCF, 0xDDF, 0x102E, 0x11A8, 0x3099};
const int SIZE = 10;
int count = 0;
UErrorCode error = U_ZERO_ERROR;
/* NFD and NFKD does not have any MAYBE codepoints */
for (; count < SIZE; count ++)
{
if (unorm_quickCheck(&(CPNFC[count]), 1, UNORM_NFC, &error) !=
UNORM_MAYBE)
{
log_err("ERROR in NFC quick check at U+%04x\n", CPNFC[count]);
return;
}
if (unorm_quickCheck(&(CPNFKC[count]), 1, UNORM_NFKC, &error) !=
UNORM_MAYBE)
{
log_err("ERROR in NFKC quick check at U+%04x\n", CPNFKC[count]);
return;
}
}
}
static void TestQuickCheckStringResult()
{
int count;
UChar *d = NULL;
UChar *c = NULL;
UErrorCode error = U_ZERO_ERROR;
for (count = 0; count < LENGTHOF(canonTests); count ++)
{
d = CharsToUChars(canonTests[count][1]);
c = CharsToUChars(canonTests[count][2]);
if (unorm_quickCheck(d, u_strlen(d), UNORM_NFD, &error) !=
UNORM_YES)
{
log_err("ERROR in NFD quick check for string at count %d\n", count);
return;
}
if (unorm_quickCheck(c, u_strlen(c), UNORM_NFC, &error) ==
UNORM_NO)
{
log_err("ERROR in NFC quick check for string at count %d\n", count);
return;
}
free(d);
free(c);
}
for (count = 0; count < LENGTHOF(compatTests); count ++)
{
d = CharsToUChars(compatTests[count][1]);
c = CharsToUChars(compatTests[count][2]);
if (unorm_quickCheck(d, u_strlen(d), UNORM_NFKD, &error) !=
UNORM_YES)
{
log_err("ERROR in NFKD quick check for string at count %d\n", count);
return;
}
if (unorm_quickCheck(c, u_strlen(c), UNORM_NFKC, &error) !=
UNORM_YES)
{
log_err("ERROR in NFKC quick check for string at count %d\n", count);
return;
}
free(d);
free(c);
}
}
void TestQuickCheck()
{
TestQuickCheckResultNO();
TestQuickCheckResultYES();
TestQuickCheckResultMAYBE();
TestQuickCheckStringResult();
}
/*
* The intltest/NormalizerConformanceTest tests a lot of strings that _are_
* normalized, and some that are not.
* Here we pick some specific cases and test the C API.
*/
static void TestIsNormalized(void) {
static const UChar notNFC[][8]={ /* strings that are not in NFC */
{ 0x62, 0x61, 0x300, 0x63, 0 }, /* 0061 0300 compose */
{ 0xfb1d, 0 }, /* excluded from composition */
{ 0x0627, 0x0653, 0 }, /* 0627 0653 compose */
{ 0x3071, 0x306f, 0x309a, 0x3073, 0 } /* 306F 309A compose */
};
static const UChar notNFKC[][8]={ /* strings that are not in NFKC */
{ 0x1100, 0x1161, 0 }, /* Jamo compose */
{ 0x1100, 0x314f, 0 }, /* compatibility Jamo compose */
{ 0x03b1, 0x1f00, 0x0345, 0x03b3, 0 } /* 1F00 0345 compose */
};
int32_t i;
UErrorCode errorCode;
/* API test */
/* normal case with length>=0 (length -1 used for special cases below) */
errorCode=U_ZERO_ERROR;
if(!unorm_isNormalized(notNFC[0]+2, 1, UNORM_NFC, &errorCode) || U_FAILURE(errorCode)) {
log_err("error: !isNormalized(<U+0300>, NFC) (%s)\n", u_errorName(errorCode));
}
/* incoming U_FAILURE */
errorCode=U_TRUNCATED_CHAR_FOUND;
(void)unorm_isNormalized(notNFC[0]+2, 1, UNORM_NFC, &errorCode);
if(errorCode!=U_TRUNCATED_CHAR_FOUND) {
log_err("error: isNormalized(U_TRUNCATED_CHAR_FOUND) changed the error code to %s\n", u_errorName(errorCode));
}
/* NULL source */
errorCode=U_ZERO_ERROR;
(void)unorm_isNormalized(NULL, 1, UNORM_NFC, &errorCode);
if(errorCode!=U_ILLEGAL_ARGUMENT_ERROR) {
log_err("error: isNormalized(NULL) did not set U_ILLEGAL_ARGUMENT_ERROR but %s\n", u_errorName(errorCode));
}
/* bad length */
errorCode=U_ZERO_ERROR;
(void)unorm_isNormalized(notNFC[0]+2, -2, UNORM_NFC, &errorCode);
if(errorCode!=U_ILLEGAL_ARGUMENT_ERROR) {
log_err("error: isNormalized([-2]) did not set U_ILLEGAL_ARGUMENT_ERROR but %s\n", u_errorName(errorCode));
}
/* specific cases */
for(i=0; i<LENGTHOF(notNFC); ++i) {
errorCode=U_ZERO_ERROR;
if(unorm_isNormalized(notNFC[i], -1, UNORM_NFC, &errorCode) || U_FAILURE(errorCode)) {
log_err("error: isNormalized(notNFC[%d], NFC) is wrong (%s)\n", i, u_errorName(errorCode));
}
errorCode=U_ZERO_ERROR;
if(unorm_isNormalized(notNFC[i], -1, UNORM_NFKC, &errorCode) || U_FAILURE(errorCode)) {
log_err("error: isNormalized(notNFC[%d], NFKC) is wrong (%s)\n", i, u_errorName(errorCode));
}
}
for(i=0; i<LENGTHOF(notNFKC); ++i) {
errorCode=U_ZERO_ERROR;
if(unorm_isNormalized(notNFKC[i], -1, UNORM_NFKC, &errorCode) || U_FAILURE(errorCode)) {
log_err("error: isNormalized(notNFKC[%d], NFKC) is wrong (%s)\n", i, u_errorName(errorCode));
}
}
}
void TestCheckFCD()
{
UErrorCode status = U_ZERO_ERROR;
static const UChar FAST_[] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
0x0A};
static const UChar FALSE_[] = {0x0001, 0x0002, 0x02EA, 0x03EB, 0x0300, 0x0301,
0x02B9, 0x0314, 0x0315, 0x0316};
static const UChar TRUE_[] = {0x0030, 0x0040, 0x0440, 0x056D, 0x064F, 0x06E7,
0x0050, 0x0730, 0x09EE, 0x1E10};
static const UChar datastr[][5] =
{ {0x0061, 0x030A, 0x1E05, 0x0302, 0},
{0x0061, 0x030A, 0x00E2, 0x0323, 0},
{0x0061, 0x0323, 0x00E2, 0x0323, 0},
{0x0061, 0x0323, 0x1E05, 0x0302, 0} };
static const UBool result[] = {UNORM_YES, UNORM_NO, UNORM_NO, UNORM_YES};
static const UChar datachar[] = {0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
0x6a,
0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
0xea,
0x0300, 0x0301, 0x0302, 0x0303, 0x0304, 0x0305, 0x0306,
0x0307, 0x0308, 0x0309, 0x030a,
0x0320, 0x0321, 0x0322, 0x0323, 0x0324, 0x0325, 0x0326,
0x0327, 0x0328, 0x0329, 0x032a,
0x1e00, 0x1e01, 0x1e02, 0x1e03, 0x1e04, 0x1e05, 0x1e06,
0x1e07, 0x1e08, 0x1e09, 0x1e0a};
int count = 0;
if (unorm_quickCheck(FAST_, 10, UNORM_FCD, &status) != UNORM_YES)
log_err("unorm_quickCheck(FCD) failed: expected value for fast unorm_quickCheck is UNORM_YES\n");
if (unorm_quickCheck(FALSE_, 10, UNORM_FCD, &status) != UNORM_NO)
log_err("unorm_quickCheck(FCD) failed: expected value for error unorm_quickCheck is UNORM_NO\n");
if (unorm_quickCheck(TRUE_, 10, UNORM_FCD, &status) != UNORM_YES)
log_err("unorm_quickCheck(FCD) failed: expected value for correct unorm_quickCheck is UNORM_YES\n");
if (U_FAILURE(status))
log_err("unorm_quickCheck(FCD) failed: %s\n", u_errorName(status));
while (count < 4)
{
UBool fcdresult = unorm_quickCheck(datastr[count], 4, UNORM_FCD, &status);
if (U_FAILURE(status)) {
log_err("unorm_quickCheck(FCD) failed: exception occured at data set %d\n", count);
break;
}
else {
if (result[count] != fcdresult) {
log_err("unorm_quickCheck(FCD) failed: Data set %d expected value %d\n", count,
result[count]);
}
}
count ++;
}
/* random checks of long strings */
status = U_ZERO_ERROR;
srand((unsigned)time( NULL ));
for (count = 0; count < 50; count ++)
{
int size = 0;
UBool testresult = UNORM_YES;
UChar data[20];
UChar norm[100];
UChar nfd[100];
int normsize = 0;
int nfdsize = 0;
while (size != 19) {
data[size] = datachar[(rand() * 50) / RAND_MAX];
log_verbose("0x%x", data[size]);
normsize += unorm_normalize(data + size, 1, UNORM_NFD, 0,
norm + normsize, 100 - normsize, &status);
if (U_FAILURE(status)) {
log_err("unorm_quickCheck(FCD) failed: exception occured at data generation\n");
break;
}
size ++;
}
log_verbose("\n");
nfdsize = unorm_normalize(data, size, UNORM_NFD, 0,
nfd, 100, &status);
if (U_FAILURE(status)) {
log_err("unorm_quickCheck(FCD) failed: exception occured at normalized data generation\n");
}
if (nfdsize != normsize || u_memcmp(nfd, norm, nfdsize) != 0) {
testresult = UNORM_NO;
}
if (testresult == UNORM_YES) {
log_verbose("result UNORM_YES\n");
}
else {
log_verbose("result UNORM_NO\n");
}
if (unorm_quickCheck(data, size, UNORM_FCD, &status) != testresult || U_FAILURE(status)) {
log_err("unorm_quickCheck(FCD) failed: expected %d for random data\n", testresult);
}
}
}
static void
TestAPI() {
static const UChar in[]={ 0x68, 0xe4 };
UChar out[20]={ 0xffff, 0xffff, 0xffff, 0xffff };
UErrorCode errorCode;
int32_t length;
/* try preflighting */
errorCode=U_ZERO_ERROR;
length=unorm_normalize(in, 2, UNORM_NFD, 0, NULL, 0, &errorCode);
if(errorCode!=U_BUFFER_OVERFLOW_ERROR || length!=3) {
log_err("unorm_normalize(pure preflighting NFD)=%ld failed with %s\n", length, u_errorName(errorCode));
return;
}
errorCode=U_ZERO_ERROR;
length=unorm_normalize(in, 2, UNORM_NFD, 0, out, 3, &errorCode);
if(U_FAILURE(errorCode)) {
log_err("unorm_normalize(NFD)=%ld failed with %s\n", length, u_errorName(errorCode));
return;
}
if(length!=3 || out[2]!=0x308 || out[3]!=0xffff) {
log_err("unorm_normalize(NFD ma<umlaut>)=%ld failed with out[]=U+%04x U+%04x U+%04x U+%04x\n", length, out[0], out[1], out[2], out[3]);
return;
}
}
/* test cases to improve test code coverage */
enum {
HANGUL_K_KIYEOK=0x3131, /* NFKD->Jamo L U+1100 */
HANGUL_K_WEO=0x315d, /* NFKD->Jamo V U+116f */
HANGUL_K_KIYEOK_SIOS=0x3133, /* NFKD->Jamo T U+11aa */
HANGUL_KIYEOK=0x1100, /* Jamo L U+1100 */
HANGUL_WEO=0x116f, /* Jamo V U+116f */
HANGUL_KIYEOK_SIOS=0x11aa, /* Jamo T U+11aa */
HANGUL_AC00=0xac00, /* Hangul syllable = Jamo LV U+ac00 */
HANGUL_SYLLABLE=0xac00+14*28+3, /* Hangul syllable = U+1100 * U+116f * U+11aa */
MUSICAL_VOID_NOTEHEAD=0x1d157,
MUSICAL_HALF_NOTE=0x1d15e, /* NFC/NFD->Notehead+Stem */
MUSICAL_STEM=0x1d165, /* cc=216 */
MUSICAL_STACCATO=0x1d17c /* cc=220 */
};
static void
TestNormCoverage() {
static UChar input[2000], expect[3000], output[3000];
UErrorCode errorCode;
int32_t i, length, inLength, expectLength, hangulPrefixLength, preflightLength;
/* create a long and nasty string with NFKC-unsafe characters */
inLength=0;
/* 3 Jamos L/V/T, all 8 combinations normal/compatibility */
input[inLength++]=HANGUL_KIYEOK;
input[inLength++]=HANGUL_WEO;
input[inLength++]=HANGUL_KIYEOK_SIOS;
input[inLength++]=HANGUL_KIYEOK;
input[inLength++]=HANGUL_WEO;
input[inLength++]=HANGUL_K_KIYEOK_SIOS;
input[inLength++]=HANGUL_KIYEOK;
input[inLength++]=HANGUL_K_WEO;
input[inLength++]=HANGUL_KIYEOK_SIOS;
input[inLength++]=HANGUL_KIYEOK;
input[inLength++]=HANGUL_K_WEO;
input[inLength++]=HANGUL_K_KIYEOK_SIOS;
input[inLength++]=HANGUL_K_KIYEOK;
input[inLength++]=HANGUL_WEO;
input[inLength++]=HANGUL_KIYEOK_SIOS;
input[inLength++]=HANGUL_K_KIYEOK;
input[inLength++]=HANGUL_WEO;
input[inLength++]=HANGUL_K_KIYEOK_SIOS;
input[inLength++]=HANGUL_K_KIYEOK;
input[inLength++]=HANGUL_K_WEO;
input[inLength++]=HANGUL_KIYEOK_SIOS;
input[inLength++]=HANGUL_K_KIYEOK;
input[inLength++]=HANGUL_K_WEO;
input[inLength++]=HANGUL_K_KIYEOK_SIOS;
/* Hangul LV with normal/compatibility Jamo T */
input[inLength++]=HANGUL_AC00;
input[inLength++]=HANGUL_KIYEOK_SIOS;
input[inLength++]=HANGUL_AC00;
input[inLength++]=HANGUL_K_KIYEOK_SIOS;
/* compatibility Jamo L, V */
input[inLength++]=HANGUL_K_KIYEOK;
input[inLength++]=HANGUL_K_WEO;
hangulPrefixLength=inLength;
input[inLength++]=UTF16_LEAD(MUSICAL_HALF_NOTE);
input[inLength++]=UTF16_TRAIL(MUSICAL_HALF_NOTE);
for(i=0; i<200; ++i) {
input[inLength++]=UTF16_LEAD(MUSICAL_STACCATO);
input[inLength++]=UTF16_TRAIL(MUSICAL_STACCATO);
input[inLength++]=UTF16_LEAD(MUSICAL_STEM);
input[inLength++]=UTF16_TRAIL(MUSICAL_STEM);
}
/* (compatibility) Jamo L, T do not compose */
input[inLength++]=HANGUL_K_KIYEOK;
input[inLength++]=HANGUL_K_KIYEOK_SIOS;
/* quick checks */
errorCode=U_ZERO_ERROR;
if(UNORM_NO!=unorm_quickCheck(input, inLength, UNORM_NFD, &errorCode) || U_FAILURE(errorCode)) {
log_err("error unorm_quickCheck(long input, UNORM_NFD)!=NO (%s)\n", u_errorName(errorCode));
}
errorCode=U_ZERO_ERROR;
if(UNORM_NO!=unorm_quickCheck(input, inLength, UNORM_NFKD, &errorCode) || U_FAILURE(errorCode)) {
log_err("error unorm_quickCheck(long input, UNORM_NFKD)!=NO (%s)\n", u_errorName(errorCode));
}
errorCode=U_ZERO_ERROR;
if(UNORM_NO!=unorm_quickCheck(input, inLength, UNORM_NFC, &errorCode) || U_FAILURE(errorCode)) {
log_err("error unorm_quickCheck(long input, UNORM_NFC)!=NO (%s)\n", u_errorName(errorCode));
}
errorCode=U_ZERO_ERROR;
if(UNORM_NO!=unorm_quickCheck(input, inLength, UNORM_NFKC, &errorCode) || U_FAILURE(errorCode)) {
log_err("error unorm_quickCheck(long input, UNORM_NFKC)!=NO (%s)\n", u_errorName(errorCode));
}
errorCode=U_ZERO_ERROR;
if(UNORM_NO!=unorm_quickCheck(input, inLength, UNORM_FCD, &errorCode) || U_FAILURE(errorCode)) {
log_err("error unorm_quickCheck(long input, UNORM_FCD)!=NO (%s)\n", u_errorName(errorCode));
}
/* NFKC */
expectLength=0;
expect[expectLength++]=HANGUL_SYLLABLE;
expect[expectLength++]=HANGUL_SYLLABLE;
expect[expectLength++]=HANGUL_SYLLABLE;
expect[expectLength++]=HANGUL_SYLLABLE;
expect[expectLength++]=HANGUL_SYLLABLE;
expect[expectLength++]=HANGUL_SYLLABLE;
expect[expectLength++]=HANGUL_SYLLABLE;
expect[expectLength++]=HANGUL_SYLLABLE;
expect[expectLength++]=HANGUL_AC00+3;
expect[expectLength++]=HANGUL_AC00+3;
expect[expectLength++]=HANGUL_AC00+14*28;
expect[expectLength++]=UTF16_LEAD(MUSICAL_VOID_NOTEHEAD);
expect[expectLength++]=UTF16_TRAIL(MUSICAL_VOID_NOTEHEAD);
expect[expectLength++]=UTF16_LEAD(MUSICAL_STEM);
expect[expectLength++]=UTF16_TRAIL(MUSICAL_STEM);
for(i=0; i<200; ++i) {
expect[expectLength++]=UTF16_LEAD(MUSICAL_STEM);
expect[expectLength++]=UTF16_TRAIL(MUSICAL_STEM);
}
for(i=0; i<200; ++i) {
expect[expectLength++]=UTF16_LEAD(MUSICAL_STACCATO);
expect[expectLength++]=UTF16_TRAIL(MUSICAL_STACCATO);
}
expect[expectLength++]=HANGUL_KIYEOK;
expect[expectLength++]=HANGUL_KIYEOK_SIOS;
/* try destination overflow first */
errorCode=U_ZERO_ERROR;
preflightLength=unorm_normalize(input, inLength,
UNORM_NFKC, 0,
output, 100, /* too short */
&errorCode);
if(errorCode!=U_BUFFER_OVERFLOW_ERROR) {
log_err("error unorm_normalize(long input, output too short, UNORM_NFKC) did not overflow but %s\n", u_errorName(errorCode));
}
/* real NFKC */
errorCode=U_ZERO_ERROR;
length=unorm_normalize(input, inLength,
UNORM_NFKC, 0,
output, sizeof(output)/U_SIZEOF_UCHAR,
&errorCode);
if(U_FAILURE(errorCode)) {
log_err("error unorm_normalize(long input, UNORM_NFKC) failed with %s\n", u_errorName(errorCode));
} else if(length!=expectLength || u_memcmp(output, expect, length)!=0) {
log_err("error unorm_normalize(long input, UNORM_NFKC) produced wrong result\n");
for(i=0; i<length; ++i) {
if(output[i]!=expect[i]) {
log_err(" NFKC[%d]==U+%04lx expected U+%04lx\n", i, output[i], expect[i]);
break;
}
}
}
if(length!=preflightLength) {
log_err("error unorm_normalize(long input, UNORM_NFKC)==%ld but preflightLength==%ld\n", length, preflightLength);
}
/* FCD */
u_memcpy(expect, input, hangulPrefixLength);
expectLength=hangulPrefixLength;
expect[expectLength++]=UTF16_LEAD(MUSICAL_VOID_NOTEHEAD);
expect[expectLength++]=UTF16_TRAIL(MUSICAL_VOID_NOTEHEAD);
expect[expectLength++]=UTF16_LEAD(MUSICAL_STEM);
expect[expectLength++]=UTF16_TRAIL(MUSICAL_STEM);
for(i=0; i<200; ++i) {
expect[expectLength++]=UTF16_LEAD(MUSICAL_STEM);
expect[expectLength++]=UTF16_TRAIL(MUSICAL_STEM);
}
for(i=0; i<200; ++i) {
expect[expectLength++]=UTF16_LEAD(MUSICAL_STACCATO);
expect[expectLength++]=UTF16_TRAIL(MUSICAL_STACCATO);
}
expect[expectLength++]=HANGUL_K_KIYEOK;
expect[expectLength++]=HANGUL_K_KIYEOK_SIOS;
errorCode=U_ZERO_ERROR;
length=unorm_normalize(input, inLength,
UNORM_FCD, 0,
output, sizeof(output)/U_SIZEOF_UCHAR,
&errorCode);
if(U_FAILURE(errorCode)) {
log_err("error unorm_normalize(long input, UNORM_FCD) failed with %s\n", u_errorName(errorCode));
} else if(length!=expectLength || u_memcmp(output, expect, length)!=0) {
log_err("error unorm_normalize(long input, UNORM_FCD) produced wrong result\n");
for(i=0; i<length; ++i) {
if(output[i]!=expect[i]) {
log_err(" FCD[%d]==U+%04lx expected U+%04lx\n", i, output[i], expect[i]);
break;
}
}
}
}
/* API test for unorm_concatenate() - for real test strings see intltest/tstnorm.cpp */
static void
TestConcatenate(void) {
/* "re + 'sume'" */
static const UChar
left[]={
0x72, 0x65, 0
},
right[]={
0x301, 0x73, 0x75, 0x6d, 0xe9, 0
},
expect[]={
0x72, 0xe9, 0x73, 0x75, 0x6d, 0xe9, 0
};
UChar buffer[100];
UErrorCode errorCode;
int32_t length;
/* left with length, right NUL-terminated */
errorCode=U_ZERO_ERROR;
length=unorm_concatenate(left, 2, right, -1, buffer, 100, UNORM_NFC, 0, &errorCode);
if(U_FAILURE(errorCode) || length!=6 || 0!=u_memcmp(buffer, expect, length)) {
log_err("error: unorm_concatenate()=%ld (expect 6) failed with %s\n", length, u_errorName(errorCode));
}
/* preflighting */
errorCode=U_ZERO_ERROR;
length=unorm_concatenate(left, 2, right, -1, NULL, 0, UNORM_NFC, 0, &errorCode);
if(errorCode!=U_BUFFER_OVERFLOW_ERROR || length!=6) {
log_err("error: unorm_concatenate(preflighting)=%ld (expect 6) failed with %s\n", length, u_errorName(errorCode));
}
buffer[2]=0x5555;
errorCode=U_ZERO_ERROR;
length=unorm_concatenate(left, 2, right, -1, buffer, 1, UNORM_NFC, 0, &errorCode);
if(errorCode!=U_BUFFER_OVERFLOW_ERROR || length!=6 || buffer[2]!=0x5555) {
log_err("error: unorm_concatenate(preflighting 2)=%ld (expect 6) failed with %s\n", length, u_errorName(errorCode));
}
/* enter with U_FAILURE */
buffer[2]=0xaaaa;
errorCode=U_UNEXPECTED_TOKEN;
length=unorm_concatenate(left, 2, right, -1, buffer, 100, UNORM_NFC, 0, &errorCode);
if(errorCode!=U_UNEXPECTED_TOKEN || buffer[2]!=0xaaaa) {
log_err("error: unorm_concatenate(failure)=%ld failed with %s\n", length, u_errorName(errorCode));
}
/* illegal arguments */
buffer[2]=0xaaaa;
errorCode=U_ZERO_ERROR;
length=unorm_concatenate(NULL, 2, right, -1, buffer, 100, UNORM_NFC, 0, &errorCode);
if(errorCode!=U_ILLEGAL_ARGUMENT_ERROR || buffer[2]!=0xaaaa) {
log_err("error: unorm_concatenate(left=NULL)=%ld failed with %s\n", length, u_errorName(errorCode));
}
errorCode=U_ZERO_ERROR;
length=unorm_concatenate(left, 2, right, -1, NULL, 100, UNORM_NFC, 0, &errorCode);
if(errorCode!=U_ILLEGAL_ARGUMENT_ERROR) {
log_err("error: unorm_concatenate(buffer=NULL)=%ld failed with %s\n", length, u_errorName(errorCode));
}
}
enum {
_PLUS=0x2b
};
static const char *const _modeString[UNORM_MODE_COUNT]={
"0", "NONE", "NFD", "NFKD", "NFC", "NFKC", "FCD"
};
static void
_testIter(const UChar *src, int32_t srcLength,
UCharIterator *iter, UNormalizationMode mode, UBool forward,
const UChar *out, int32_t outLength,
const int32_t *srcIndexes, int32_t srcIndexesLength) {
UChar buffer[4];
const UChar *expect, *outLimit, *in;
int32_t length, i, expectLength, expectIndex, prevIndex, index, inLength;
UErrorCode errorCode;
UBool neededToNormalize, expectNeeded;
errorCode=U_ZERO_ERROR;
outLimit=out+outLength;
if(forward) {
expect=out;
i=index=0;
} else {
expect=outLimit;
i=srcIndexesLength-2;
index=srcLength;
}
for(;;) {
prevIndex=index;
if(forward) {
if(!iter->hasNext(iter)) {
return;
}
length=unorm_next(iter,
buffer, sizeof(buffer)/U_SIZEOF_UCHAR,
mode, 0,
(UBool)(out!=NULL), &neededToNormalize,
&errorCode);
expectIndex=srcIndexes[i+1];
in=src+prevIndex;
inLength=expectIndex-prevIndex;
if(out!=NULL) {
/* get output piece from between plus signs */
expectLength=0;
while((expect+expectLength)!=outLimit && expect[expectLength]!=_PLUS) {
++expectLength;
}
expectNeeded=(UBool)(0!=u_memcmp(buffer, in, inLength));
} else {
expect=in;
expectLength=inLength;
expectNeeded=FALSE;
}
} else {
if(!iter->hasPrevious(iter)) {
return;
}
length=unorm_previous(iter,
buffer, sizeof(buffer)/U_SIZEOF_UCHAR,
mode, 0,
(UBool)(out!=NULL), &neededToNormalize,
&errorCode);
expectIndex=srcIndexes[i];
in=src+expectIndex;
inLength=prevIndex-expectIndex;
if(out!=NULL) {
/* get output piece from between plus signs */
expectLength=0;
while(expect!=out && expect[-1]!=_PLUS) {
++expectLength;
--expect;
}
expectNeeded=(UBool)(0!=u_memcmp(buffer, in, inLength));
} else {
expect=in;
expectLength=inLength;
expectNeeded=FALSE;
}
}
index=iter->getIndex(iter, UITER_CURRENT);
if(U_FAILURE(errorCode)) {
log_err("error unorm iteration (next/previous %d %s)[%d]: %s\n",
forward, _modeString[mode], i, u_errorName(errorCode));
return;
}
if(expectIndex!=index) {
log_err("error unorm iteration (next/previous %d %s): index[%d] wrong, got %d expected %d\n",
forward, _modeString[mode], i, index, expectIndex);
return;
}
if(expectLength!=length) {
log_err("error unorm iteration (next/previous %d %s): length[%d] wrong, got %d expected %d\n",
forward, _modeString[mode], i, length, expectLength);
return;
}
if(0!=u_memcmp(expect, buffer, length)) {
log_err("error unorm iteration (next/previous %d %s): output string[%d] wrong\n",
forward, _modeString[mode], i);
return;
}
if(neededToNormalize!=expectNeeded) {
}
if(forward) {
expect+=expectLength+1; /* go after the + */
++i;
} else {
--expect; /* go before the + */
--i;
}
}
}
static void
TestNextPrevious() {
static const UChar
src[]={ /* input string */
0xa0, 0xe4, 0x63, 0x302, 0x327, 0xac00, 0x3133
},
nfd[]={ /* + separates expected output pieces */
0xa0, _PLUS, 0x61, 0x308, _PLUS, 0x63, 0x327, 0x302, _PLUS, 0x1100, 0x1161, _PLUS, 0x3133
},
nfkd[]={
0x20, _PLUS, 0x61, 0x308, _PLUS, 0x63, 0x327, 0x302, _PLUS, 0x1100, 0x1161, _PLUS, 0x11aa
},
nfc[]={
0xa0, _PLUS, 0xe4, _PLUS, 0xe7, 0x302, _PLUS, 0xac00, _PLUS, 0x3133
},
nfkc[]={
0x20, _PLUS, 0xe4, _PLUS, 0xe7, 0x302, _PLUS, 0xac03
},
fcd[]={
0xa0, _PLUS, 0xe4, _PLUS, 0x63, 0x327, 0x302, _PLUS, 0xac00, _PLUS, 0x3133
};
/* expected iterator indexes in the source string for each iteration piece */
static const int32_t
nfdIndexes[]={
0, 1, 2, 5, 6, 7
},
nfkdIndexes[]={
0, 1, 2, 5, 6, 7
},
nfcIndexes[]={
0, 1, 2, 5, 6, 7
},
nfkcIndexes[]={
0, 1, 2, 5, 7
},
fcdIndexes[]={
0, 1, 2, 5, 6, 7
};
UCharIterator iter;
UChar buffer[4];
int32_t length;
UBool neededToNormalize;
UErrorCode errorCode;
uiter_setString(&iter, src, sizeof(src)/U_SIZEOF_UCHAR);
/* test iteration with doNormalize */
iter.index=0;
_testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFD, TRUE, nfd, sizeof(nfd)/U_SIZEOF_UCHAR, nfdIndexes, sizeof(nfdIndexes)/4);
iter.index=0;
_testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFKD, TRUE, nfkd, sizeof(nfkd)/U_SIZEOF_UCHAR, nfkdIndexes, sizeof(nfkdIndexes)/4);
iter.index=0;
_testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFC, TRUE, nfc, sizeof(nfc)/U_SIZEOF_UCHAR, nfcIndexes, sizeof(nfcIndexes)/4);
iter.index=0;
_testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFKC, TRUE, nfkc, sizeof(nfkc)/U_SIZEOF_UCHAR, nfkcIndexes, sizeof(nfkcIndexes)/4);
iter.index=0;
_testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_FCD, TRUE, fcd, sizeof(fcd)/U_SIZEOF_UCHAR, fcdIndexes, sizeof(fcdIndexes)/4);
iter.index=iter.length;
_testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFD, FALSE, nfd, sizeof(nfd)/U_SIZEOF_UCHAR, nfdIndexes, sizeof(nfdIndexes)/4);
iter.index=iter.length;
_testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFKD, FALSE, nfkd, sizeof(nfkd)/U_SIZEOF_UCHAR, nfkdIndexes, sizeof(nfkdIndexes)/4);
iter.index=iter.length;
_testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFC, FALSE, nfc, sizeof(nfc)/U_SIZEOF_UCHAR, nfcIndexes, sizeof(nfcIndexes)/4);
iter.index=iter.length;
_testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFKC, FALSE, nfkc, sizeof(nfkc)/U_SIZEOF_UCHAR, nfkcIndexes, sizeof(nfkcIndexes)/4);
iter.index=iter.length;
_testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_FCD, FALSE, fcd, sizeof(fcd)/U_SIZEOF_UCHAR, fcdIndexes, sizeof(fcdIndexes)/4);
/* test iteration without doNormalize */
iter.index=0;
_testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFD, TRUE, NULL, 0, nfdIndexes, sizeof(nfdIndexes)/4);
iter.index=0;
_testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFKD, TRUE, NULL, 0, nfkdIndexes, sizeof(nfkdIndexes)/4);
iter.index=0;
_testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFC, TRUE, NULL, 0, nfcIndexes, sizeof(nfcIndexes)/4);
iter.index=0;
_testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFKC, TRUE, NULL, 0, nfkcIndexes, sizeof(nfkcIndexes)/4);
iter.index=0;
_testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_FCD, TRUE, NULL, 0, fcdIndexes, sizeof(fcdIndexes)/4);
iter.index=iter.length;
_testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFD, FALSE, NULL, 0, nfdIndexes, sizeof(nfdIndexes)/4);
iter.index=iter.length;
_testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFKD, FALSE, NULL, 0, nfkdIndexes, sizeof(nfkdIndexes)/4);
iter.index=iter.length;
_testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFC, FALSE, NULL, 0, nfcIndexes, sizeof(nfcIndexes)/4);
iter.index=iter.length;
_testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFKC, FALSE, NULL, 0, nfkcIndexes, sizeof(nfkcIndexes)/4);
iter.index=iter.length;
_testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_FCD, FALSE, NULL, 0, fcdIndexes, sizeof(fcdIndexes)/4);
/* try without neededToNormalize */
errorCode=U_ZERO_ERROR;
buffer[0]=5;
iter.index=1;
length=unorm_next(&iter, buffer, sizeof(buffer)/U_SIZEOF_UCHAR,
UNORM_NFD, 0, TRUE, NULL,
&errorCode);
if(U_FAILURE(errorCode) || length!=2 || buffer[0]!=nfd[2] || buffer[1]!=nfd[3]) {
log_err("error unorm_next(without needed) %s\n", u_errorName(errorCode));
return;
}
/* preflight */
neededToNormalize=9;
iter.index=1;
length=unorm_next(&iter, NULL, 0,
UNORM_NFD, 0, TRUE, &neededToNormalize,
&errorCode);
if(errorCode!=U_BUFFER_OVERFLOW_ERROR || neededToNormalize!=FALSE || length!=2) {
log_err("error unorm_next(pure preflighting) %s\n", u_errorName(errorCode));
return;
}
errorCode=U_ZERO_ERROR;
buffer[0]=buffer[1]=5;
neededToNormalize=9;
iter.index=1;
length=unorm_next(&iter, buffer, 1,
UNORM_NFD, 0, TRUE, &neededToNormalize,
&errorCode);
if(errorCode!=U_BUFFER_OVERFLOW_ERROR || neededToNormalize!=FALSE || length!=2 || buffer[1]!=5) {
log_err("error unorm_next(preflighting) %s\n", u_errorName(errorCode));
return;
}
/* no iterator */
errorCode=U_ZERO_ERROR;
buffer[0]=buffer[1]=5;
neededToNormalize=9;
iter.index=1;
length=unorm_next(NULL, buffer, sizeof(buffer)/U_SIZEOF_UCHAR,
UNORM_NFD, 0, TRUE, &neededToNormalize,
&errorCode);
if(errorCode!=U_ILLEGAL_ARGUMENT_ERROR) {
log_err("error unorm_next(no iterator) %s\n", u_errorName(errorCode));
return;
}
/* illegal mode */
buffer[0]=buffer[1]=5;
neededToNormalize=9;
iter.index=1;
length=unorm_next(&iter, buffer, sizeof(buffer)/U_SIZEOF_UCHAR,
(UNormalizationMode)0, 0, TRUE, &neededToNormalize,
&errorCode);
if(errorCode!=U_ILLEGAL_ARGUMENT_ERROR) {
log_err("error unorm_next(illegal mode) %s\n", u_errorName(errorCode));
return;
}
/* error coming in */
errorCode=U_MISPLACED_QUANTIFIER;
buffer[0]=5;
iter.index=1;
length=unorm_next(&iter, buffer, sizeof(buffer)/U_SIZEOF_UCHAR,
UNORM_NFD, 0, TRUE, NULL,
&errorCode);
if(errorCode!=U_MISPLACED_QUANTIFIER) {
log_err("error unorm_next(U_MISPLACED_QUANTIFIER) %s\n", u_errorName(errorCode));
return;
}
/* missing pErrorCode */
buffer[0]=5;
iter.index=1;
length=unorm_next(&iter, buffer, sizeof(buffer)/U_SIZEOF_UCHAR,
UNORM_NFD, 0, TRUE, NULL,
NULL);
if(iter.index!=1 || buffer[0]!=5) {
log_err("error unorm_next(pErrorCode==NULL) %s\n", u_errorName(errorCode));
return;
}
}
static void
TestFCNFKCClosure(void) {
static const struct {
UChar32 c;
const UChar s[6];
} tests[]={
{ 0x037A, { 0x0020, 0x03B9, 0 } },
{ 0x03D2, { 0x03C5, 0 } },
{ 0x20A8, { 0x0072, 0x0073, 0 } },
{ 0x210B, { 0x0068, 0 } },
{ 0x210C, { 0x0068, 0 } },
{ 0x2121, { 0x0074, 0x0065, 0x006C, 0 } },
{ 0x2122, { 0x0074, 0x006D, 0 } },
{ 0x2128, { 0x007A, 0 } },
{ 0x1D5DB, { 0x0068, 0 } },
{ 0x1D5ED, { 0x007A, 0 } },
{ 0x0061, { 0 } }
};
UChar buffer[8];
UErrorCode errorCode;
int32_t i, length;
for(i=0; i<LENGTHOF(tests); ++i) {
errorCode=U_ZERO_ERROR;
length=u_getFC_NFKC_Closure(tests[i].c, buffer, LENGTHOF(buffer), &errorCode);
if(U_FAILURE(errorCode) || length!=u_strlen(buffer) || 0!=u_strcmp(tests[i].s, buffer)) {
log_err("u_getFC_NFKC_Closure(U+%04lx) is wrong (%s)\n", tests[i].c, u_errorName(errorCode));
}
}
/* error handling */
errorCode=U_ZERO_ERROR;
length=u_getFC_NFKC_Closure(0x5c, NULL, LENGTHOF(buffer), &errorCode);
if(errorCode!=U_ILLEGAL_ARGUMENT_ERROR) {
log_err("u_getFC_NFKC_Closure(dest=NULL) is wrong (%s)\n", u_errorName(errorCode));
}
length=u_getFC_NFKC_Closure(0x5c, buffer, LENGTHOF(buffer), &errorCode);
if(errorCode!=U_ILLEGAL_ARGUMENT_ERROR) {
log_err("u_getFC_NFKC_Closure(U_FAILURE) is wrong (%s)\n", u_errorName(errorCode));
}
}
static void
TestQuickCheckPerCP() {
UErrorCode errorCode;
UChar32 c, lead, trail;
UChar s[U16_MAX_LENGTH], nfd[16];
int32_t length, lccc1, lccc2, tccc1, tccc2;
UNormalizationCheckResult qc1, qc2;
if(
u_getIntPropertyMaxValue(UCHAR_NFD_QUICK_CHECK)!=(int32_t)UNORM_YES ||
u_getIntPropertyMaxValue(UCHAR_NFKD_QUICK_CHECK)!=(int32_t)UNORM_YES ||
u_getIntPropertyMaxValue(UCHAR_NFC_QUICK_CHECK)!=(int32_t)UNORM_MAYBE ||
u_getIntPropertyMaxValue(UCHAR_NFKC_QUICK_CHECK)!=(int32_t)UNORM_MAYBE ||
u_getIntPropertyMaxValue(UCHAR_LEAD_CANONICAL_COMBINING_CLASS)!=u_getIntPropertyMaxValue(UCHAR_CANONICAL_COMBINING_CLASS) ||
u_getIntPropertyMaxValue(UCHAR_TRAIL_CANONICAL_COMBINING_CLASS)!=u_getIntPropertyMaxValue(UCHAR_CANONICAL_COMBINING_CLASS)
) {
log_err("wrong result from one of the u_getIntPropertyMaxValue(UCHAR_NF*_QUICK_CHECK) or UCHAR_*_CANONICAL_COMBINING_CLASS\n");
}
/*
* compare the quick check property values for some code points
* to the quick check results for checking same-code point strings
*/
errorCode=U_ZERO_ERROR;
c=0;
while(c<0x110000) {
length=0;
U16_APPEND_UNSAFE(s, length, c);
qc1=u_getIntPropertyValue(c, UCHAR_NFC_QUICK_CHECK);
qc2=unorm_quickCheck(s, length, UNORM_NFC, &errorCode);
if(qc1!=qc2) {
log_err("u_getIntPropertyValue(NFC)=%d != %d=unorm_quickCheck(NFC) for U+%04x\n", qc1, qc2, c);
}
qc1=u_getIntPropertyValue(c, UCHAR_NFD_QUICK_CHECK);
qc2=unorm_quickCheck(s, length, UNORM_NFD, &errorCode);
if(qc1!=qc2) {
log_err("u_getIntPropertyValue(NFD)=%d != %d=unorm_quickCheck(NFD) for U+%04x\n", qc1, qc2, c);
}
qc1=u_getIntPropertyValue(c, UCHAR_NFKC_QUICK_CHECK);
qc2=unorm_quickCheck(s, length, UNORM_NFKC, &errorCode);
if(qc1!=qc2) {
log_err("u_getIntPropertyValue(NFKC)=%d != %d=unorm_quickCheck(NFKC) for U+%04x\n", qc1, qc2, c);
}
qc1=u_getIntPropertyValue(c, UCHAR_NFKD_QUICK_CHECK);
qc2=unorm_quickCheck(s, length, UNORM_NFKD, &errorCode);
if(qc1!=qc2) {
log_err("u_getIntPropertyValue(NFKD)=%d != %d=unorm_quickCheck(NFKD) for U+%04x\n", qc1, qc2, c);
}
length=unorm_normalize(s, length, UNORM_NFD, 0, nfd, LENGTHOF(nfd), &errorCode);
U16_GET(nfd, 0, 0, length, lead);
U16_GET(nfd, 0, length-1, length, trail);
lccc1=u_getIntPropertyValue(c, UCHAR_LEAD_CANONICAL_COMBINING_CLASS);
lccc2=u_getCombiningClass(lead);
tccc1=u_getIntPropertyValue(c, UCHAR_TRAIL_CANONICAL_COMBINING_CLASS);
tccc2=u_getCombiningClass(trail);
if(lccc1!=lccc2) {
log_err("u_getIntPropertyValue(lccc)=%d != %d=u_getCombiningClass(lead) for U+%04x\n",
lccc1, lccc2, c);
}
if(tccc1!=tccc2) {
log_err("u_getIntPropertyValue(tccc)=%d != %d=u_getCombiningClass(trail) for U+%04x\n",
tccc1, tccc2, c);
}
/* skip some code points */
c=(20*c)/19+1;
}
}
static void
TestComposition(void) {
static const struct {
UNormalizationMode mode;
uint32_t options;
UChar input[12];
UChar expect[12];
} cases[]={
/*
* special cases for UAX #15 bug
* see Unicode Public Review Issue #29
* at http://www.unicode.org/review/resolved-pri.html#pri29
*/
{ UNORM_NFC, 0, { 0x1100, 0x0300, 0x1161, 0x0327 }, { 0x1100, 0x0300, 0x1161, 0x0327 } },
{ UNORM_NFC, 0, { 0x1100, 0x0300, 0x1161, 0x0327, 0x11a8 }, { 0x1100, 0x0300, 0x1161, 0x0327, 0x11a8 } },
{ UNORM_NFC, 0, { 0xac00, 0x0300, 0x0327, 0x11a8 }, { 0xac00, 0x0327, 0x0300, 0x11a8 } },
{ UNORM_NFC, 0, { 0x0b47, 0x0300, 0x0b3e }, { 0x0b47, 0x0300, 0x0b3e } },
{ UNORM_NFC, UNORM_BEFORE_PRI_29, { 0x1100, 0x0300, 0x1161, 0x0327 }, { 0xac00, 0x0300, 0x0327 } },
{ UNORM_NFC, UNORM_BEFORE_PRI_29, { 0x1100, 0x0300, 0x1161, 0x0327, 0x11a8 }, { 0xac01, 0x0300, 0x0327 } },
{ UNORM_NFC, UNORM_BEFORE_PRI_29, { 0xac00, 0x0300, 0x0327, 0x11a8 }, { 0xac01, 0x0327, 0x0300 } },
{ UNORM_NFC, UNORM_BEFORE_PRI_29, { 0x0b47, 0x0300, 0x0b3e }, { 0x0b4b, 0x0300 } }
/* TODO: add test cases for UNORM_FCC here (j2151) */
};
UChar output[16];
UErrorCode errorCode;
int32_t i, length;
for(i=0; i<LENGTHOF(cases); ++i) {
errorCode=U_ZERO_ERROR;
length=unorm_normalize(
cases[i].input, -1,
cases[i].mode, cases[i].options,
output, LENGTHOF(output),
&errorCode);
if( U_FAILURE(errorCode) ||
length!=u_strlen(cases[i].expect) ||
0!=u_memcmp(output, cases[i].expect, length)
) {
log_err("unexpected result for case %d\n", i);
}
}
}
#endif /* #if !UCONFIG_NO_NORMALIZATION */