blob: 3c99f4a0d749189baa8a1417334b6af74738fb18 [file] [log] [blame]
/*
*******************************************************************************
*
* Copyright (C) 2002, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
* file name: uprops.h
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 2002feb24
* created by: Markus W. Scherer
*
* Implementations for mostly non-core Unicode character properties
* stored in uprops.icu.
*/
#include "unicode/utypes.h"
#include "unicode/uchar.h"
#include "unicode/uscript.h"
#include "cstring.h"
#include "unormimp.h"
#include "uprops.h"
/**
* Unicode property names and property value names are compared
* "loosely". Property[Value]Aliases.txt say:
* "With loose matching of property names, the case distinctions, whitespace,
* and '_' are ignored."
*
* This function does just that, for ASCII (char *) name strings.
* It is almost identical to ucnv_compareNames() but also ignores
* ASCII White_Space characters (U+0009..U+000d).
*
* @internal
*/
U_CAPI int32_t U_EXPORT2
uprv_comparePropertyNames(const char *name1, const char *name2) {
int32_t rc;
unsigned char c1, c2;
for(;;) {
/* Ignore delimiters '-', '_', and ASCII White_Space */
while((c1=(unsigned char)*name1)=='-' || c1=='_' ||
c1==' ' || c1=='\t' || c1=='\n' || c1=='\v' || c1=='\f' || c1=='\r'
) {
++name1;
}
while((c2=(unsigned char)*name2)=='-' || c2=='_' ||
c2==' ' || c2=='\t' || c2=='\n' || c2=='\v' || c2=='\f' || c2=='\r'
) {
++name2;
}
/* If we reach the ends of both strings then they match */
if((c1|c2)==0) {
return 0;
}
/* Case-insensitive comparison */
if(c1!=c2) {
rc=(int32_t)(unsigned char)uprv_tolower(c1)-(int32_t)(unsigned char)uprv_tolower(c2);
if(rc!=0) {
return rc;
}
}
++name1;
++name2;
}
}
/* API functions ------------------------------------------------------------ */
U_CAPI void U_EXPORT2
u_charAge(UChar32 c, UVersionInfo versionArray) {
if(versionArray!=NULL) {
uint32_t version=u_getUnicodeProperties(c, 0)>>UPROPS_AGE_SHIFT;
versionArray[0]=(uint8_t)(version>>4);
versionArray[1]=(uint8_t)(version&0xf);
versionArray[2]=versionArray[3]=0;
}
}
U_CAPI UScriptCode U_EXPORT2
uscript_getScript(UChar32 c, UErrorCode *pErrorCode) {
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return 0;
}
if((uint32_t)c>0x10ffff) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
return (UScriptCode)(u_getUnicodeProperties(c, 0)&UPROPS_SCRIPT_MASK);
}
U_CAPI UBlockCode U_EXPORT2
ublock_getCode(UChar32 c) {
uint32_t b;
if((uint32_t)c>0x10ffff) {
return UBLOCK_INVALID_CODE;
}
b=(u_getUnicodeProperties(c, 0)&UPROPS_BLOCK_MASK)>>UPROPS_BLOCK_SHIFT;
if(b==0) {
return UBLOCK_INVALID_CODE;
} else {
return (UBlockCode)b;
}
}
U_CAPI UBool U_EXPORT2
u_hasBinaryProperty(UChar32 c, UProperty which) {
uint32_t props;
/* c is range-checked in the functions that are called from here */
switch(which) {
case UCHAR_ALPHABETIC:
/* Lu+Ll+Lt+Lm+Lo+Nl+Other_Alphabetic */
return (FLAG(u_charType(c))&(_Lu|_Ll|_Lt|_Lm|_Lo|_Nl))!=0 ||
(u_getUnicodeProperties(c, 1)&FLAG(UPROPS_OTHER_ALPHABETIC))!=0;
case UCHAR_ASCII_HEX_DIGIT:
return (u_getUnicodeProperties(c, 1)&FLAG(UPROPS_ASCII_HEX_DIGIT))!=0;
case UCHAR_BIDI_CONTROL:
return (u_getUnicodeProperties(c, 1)&FLAG(UPROPS_BIDI_CONTROL))!=0;
case UCHAR_BIDI_MIRRORED:
return u_isMirrored(c);
case UCHAR_DASH:
return (u_getUnicodeProperties(c, 1)&FLAG(UPROPS_DASH))!=0;
case UCHAR_DEFAULT_IGNORABLE_CODE_POINT:
/* <2060..206F, FFF0..FFFB, E0000..E0FFF>+Other_Default_Ignorable_Code_Point+(Cf+Cc+Cs-White_Space) */
if( (0x2060<=c && c<=0x206f) ||
(0xfff0<=c && c<=0xfffb) ||
(0xe0000<=c && c<=0xe0fff)
) {
return TRUE;
}
props=u_getUnicodeProperties(c, 1);
return (props&FLAG(UPROPS_OTHER_DEFAULT_IGNORABLE_CODE_POINT))!=0 ||
((props&FLAG(UPROPS_WHITE_SPACE))==0 &&
(FLAG(u_charType(c))&(_Cf|_Cc|_Cs))!=0);
case UCHAR_DEPRECATED:
return (u_getUnicodeProperties(c, 1)&FLAG(UPROPS_DEPRECATED))!=0;
case UCHAR_DIACRITIC:
return (u_getUnicodeProperties(c, 1)&FLAG(UPROPS_DIACRITIC))!=0;
case UCHAR_EXTENDER:
return (u_getUnicodeProperties(c, 1)&FLAG(UPROPS_EXTENDER))!=0;
case UCHAR_FULL_COMPOSITION_EXCLUSION:
return unorm_internalIsFullCompositionExclusion(c);
case UCHAR_GRAPHEME_BASE:
/*
* [0..10FFFF]-Cc-Cf-Cs-Co-Cn-Zl-Zp-Grapheme_Link-Grapheme_Extend-CGJ ==
* [0..10FFFF]-Cc-Cf-Cs-Co-Cn-Zl-Zp-Grapheme_Link-(Me+Mn+Mc+Other_Grapheme_Extend)-CGJ ==
* [0..10FFFF]-Cc-Cf-Cs-Co-Cn-Zl-Zp-Me-Mn-Mc-Grapheme_Link-Other_Grapheme_Extend-CGJ
*
* u_charType(c out of range) returns Cn so we need not check for the range
*/
return c!=CGJ &&
(FLAG(u_charType(c))&(_Cc|_Cf|_Cs|_Co|_Cn|_Zl|_Zp|_Me|_Mn|_Mc))==0 &&
((u_getUnicodeProperties(c, 1)&
(FLAG(UPROPS_GRAPHEME_LINK)|FLAG(UPROPS_OTHER_GRAPHEME_EXTEND)))==0);
case UCHAR_GRAPHEME_EXTEND:
/* Me+Mn+Mc+Other_Grapheme_Extend-Grapheme_Link-CGJ */
if(c==CGJ) {
return FALSE; /* fastest check first */
}
props=u_getUnicodeProperties(c, 1);
return (props&FLAG(UPROPS_GRAPHEME_LINK))==0 &&
((props&FLAG(UPROPS_OTHER_GRAPHEME_EXTEND))!=0 ||
(FLAG(u_charType(c))&(_Me|_Mn|_Mc))!=0);
case UCHAR_GRAPHEME_LINK:
return (u_getUnicodeProperties(c, 1)&FLAG(UPROPS_GRAPHEME_LINK))!=0;
case UCHAR_HEX_DIGIT:
return (u_getUnicodeProperties(c, 1)&FLAG(UPROPS_HEX_DIGIT))!=0;
case UCHAR_HYPHEN:
return (u_getUnicodeProperties(c, 1)&FLAG(UPROPS_HYPHEN))!=0;
case UCHAR_ID_CONTINUE:
/* ID_Start+Mn+Mc+Nd+Pc == Lu+Ll+Lt+Lm+Lo+Nl+Mn+Mc+Nd+Pc */
return (FLAG(u_charType(c))&(_Lu|_Ll|_Lt|_Lm|_Lo|_Nl|_Mn|_Mc|_Nd|_Pc))!=0;
case UCHAR_ID_START:
/* Lu+Ll+Lt+Lm+Lo+Nl */
return (FLAG(u_charType(c))&(_Lu|_Ll|_Lt|_Lm|_Lo|_Nl))!=0;
case UCHAR_IDEOGRAPHIC:
return (u_getUnicodeProperties(c, 1)&FLAG(UPROPS_IDEOGRAPHIC))!=0;
case UCHAR_IDS_BINARY_OPERATOR:
return (u_getUnicodeProperties(c, 1)&FLAG(UPROPS_IDS_BINARY_OPERATOR))!=0;
case UCHAR_IDS_TRINARY_OPERATOR:
return (u_getUnicodeProperties(c, 1)&FLAG(UPROPS_IDS_TRINARY_OPERATOR))!=0;
case UCHAR_JOIN_CONTROL:
return (u_getUnicodeProperties(c, 1)&FLAG(UPROPS_JOIN_CONTROL))!=0;
case UCHAR_LOGICAL_ORDER_EXCEPTION:
return (u_getUnicodeProperties(c, 1)&FLAG(UPROPS_LOGICAL_ORDER_EXCEPTION))!=0;
case UCHAR_LOWERCASE:
/* Ll+Other_Lowercase */
return u_charType(c)==U_LOWERCASE_LETTER ||
(u_getUnicodeProperties(c, 1)&FLAG(UPROPS_OTHER_LOWERCASE))!=0;
case UCHAR_MATH:
/* Sm+Other_Math */
return u_charType(c)==U_MATH_SYMBOL ||
(u_getUnicodeProperties(c, 1)&FLAG(UPROPS_OTHER_MATH))!=0;
case UCHAR_NONCHARACTER_CODE_POINT:
return (u_getUnicodeProperties(c, 1)&FLAG(UPROPS_NONCHARACTER_CODE_POINT))!=0;
case UCHAR_QUOTATION_MARK:
return (u_getUnicodeProperties(c, 1)&FLAG(UPROPS_QUOTATION_MARK))!=0;
case UCHAR_RADICAL:
return (u_getUnicodeProperties(c, 1)&FLAG(UPROPS_RADICAL))!=0;
case UCHAR_SOFT_DOTTED:
return (u_getUnicodeProperties(c, 1)&FLAG(UPROPS_SOFT_DOTTED))!=0;
case UCHAR_TERMINAL_PUNCTUATION:
return (u_getUnicodeProperties(c, 1)&FLAG(UPROPS_TERMINAL_PUNCTUATION))!=0;
case UCHAR_UNIFIED_IDEOGRAPH:
return (u_getUnicodeProperties(c, 1)&FLAG(UPROPS_UNIFIED_IDEOGRAPH))!=0;
case UCHAR_UPPERCASE:
/* Lu+Other_Uppercase */
return u_charType(c)==U_UPPERCASE_LETTER ||
(u_getUnicodeProperties(c, 1)&FLAG(UPROPS_OTHER_UPPERCASE))!=0;
case UCHAR_WHITE_SPACE:
return (u_getUnicodeProperties(c, 1)&FLAG(UPROPS_WHITE_SPACE))!=0;
case UCHAR_XID_CONTINUE:
return (u_getUnicodeProperties(c, 1)&FLAG(UPROPS_XID_CONTINUE))!=0;
case UCHAR_XID_START:
return (u_getUnicodeProperties(c, 1)&FLAG(UPROPS_XID_START))!=0;
default:
/* not a known binary property */
return FALSE;
}
}
U_CAPI UBool U_EXPORT2
u_isUAlphabetic(UChar32 c) {
return u_hasBinaryProperty(c, UCHAR_ALPHABETIC);
}
U_CAPI UBool U_EXPORT2
u_isULowercase(UChar32 c) {
return u_hasBinaryProperty(c, UCHAR_LOWERCASE);
}
U_CAPI UBool U_EXPORT2
u_isUUppercase(UChar32 c) {
return u_hasBinaryProperty(c, UCHAR_UPPERCASE);
}
U_CAPI UBool U_EXPORT2
u_isUWhiteSpace(UChar32 c) {
return u_hasBinaryProperty(c, UCHAR_WHITE_SPACE);
}
U_CAPI UBool U_EXPORT2
uprv_isRuleWhiteSpace(UChar32 c) {
/* "white space" in the sense of ICU rule parsers: Cf+White_Space */
return
u_charType(c)==U_FORMAT_CHAR ||
u_hasBinaryProperty(c, UCHAR_WHITE_SPACE);
}
static const UChar _PATTERN[] = {
/* "[[:Cf:][:WSpace:]]" */
91, 91, 58, 67, 102, 58, 93, 91, 58, 87,
83, 112, 97, 99, 101, 58, 93, 93, 0
};
U_CAPI USet* U_EXPORT2
uprv_openRuleWhiteSpaceSet(UErrorCode* ec) {
return uset_openPattern(_PATTERN,
sizeof(_PATTERN)/sizeof(_PATTERN[0])-1, ec);
}
U_CAPI int32_t U_EXPORT2
u_getIntPropertyValue(UChar32 c, UProperty which) {
UErrorCode errorCode;
int32_t i;
int8_t type;
if(which<UCHAR_BINARY_START) {
return 0; /* undefined */
} else if(which<UCHAR_BINARY_LIMIT) {
return (int32_t)u_hasBinaryProperty(c, which);
} else if(which<UCHAR_INT_START) {
return 0; /* undefined */
} else if(which<UCHAR_INT_LIMIT) {
switch(which) {
case UCHAR_BIDI_CLASS:
return (int32_t)u_charDirection(c);
case UCHAR_BLOCK:
return (int32_t)ublock_getCode(c);
case UCHAR_CANONICAL_COMBINING_CLASS:
return u_getCombiningClass(c);
case UCHAR_DECOMPOSITION_TYPE:
return (int32_t)(u_getUnicodeProperties(c, 2)&UPROPS_DT_MASK);
case UCHAR_EAST_ASIAN_WIDTH:
return (int32_t)(u_getUnicodeProperties(c, 0)&UPROPS_EA_MASK)>>UPROPS_EA_SHIFT;
case UCHAR_GENERAL_CATEGORY:
return (int32_t)u_charType(c);
case UCHAR_JOINING_GROUP:
return (int32_t)(u_getUnicodeProperties(c, 2)&UPROPS_JG_MASK)>>UPROPS_JG_SHIFT;
case UCHAR_JOINING_TYPE:
/*
* ArabicShaping.txt:
* Note: Characters of joining type T and most characters of
* joining type U are not explicitly listed in this file.
*
* Characters of joining type T can [be] derived by the following formula:
* T = Mn + Cf - ZWNJ - ZWJ
*/
i=(int32_t)(u_getUnicodeProperties(c, 2)&UPROPS_JT_MASK)>>UPROPS_JT_SHIFT;
if(i==0 && c!=ZWNJ && c!=ZWJ && (FLAG(u_charType(c))&(_Mn|_Cf))!=0) {
i=(int32_t)U_JT_TRANSPARENT;
}
return i;
case UCHAR_LINE_BREAK:
/*
* LineBreak.txt:
* - Assigned characters that are not listed explicitly are given the value
* "AL".
* - Unassigned characters are given the value "XX".
* ...
* E000..F8FF;XX # <Private Use, First>..<Private Use, Last>
* F0000..FFFFD;XX # <Plane 15 Private Use, First>..<Plane 15 Private Use, Last>
* 100000..10FFFD;XX # <Plane 16 Private Use, First>..<Plane 16 Private Use, Last>
*/
i=(int32_t)(u_getUnicodeProperties(c, 0)&UPROPS_LB_MASK)>>UPROPS_LB_SHIFT;
if(i==0 && (type=u_charType(c))!=0 && type!=(int8_t)U_PRIVATE_USE_CHAR) {
i=(int32_t)U_LB_ALPHABETIC;
}
return i;
case UCHAR_NUMERIC_TYPE:
return (int32_t)GET_NUMERIC_TYPE(u_getUnicodeProperties(c, -1));
case UCHAR_SCRIPT:
errorCode=U_ZERO_ERROR;
return (int32_t)uscript_getScript(c, &errorCode);
default:
return 0; /* undefined */
}
} else if(which==UCHAR_GENERAL_CATEGORY_MASK) {
return U_MASK(u_charType(c));
} else {
return 0; /* undefined */
}
}
U_CAPI int32_t U_EXPORT2
u_getIntPropertyMinValue(UProperty which) {
switch(which) {
case UCHAR_BLOCK:
return UBLOCK_INVALID_CODE;
default:
return 0; /* undefined; and: all other properties have a minimum value of 0 */
}
}
U_CAPI int32_t U_EXPORT2
u_getIntPropertyMaxValue(UProperty which) {
int32_t max;
if(which<UCHAR_BINARY_START) {
return -1; /* undefined */
} else if(which<UCHAR_BINARY_LIMIT) {
return 1; /* maximum TRUE for all binary properties */
} else if(which<UCHAR_INT_START) {
return -1; /* undefined */
} else if(which<UCHAR_INT_LIMIT) {
switch(which) {
case UCHAR_BIDI_CLASS:
return (int32_t)U_CHAR_DIRECTION_COUNT-1;
case UCHAR_BLOCK:
max=(uprv_getMaxValues()&UPROPS_BLOCK_MASK)>>UPROPS_BLOCK_SHIFT;
if(max==0) {
max=(int32_t)UBLOCK_COUNT-1;
}
return max;
case UCHAR_CANONICAL_COMBINING_CLASS:
return 0xff; /* TODO do we need to be more precise, getting the actual maximum? */
case UCHAR_DECOMPOSITION_TYPE:
return (int32_t)U_DT_COUNT-1;
case UCHAR_EAST_ASIAN_WIDTH:
return (int32_t)U_EA_COUNT-1;
case UCHAR_GENERAL_CATEGORY:
return (int32_t)U_CHAR_CATEGORY_COUNT-1;
case UCHAR_JOINING_GROUP:
return (int32_t)U_JG_COUNT-1;
case UCHAR_JOINING_TYPE:
return (int32_t)U_JT_COUNT-1;
case UCHAR_LINE_BREAK:
return (int32_t)U_LB_COUNT-1;
case UCHAR_NUMERIC_TYPE:
return (int32_t)U_NT_COUNT-1;
case UCHAR_SCRIPT:
max=uprv_getMaxValues()&UPROPS_SCRIPT_MASK;
if(max==0) {
max=(int32_t)USCRIPT_CODE_LIMIT-1;
}
return max;
default:
return -1; /* undefined */
}
} else {
return -1; /* undefined */
}
}
/*----------------------------------------------------------------
* Inclusions list
*----------------------------------------------------------------*/
/*
* Return a set of characters for property enumeration.
* The set implicitly contains 0x110000 as well, which is one more than the highest
* Unicode code point.
*
* This set is used as an ordered list - its code points are ordered, and
* consecutive code points (in Unicode code point order) in the set define a range.
* For each two consecutive characters (start, limit) in the set,
* all of the UCD/normalization and related properties for
* all code points start..limit-1 are all the same,
* except for character names and ISO comments.
*
* All Unicode code points U+0000..U+10ffff are covered by these ranges.
* The ranges define a partition of the Unicode code space.
* ICU uses the inclusions set to enumerate properties for generating
* UnicodeSets containing all code points that have a certain property value.
*
* The Inclusion List is generated from the UCD. It is generated
* by enumerating the data tries, and code points for hardcoded properties
* are added as well.
*
* --------------------------------------------------------------------------
*
* The following are ideas for getting properties-unique code point ranges,
* with possible optimizations beyond the current implementation.
* These optimizations would require more code and be more fragile.
* The current implementation generates one single list (set) for all properties.
*
* To enumerate properties efficiently, one needs to know ranges of
* repetitive values, so that the value of only each start code point
* can be applied to the whole range.
* This information is in principle available in the uprops.icu/unorm.icu data.
*
* There are two obstacles:
*
* 1. Some properties are computed from multiple data structures,
* making it necessary to get repetitive ranges by intersecting
* ranges from multiple tries.
*
* 2. It is not economical to write code for getting repetitive ranges
* that are precise for each of some 50 properties.
*
* Compromise ideas:
*
* - Get ranges per trie, not per individual property.
* Each range contains the same values for a whole group of properties.
* This would generate currently five range sets, two for uprops.icu tries
* and three for unorm.icu tries.
*
* - Combine sets of ranges for multiple tries to get sufficient sets
* for properties, e.g., the uprops.icu main and auxiliary tries
* for all non-normalization properties.
*
* Ideas for representing ranges and combining them:
*
* - A UnicodeSet could hold just the start code points of ranges.
* Multiple sets are easily combined by or-ing them together.
*
* - Alternatively, a UnicodeSet could hold each even-numbered range.
* All ranges could be enumerated by using each start code point
* (for the even-numbered ranges) as well as each limit (end+1) code point
* (for the odd-numbered ranges).
* It should be possible to combine two such sets by xor-ing them,
* but no more than two.
*
* The second way to represent ranges may(?!) yield smaller UnicodeSet arrays,
* but the first one is certainly simpler and applicable for combining more than
* two range sets.
*
* It is possible to combine all range sets for all uprops/unorm tries into one
* set that can be used for all properties.
* As an optimization, there could be less-combined range sets for certain
* groups of properties.
* The relationship of which less-combined range set to use for which property
* depends on the implementation of the properties and must be hardcoded
* - somewhat error-prone and higher maintenance but can be tested easily
* by building property sets "the simple way" in test code.
*
* ---
*
* Do not use a UnicodeSet pattern because that causes infinite recursion;
* UnicodeSet depends on the inclusions set.
*/
U_CAPI void U_EXPORT2
uprv_getInclusions(USet* set) {
uset_removeRange(set, 0, 0x10ffff);
unorm_addPropertyStarts(set);
uchar_addPropertyStarts(set);
}