blob: 3edcb791929b5c32d1b5e8702afb433ff167eccf [file] [log] [blame]
/*
******************************************************************************
* Copyright (c) 1996-2002, International Business Machines
* Corporation and others. All Rights Reserved.
******************************************************************************
* File unorm.cpp
*
* Created by: Vladimir Weinstein 12052000
*
* Modification history :
*
* Date Name Description
* 02/01/01 synwee Added normalization quickcheck enum and method.
* 02/12/01 synwee Commented out quickcheck util api has been approved
* Added private method for doing FCD checks
* 02/23/01 synwee Modified quickcheck and checkFCE to run through
* string for codepoints < 0x300 for the normalization
* mode NFC.
* 05/25/01+ Markus Scherer total rewrite, implement all normalization here
* instead of just wrappers around normlzr.cpp,
* load unorm.dat, support Unicode 3.1 with
* supplementary code points, etc.
*/
#include "unicode/utypes.h"
#include "unicode/ustring.h"
#include "unicode/udata.h"
#include "unicode/uchar.h"
#include "unicode/uiter.h"
#include "unicode/unorm.h"
#include "cmemory.h"
#include "ustr_imp.h"
#include "umutex.h"
#include "utrie.h"
#include "unicode/uset.h"
#include "unormimp.h"
/*
* This new implementation of the normalization code loads its data from
* unorm.dat, which is generated with the gennorm tool.
* The format of that file is described in unormimp.h .
*/
/* -------------------------------------------------------------------------- */
enum {
_STACK_BUFFER_CAPACITY=100
};
/* Korean Hangul and Jamo constants */
enum {
JAMO_L_BASE=0x1100, /* "lead" jamo */
JAMO_V_BASE=0x1161, /* "vowel" jamo */
JAMO_T_BASE=0x11a7, /* "trail" jamo */
HANGUL_BASE=0xac00,
JAMO_L_COUNT=19,
JAMO_V_COUNT=21,
JAMO_T_COUNT=28,
HANGUL_COUNT=JAMO_L_COUNT*JAMO_V_COUNT*JAMO_T_COUNT
};
static inline UBool
isHangulWithoutJamoT(UChar c) {
c-=HANGUL_BASE;
return c<HANGUL_COUNT && c%JAMO_T_COUNT==0;
}
/* norm32 helpers */
/* is this a norm32 with a regular index? */
static inline UBool
isNorm32Regular(uint32_t norm32) {
return norm32<_NORM_MIN_SPECIAL;
}
/* is this a norm32 with a special index for a lead surrogate? */
static inline UBool
isNorm32LeadSurrogate(uint32_t norm32) {
return _NORM_MIN_SPECIAL<=norm32 && norm32<_NORM_SURROGATES_TOP;
}
/* is this a norm32 with a special index for a Hangul syllable or a Jamo? */
static inline UBool
isNorm32HangulOrJamo(uint32_t norm32) {
return norm32>=_NORM_MIN_HANGUL;
}
/*
* Given isNorm32HangulOrJamo(),
* is this a Hangul syllable or a Jamo?
*/
static inline UBool
isHangulJamoNorm32HangulOrJamoL(uint32_t norm32) {
return norm32<_NORM_MIN_JAMO_V;
}
/*
* Given norm32 for Jamo V or T,
* is this a Jamo V?
*/
static inline UBool
isJamoVTNorm32JamoV(uint32_t norm32) {
return norm32<_NORM_JAMO_V_TOP;
}
static const UChar *
_findPreviousStarter(const UChar *start, const UChar *src,
uint32_t ccOrQCMask, uint32_t decompQCMask, UChar minNoMaybe);
static const UChar *
_findNextStarter(const UChar *src, const UChar *limit,
uint32_t qcMask, uint32_t decompQCMask, UChar minNoMaybe);
static const UChar *
_composePart(UChar *stackBuffer, UChar *&buffer, int32_t &bufferCapacity, int32_t &length,
const UChar *prevStarter, const UChar *src,
uint32_t qcMask, uint8_t &prevCC,
UErrorCode *pErrorCode);
/* load unorm.dat ----------------------------------------------------------- */
#define DATA_NAME "unorm"
#define DATA_TYPE "icu"
static UDataMemory *normData=NULL;
static UErrorCode dataErrorCode=U_ZERO_ERROR;
static int8_t haveNormData=0;
static int32_t indexes[_NORM_INDEX_TOP]={ 0 };
static UTrie normTrie={ 0,0,0,0,0,0,0 }, fcdTrie={ 0,0,0,0,0,0,0 }, auxTrie={ 0,0,0,0,0,0,0 };
/*
* pointers into the memory-mapped unorm.icu
*/
static const uint16_t *extraData=NULL,
*combiningTable=NULL,
*canonStartSets=NULL;
static uint8_t formatVersion[4]={ 0, 0, 0, 0 };
static UBool formatVersion_2_1=FALSE;
/* the Unicode version of the normalization data */
static UVersionInfo dataVersion={ 3, 1, 0, 0 };
U_CDECL_BEGIN
UBool
unorm_cleanup() {
if(normData!=NULL) {
udata_close(normData);
normData=NULL;
}
dataErrorCode=U_ZERO_ERROR;
haveNormData=0;
return TRUE;
}
/* normTrie: 32-bit trie result may contain a special extraData index with the folding offset */
static int32_t U_CALLCONV
getFoldingNormOffset(uint32_t norm32) {
if(isNorm32LeadSurrogate(norm32)) {
return
UTRIE_BMP_INDEX_LENGTH+
(((int32_t)norm32>>(_NORM_EXTRA_SHIFT-UTRIE_SURROGATE_BLOCK_BITS))&
(0x3ff<<UTRIE_SURROGATE_BLOCK_BITS));
} else {
return 0;
}
}
/* auxTrie: the folding offset is in bits 9..0 of the 16-bit trie result */
static int32_t U_CALLCONV
getFoldingAuxOffset(uint32_t data) {
return (int32_t)(data&_NORM_AUX_FNC_MASK)<<UTRIE_SURROGATE_BLOCK_BITS;
}
static UBool U_CALLCONV
isAcceptable(void * /* context */,
const char * /* type */, const char * /* name */,
const UDataInfo *pInfo) {
if(
pInfo->size>=20 &&
pInfo->isBigEndian==U_IS_BIG_ENDIAN &&
pInfo->charsetFamily==U_CHARSET_FAMILY &&
pInfo->dataFormat[0]==0x4e && /* dataFormat="Norm" */
pInfo->dataFormat[1]==0x6f &&
pInfo->dataFormat[2]==0x72 &&
pInfo->dataFormat[3]==0x6d &&
pInfo->formatVersion[0]==2 &&
pInfo->formatVersion[2]==UTRIE_SHIFT &&
pInfo->formatVersion[3]==UTRIE_INDEX_SHIFT
) {
uprv_memcpy(formatVersion, pInfo->formatVersion, 4);
uprv_memcpy(dataVersion, pInfo->dataVersion, 4);
return TRUE;
} else {
return FALSE;
}
}
U_CDECL_END
static int8_t
loadNormData(UErrorCode &errorCode) {
/* load Unicode normalization data from file */
if(haveNormData==0) {
UTrie _normTrie={ 0,0,0,0,0,0,0 }, _fcdTrie={ 0,0,0,0,0,0,0 }, _auxTrie={ 0,0,0,0,0,0,0 };
UDataMemory *data;
const int32_t *p=NULL;
const uint8_t *pb;
if(&errorCode==NULL || U_FAILURE(errorCode)) {
return 0;
}
/* open the data outside the mutex block */
data=udata_openChoice(NULL, DATA_TYPE, DATA_NAME, isAcceptable, NULL, &errorCode);
dataErrorCode=errorCode;
if(U_FAILURE(errorCode)) {
return haveNormData=-1;
}
p=(const int32_t *)udata_getMemory(data);
pb=(const uint8_t *)(p+_NORM_INDEX_TOP);
utrie_unserialize(&_normTrie, pb, p[_NORM_INDEX_TRIE_SIZE], &errorCode);
_normTrie.getFoldingOffset=getFoldingNormOffset;
pb+=p[_NORM_INDEX_TRIE_SIZE]+p[_NORM_INDEX_UCHAR_COUNT]*2+p[_NORM_INDEX_COMBINE_DATA_COUNT]*2;
utrie_unserialize(&_fcdTrie, pb, p[_NORM_INDEX_FCD_TRIE_SIZE], &errorCode);
if(p[_NORM_INDEX_FCD_TRIE_SIZE]!=0) {
pb+=p[_NORM_INDEX_FCD_TRIE_SIZE];
utrie_unserialize(&_auxTrie, pb, p[_NORM_INDEX_AUX_TRIE_SIZE], &errorCode);
_auxTrie.getFoldingOffset=getFoldingAuxOffset;
}
if(U_FAILURE(errorCode)) {
dataErrorCode=errorCode;
udata_close(data);
return haveNormData=-1;
}
/* in the mutex block, set the data for this process */
umtx_lock(NULL);
if(normData==NULL) {
normData=data;
data=NULL;
uprv_memcpy(&indexes, p, sizeof(indexes));
uprv_memcpy(&normTrie, &_normTrie, sizeof(UTrie));
uprv_memcpy(&fcdTrie, &_fcdTrie, sizeof(UTrie));
uprv_memcpy(&auxTrie, &_auxTrie, sizeof(UTrie));
} else {
p=(const int32_t *)udata_getMemory(normData);
}
umtx_unlock(NULL);
/* initialize some variables */
extraData=(uint16_t *)((uint8_t *)(p+_NORM_INDEX_TOP)+indexes[_NORM_INDEX_TRIE_SIZE]);
combiningTable=extraData+indexes[_NORM_INDEX_UCHAR_COUNT];
formatVersion_2_1=formatVersion[0]>2 || (formatVersion[0]==2 && formatVersion[1]>=1);
if(formatVersion_2_1) {
canonStartSets=combiningTable+
indexes[_NORM_INDEX_COMBINE_DATA_COUNT]+
(indexes[_NORM_INDEX_FCD_TRIE_SIZE]+indexes[_NORM_INDEX_AUX_TRIE_SIZE])/2;
}
haveNormData=1;
/* if a different thread set it first, then close the extra data */
if(data!=NULL) {
udata_close(data); /* NULL if it was set correctly */
}
}
return haveNormData;
}
static inline UBool
_haveData(UErrorCode &errorCode) {
if(haveNormData!=0) {
errorCode=dataErrorCode;
return (UBool)(haveNormData>0);
} else {
return (UBool)(loadNormData(errorCode)>0);
}
}
U_CAPI UBool U_EXPORT2
unorm_haveData(UErrorCode *pErrorCode) {
return _haveData(*pErrorCode);
}
U_CAPI const uint16_t * U_EXPORT2
unorm_getFCDTrie(UErrorCode *pErrorCode) {
if(_haveData(*pErrorCode)) {
return fcdTrie.index;
} else {
return NULL;
}
}
/* data access primitives --------------------------------------------------- */
static inline uint32_t
_getNorm32(UChar c) {
return UTRIE_GET32_FROM_LEAD(&normTrie, c);
}
static inline uint32_t
_getNorm32FromSurrogatePair(uint32_t norm32, UChar c2) {
/*
* the surrogate index in norm32 stores only the number of the surrogate index block
* see gennorm/store.c/getFoldedNormValue()
*/
norm32=
UTRIE_BMP_INDEX_LENGTH+
((norm32>>(_NORM_EXTRA_SHIFT-UTRIE_SURROGATE_BLOCK_BITS))&
(0x3ff<<UTRIE_SURROGATE_BLOCK_BITS));
return UTRIE_GET32_FROM_OFFSET_TRAIL(&normTrie, norm32, c2);
}
/*
* get a norm32 from text with complete code points
* (like from decompositions)
*/
static inline uint32_t
_getNorm32(const UChar *p, uint32_t mask) {
uint32_t norm32=_getNorm32(*p);
if((norm32&mask) && isNorm32LeadSurrogate(norm32)) {
/* *p is a lead surrogate, get the real norm32 */
norm32=_getNorm32FromSurrogatePair(norm32, *(p+1));
}
return norm32;
}
static inline uint16_t
_getFCD16(UChar c) {
return UTRIE_GET16_FROM_LEAD(&fcdTrie, c);
}
static inline uint16_t
_getFCD16FromSurrogatePair(uint16_t fcd16, UChar c2) {
/* the surrogate index in fcd16 is an absolute offset over the start of stage 1 */
return UTRIE_GET16_FROM_OFFSET_TRAIL(&fcdTrie, fcd16, c2);
}
static inline const uint16_t *
_getExtraData(uint32_t norm32) {
return extraData+(norm32>>_NORM_EXTRA_SHIFT);
}
/* get the canonical or compatibility decomposition for one character */
static inline const UChar *
_decompose(uint32_t norm32, uint32_t qcMask, int32_t &length,
uint8_t &cc, uint8_t &trailCC) {
const UChar *p=(const UChar *)_getExtraData(norm32);
length=*p++;
if((norm32&qcMask&_NORM_QC_NFKD)!=0 && length>=0x100) {
/* use compatibility decomposition, skip canonical data */
p+=((length>>7)&1)+(length&_NORM_DECOMP_LENGTH_MASK);
length>>=8;
}
if(length&_NORM_DECOMP_FLAG_LENGTH_HAS_CC) {
/* get the lead and trail cc's */
UChar bothCCs=*p++;
cc=(uint8_t)(bothCCs>>8);
trailCC=(uint8_t)bothCCs;
} else {
/* lead and trail cc's are both 0 */
cc=trailCC=0;
}
length&=_NORM_DECOMP_LENGTH_MASK;
return p;
}
/* get the canonical decomposition for one character */
static inline const UChar *
_decompose(uint32_t norm32, int32_t &length,
uint8_t &cc, uint8_t &trailCC) {
const UChar *p=(const UChar *)_getExtraData(norm32);
length=*p++;
if(length&_NORM_DECOMP_FLAG_LENGTH_HAS_CC) {
/* get the lead and trail cc's */
UChar bothCCs=*p++;
cc=(uint8_t)(bothCCs>>8);
trailCC=(uint8_t)bothCCs;
} else {
/* lead and trail cc's are both 0 */
cc=trailCC=0;
}
length&=_NORM_DECOMP_LENGTH_MASK;
return p;
}
/**
* Get the canonical decomposition for one code point.
* @param c code point
* @param buffer out-only buffer for algorithmic decompositions of Hangul
* @param length out-only, takes the length of the decomposition, if any
* @return pointer to decomposition, or 0 if none
* @internal
*/
static const UChar *
_decompose(UChar32 c, UChar buffer[4], int32_t &length) {
uint32_t norm32;
UTRIE_GET32(&normTrie, c, norm32);
if(norm32&_NORM_QC_NFD) {
if(isNorm32HangulOrJamo(norm32)) {
/* Hangul syllable: decompose algorithmically */
UChar c2;
c-=HANGUL_BASE;
c2=(UChar)(c%JAMO_T_COUNT);
c/=JAMO_T_COUNT;
if(c2>0) {
buffer[2]=(UChar)(JAMO_T_BASE+c2);
length=3;
} else {
length=2;
}
buffer[1]=(UChar)(JAMO_V_BASE+c%JAMO_V_COUNT);
buffer[0]=(UChar)(JAMO_L_BASE+c/JAMO_V_COUNT);
return buffer;
} else {
/* normal decomposition */
uint8_t cc, trailCC;
return _decompose(norm32, length, cc, trailCC);
}
} else {
return 0;
}
}
/*
* get the combining class of (c, c2)=*p++
* before: p<limit after: p<=limit
* if only one code unit is used, then c2==0
*/
static inline uint8_t
_getNextCC(const UChar *&p, const UChar *limit, UChar &c, UChar &c2) {
uint32_t norm32;
c=*p++;
norm32=_getNorm32(c);
if((norm32&_NORM_CC_MASK)==0) {
c2=0;
return 0;
} else {
if(!isNorm32LeadSurrogate(norm32)) {
c2=0;
} else {
/* c is a lead surrogate, get the real norm32 */
if(p!=limit && UTF_IS_SECOND_SURROGATE(c2=*p)) {
++p;
norm32=_getNorm32FromSurrogatePair(norm32, c2);
} else {
c2=0;
return 0;
}
}
return (uint8_t)(norm32>>_NORM_CC_SHIFT);
}
}
/*
* read backwards and get norm32
* return 0 if the character is <minC
* if c2!=0 then (c2, c) is a surrogate pair (reversed - c2 is first surrogate but read second!)
*/
static inline uint32_t
_getPrevNorm32(const UChar *start, const UChar *&src,
uint32_t minC, uint32_t mask,
UChar &c, UChar &c2) {
uint32_t norm32;
c=*--src;
c2=0;
/* check for a surrogate before getting norm32 to see if we need to predecrement further */
if(c<minC) {
return 0;
} else if(!UTF_IS_SURROGATE(c)) {
return _getNorm32(c);
} else if(UTF_IS_SURROGATE_FIRST(c)) {
/* unpaired first surrogate */
return 0;
} else if(src!=start && UTF_IS_FIRST_SURROGATE(c2=*(src-1))) {
--src;
norm32=_getNorm32(c2);
if((norm32&mask)==0) {
/* all surrogate pairs with this lead surrogate have only irrelevant data */
return 0;
} else {
/* norm32 must be a surrogate special */
return _getNorm32FromSurrogatePair(norm32, c);
}
} else {
/* unpaired second surrogate */
c2=0;
return 0;
}
}
/*
* get the combining class of (c, c2)=*--p
* before: start<p after: start<=p
*/
static inline uint8_t
_getPrevCC(const UChar *start, const UChar *&p) {
UChar c, c2;
return (uint8_t)(_getPrevNorm32(start, p, _NORM_MIN_WITH_LEAD_CC, _NORM_CC_MASK, c, c2)>>_NORM_CC_SHIFT);
}
/*
* is this a safe boundary character for NF*D?
* (lead cc==0)
*/
static inline UBool
_isNFDSafe(uint32_t norm32, uint32_t ccOrQCMask, uint32_t decompQCMask) {
if((norm32&ccOrQCMask)==0) {
return TRUE; /* cc==0 and no decomposition: this is NF*D safe */
}
/* inspect its decomposition - maybe a Hangul but not a surrogate here */
if(isNorm32Regular(norm32) && (norm32&decompQCMask)!=0) {
int32_t length;
uint8_t cc, trailCC;
/* decomposes, get everything from the variable-length extra data */
_decompose(norm32, decompQCMask, length, cc, trailCC);
return cc==0;
} else {
/* no decomposition (or Hangul), test the cc directly */
return (norm32&_NORM_CC_MASK)==0;
}
}
/*
* is this (or does its decomposition begin with) a "true starter"?
* (cc==0 and NF*C_YES)
*/
static inline UBool
_isTrueStarter(uint32_t norm32, uint32_t ccOrQCMask, uint32_t decompQCMask) {
if((norm32&ccOrQCMask)==0) {
return TRUE; /* this is a true starter (could be Hangul or Jamo L) */
}
/* inspect its decomposition - not a Hangul or a surrogate here */
if((norm32&decompQCMask)!=0) {
const UChar *p;
int32_t length;
uint8_t cc, trailCC;
/* decomposes, get everything from the variable-length extra data */
p=_decompose(norm32, decompQCMask, length, cc, trailCC);
if(cc==0) {
uint32_t qcMask=ccOrQCMask&_NORM_QC_MASK;
/* does it begin with NFC_YES? */
if((_getNorm32(p, qcMask)&qcMask)==0) {
/* yes, the decomposition begins with a true starter */
return TRUE;
}
}
}
return FALSE;
}
/* uchar.h */
U_CAPI uint8_t U_EXPORT2
u_getCombiningClass(UChar32 c) {
UErrorCode errorCode=U_ZERO_ERROR;
if(_haveData(errorCode)) {
uint32_t norm32;
UTRIE_GET32(&normTrie, c, norm32);
return (uint8_t)(norm32>>_NORM_CC_SHIFT);
} else {
return 0;
}
}
U_CAPI UBool U_EXPORT2
unorm_internalIsFullCompositionExclusion(UChar32 c) {
UErrorCode errorCode=U_ZERO_ERROR;
if(_haveData(errorCode) && formatVersion_2_1) {
uint16_t aux;
UTRIE_GET16(&auxTrie, c, aux);
return (UBool)((aux&_NORM_AUX_COMP_EX_MASK)!=0);
} else {
return FALSE;
}
}
U_CAPI UBool U_EXPORT2
unorm_isCanonSafeStart(UChar32 c) {
UErrorCode errorCode=U_ZERO_ERROR;
if(_haveData(errorCode) && formatVersion_2_1) {
uint16_t aux;
UTRIE_GET16(&auxTrie, c, aux);
return (UBool)((aux&_NORM_AUX_UNSAFE_MASK)==0);
} else {
return FALSE;
}
}
U_CAPI UBool U_EXPORT2
unorm_getCanonStartSet(UChar32 c, USerializedSet *fillSet) {
UErrorCode errorCode=U_ZERO_ERROR;
if( fillSet!=NULL && (uint32_t)c<=0x10ffff &&
_haveData(errorCode) && canonStartSets!=NULL
) {
const uint16_t *table;
int32_t i, start, limit;
/*
* binary search for c
*
* There are two search tables,
* one for BMP code points and one for supplementary ones.
* See unormimp.h for details.
*/
if(c<=0xffff) {
table=canonStartSets+canonStartSets[_NORM_SET_INDEX_CANON_SETS_LENGTH];
start=0;
limit=canonStartSets[_NORM_SET_INDEX_CANON_BMP_TABLE_LENGTH];
/* each entry is a pair { c, result } */
while(start<limit-2) {
i=(uint16_t)(((start+limit)/4)*2); /* (start+limit)/2 and address pairs */
if(c<table[i]) {
limit=i;
} else {
start=i;
}
}
/* found? */
if(c==table[start]) {
i=table[start+1];
if((i&_NORM_CANON_SET_BMP_MASK)==_NORM_CANON_SET_BMP_IS_INDEX) {
/* result 01xxxxxx xxxxxx contains index x to a USerializedSet */
i&=(_NORM_MAX_CANON_SETS-1);
return uset_getSerializedSet(fillSet,
canonStartSets+i,
canonStartSets[_NORM_SET_INDEX_CANON_SETS_LENGTH]-i);
} else {
/* other result values are BMP code points for single-code point sets */
uset_setSerializedToOne(fillSet, (UChar32)i);
return TRUE;
}
}
} else {
uint16_t high, low, h;
table=canonStartSets+canonStartSets[_NORM_SET_INDEX_CANON_SETS_LENGTH]+
canonStartSets[_NORM_SET_INDEX_CANON_BMP_TABLE_LENGTH];
start=0;
limit=canonStartSets[_NORM_SET_INDEX_CANON_SUPP_TABLE_LENGTH];
high=(uint16_t)(c>>16);
low=(uint16_t)c;
/* each entry is a triplet { high(c), low(c), result } */
while(start<limit-3) {
i=(uint16_t)(((start+limit)/6)*3); /* (start+limit)/2 and address triplets */
h=table[i]&0x1f; /* high word */
if(high<h || (high==h && low<table[i+1])) {
limit=i;
} else {
start=i;
}
}
/* found? */
h=table[start];
if(high==(h&0x1f) && low==table[start+1]) {
i=table[start+2];
if((h&0x8000)==0) {
/* the result is an index to a USerializedSet */
return uset_getSerializedSet(fillSet,
canonStartSets+i,
canonStartSets[_NORM_SET_INDEX_CANON_SETS_LENGTH]-i);
} else {
/*
* single-code point set {x} in
* triplet { 100xxxxx 000hhhhh llllllll llllllll xxxxxxxx xxxxxxxx }
*/
i|=((int32_t)h&0x1f00)<<8; /* add high bits from high(c) */
uset_setSerializedToOne(fillSet, (UChar32)i);
return TRUE;
}
}
}
}
return FALSE; /* not found */
}
U_CAPI int32_t U_EXPORT2
u_getFC_NFKC_Closure(UChar32 c, UChar *dest, int32_t destCapacity, UErrorCode *pErrorCode) {
uint16_t aux;
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return 0;
}
if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
if(!_haveData(*pErrorCode) || !formatVersion_2_1) {
return 0;
}
UTRIE_GET16(&auxTrie, c, aux);
aux&=_NORM_AUX_FNC_MASK;
if(aux!=0) {
const UChar *s;
int32_t length;
s=(const UChar *)(extraData+aux);
if(*s<0xff00) {
/* s points to the single-unit string */
length=1;
} else {
length=*s&0xff;
++s;
}
if(0<length && length<=destCapacity) {
uprv_memcpy(dest, s, length*U_SIZEOF_UCHAR);
}
return u_terminateUChars(dest, destCapacity, length, pErrorCode);
} else {
return u_terminateUChars(dest, destCapacity, 0, pErrorCode);
}
}
/* reorder UTF-16 in-place -------------------------------------------------- */
/*
* simpler, single-character version of _mergeOrdered() -
* bubble-insert one single code point into the preceding string
* which is already canonically ordered
* (c, c2) may or may not yet have been inserted at [current..p[
*
* it must be p=current+lengthof(c, c2) i.e. p=current+(c2==0 ? 1 : 2)
*
* before: [start..current[ is already ordered, and
* [current..p[ may or may not hold (c, c2) but
* must be exactly the same length as (c, c2)
* after: [start..p[ is ordered
*
* returns the trailing combining class
*/
static uint8_t
_insertOrdered(const UChar *start, UChar *current, UChar *p,
UChar c, UChar c2, uint8_t cc) {
const UChar *pBack, *pPreBack;
UChar *r;
uint8_t prevCC, trailCC=cc;
if(start<current && cc!=0) {
/* search for the insertion point where cc>=prevCC */
pPreBack=pBack=current;
prevCC=_getPrevCC(start, pPreBack);
if(cc<prevCC) {
/* this will be the last code point, so keep its cc */
trailCC=prevCC;
pBack=pPreBack;
while(start<pPreBack) {
prevCC=_getPrevCC(start, pPreBack);
if(cc>=prevCC) {
break;
}
pBack=pPreBack;
}
/*
* this is where we are right now with all these pointers:
* [start..pPreBack[ 0..? code points that we can ignore
* [pPreBack..pBack[ 0..1 code points with prevCC<=cc
* [pBack..current[ 0..n code points with >cc, move up to insert (c, c2)
* [current..p[ 1 code point (c, c2) with cc
*/
/* move the code units in between up */
r=p;
do {
*--r=*--current;
} while(pBack!=current);
}
}
/* insert (c, c2) */
*current=c;
if(c2!=0) {
*(current+1)=c2;
}
/* we know the cc of the last code point */
return trailCC;
}
/*
* merge two UTF-16 string parts together
* to canonically order (order by combining classes) their concatenation
*
* the two strings may already be adjacent, so that the merging is done in-place
* if the two strings are not adjacent, then the buffer holding the first one
* must be large enough
* the second string may or may not be ordered in itself
*
* before: [start..current[ is already ordered, and
* [next..limit[ may be ordered in itself, but
* is not in relation to [start..current[
* after: [start..current+(limit-next)[ is ordered
*
* the algorithm is a simple bubble-sort that takes the characters from *next++
* and inserts them in correct combining class order into the preceding part
* of the string
*
* since this function is called much less often than the single-code point
* _insertOrdered(), it just uses that for easier maintenance
* (see file version from before 2001aug31 for a more optimized version)
*
* returns the trailing combining class
*/
static uint8_t
_mergeOrdered(UChar *start, UChar *current,
const UChar *next, const UChar *limit, UBool isOrdered=TRUE) {
UChar *r;
UChar c, c2;
uint8_t cc, trailCC=0;
UBool adjacent;
adjacent= current==next;
if(start!=current || !isOrdered) {
while(next<limit) {
cc=_getNextCC(next, limit, c, c2);
if(cc==0) {
/* does not bubble back */
trailCC=0;
if(adjacent) {
current=(UChar *)next;
} else {
*current++=c;
if(c2!=0) {
*current++=c2;
}
}
if(isOrdered) {
break;
} else {
start=current;
}
} else {
r=current+(c2==0 ? 1 : 2);
trailCC=_insertOrdered(start, current, r, c, c2, cc);
current=r;
}
}
}
if(next==limit) {
/* we know the cc of the last code point */
return trailCC;
} else {
if(!adjacent) {
/* copy the second string part */
do {
*current++=*next++;
} while(next!=limit);
limit=current;
}
return _getPrevCC(start, limit);
}
}
/* quick check functions ---------------------------------------------------- */
static UBool
unorm_checkFCD(const UChar *src, int32_t srcLength) {
const UChar *limit;
UChar c, c2;
uint16_t fcd16;
int16_t prevCC, cc;
/* initialize */
prevCC=0;
if(srcLength>=0) {
/* string with length */
limit=src+srcLength;
} else /* srcLength==-1 */ {
/* zero-terminated string */
limit=NULL;
}
U_ALIGN_CODE(16);
for(;;) {
/* skip a run of code units below the minimum or with irrelevant data for the FCD check */
if(limit==NULL) {
for(;;) {
c=*src++;
if(c<_NORM_MIN_WITH_LEAD_CC) {
if(c==0) {
return TRUE;
}
/*
* delay _getFCD16(c) for any character <_NORM_MIN_WITH_LEAD_CC
* because chances are good that the next one will have
* a leading cc of 0;
* _getFCD16(-prevCC) is later called when necessary -
* -c fits into int16_t because it is <_NORM_MIN_WITH_LEAD_CC==0x300
*/
prevCC=(int16_t)-c;
} else if((fcd16=_getFCD16(c))==0) {
prevCC=0;
} else {
break;
}
}
} else {
for(;;) {
if(src==limit) {
return TRUE;
} else if((c=*src++)<_NORM_MIN_WITH_LEAD_CC) {
prevCC=(int16_t)-c;
} else if((fcd16=_getFCD16(c))==0) {
prevCC=0;
} else {
break;
}
}
}
/* check one above-minimum, relevant code unit */
if(UTF_IS_FIRST_SURROGATE(c)) {
/* c is a lead surrogate, get the real fcd16 */
if(src!=limit && UTF_IS_SECOND_SURROGATE(c2=*src)) {
++src;
fcd16=_getFCD16FromSurrogatePair(fcd16, c2);
} else {
fcd16=0;
}
}
/*
* prevCC has values from the following ranges:
* 0..0xff - the previous trail combining class
* <0 - the negative value of the previous code unit;
* that code unit was <_NORM_MIN_WITH_LEAD_CC and its _getFCD16()
* was deferred so that average text is checked faster
*/
/* check the combining order */
cc=(int16_t)(fcd16>>8);
if(cc!=0) {
if(prevCC<0) {
/* the previous character was <_NORM_MIN_WITH_LEAD_CC, we need to get its trail cc */
prevCC=(int16_t)(_getFCD16((UChar)-prevCC)&0xff);
}
if(cc<prevCC) {
return FALSE;
}
}
prevCC=(int16_t)(fcd16&0xff);
}
}
static UNormalizationCheckResult
_quickCheck(const UChar *src,
int32_t srcLength,
UNormalizationMode mode,
UBool allowMaybe,
UErrorCode *pErrorCode) {
UChar stackBuffer[_STACK_BUFFER_CAPACITY];
UChar *buffer;
int32_t bufferCapacity;
const UChar *start, *limit;
uint32_t norm32, qcNorm32, ccOrQCMask, qcMask;
UChar c, c2, minNoMaybe;
uint8_t cc, prevCC;
UNormalizationCheckResult result;
/* check arguments */
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return UNORM_MAYBE;
}
if(src==NULL || srcLength<-1) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return UNORM_MAYBE;
}
if(!_haveData(*pErrorCode)) {
return UNORM_MAYBE;
}
/* check for a valid mode and set the quick check minimum and mask */
switch(mode) {
case UNORM_NFC:
minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFC_NO_MAYBE];
qcMask=_NORM_QC_NFC;
break;
case UNORM_NFKC:
minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFKC_NO_MAYBE];
qcMask=_NORM_QC_NFKC;
break;
case UNORM_NFD:
minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFD_NO_MAYBE];
qcMask=_NORM_QC_NFD;
break;
case UNORM_NFKD:
minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFKD_NO_MAYBE];
qcMask=_NORM_QC_NFKD;
break;
case UNORM_FCD:
return unorm_checkFCD(src, srcLength) ? UNORM_YES : UNORM_NO;
default:
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return UNORM_MAYBE;
}
/* initialize */
buffer=stackBuffer;
bufferCapacity=_STACK_BUFFER_CAPACITY;
ccOrQCMask=_NORM_CC_MASK|qcMask;
result=UNORM_YES;
prevCC=0;
start=src;
if(srcLength>=0) {
/* string with length */
limit=src+srcLength;
} else /* srcLength==-1 */ {
/* zero-terminated string */
limit=NULL;
}
U_ALIGN_CODE(16);
for(;;) {
/* skip a run of code units below the minimum or with irrelevant data for the quick check */
if(limit==NULL) {
for(;;) {
c=*src++;
if(c<minNoMaybe) {
if(c==0) {
goto endloop; /* break out of outer loop */
}
} else if(((norm32=_getNorm32(c))&ccOrQCMask)!=0) {
break;
}
prevCC=0;
}
} else {
for(;;) {
if(src==limit) {
goto endloop; /* break out of outer loop */
} else if((c=*src++)>=minNoMaybe && ((norm32=_getNorm32(c))&ccOrQCMask)!=0) {
break;
}
prevCC=0;
}
}
/* check one above-minimum, relevant code unit */
if(isNorm32LeadSurrogate(norm32)) {
/* c is a lead surrogate, get the real norm32 */
if(src!=limit && UTF_IS_SECOND_SURROGATE(c2=*src)) {
++src;
norm32=_getNorm32FromSurrogatePair(norm32, c2);
} else {
norm32=0;
}
}
/* check the combining order */
cc=(uint8_t)(norm32>>_NORM_CC_SHIFT);
if(cc!=0 && cc<prevCC) {
result=UNORM_NO;
break;
}
prevCC=cc;
/* check for "no" or "maybe" quick check flags */
qcNorm32=norm32&qcMask;
if(qcNorm32&_NORM_QC_ANY_NO) {
result=UNORM_NO;
break;
} else if(qcNorm32!=0) {
/* "maybe" can only occur for NFC and NFKC */
if(allowMaybe) {
result=UNORM_MAYBE;
} else {
/* normalize a section around here to see if it is really normalized or not */
const UChar *prevStarter;
uint32_t decompQCMask;
int32_t length;
decompQCMask=(qcMask<<2)&0xf; /* decomposition quick check mask */
/* find the previous starter */
prevStarter=src-1; /* set prevStarter to the beginning of the current character */
if(UTF_IS_TRAIL(*prevStarter)) {
--prevStarter; /* safe because unpaired surrogates do not result in "maybe" */
}
prevStarter=_findPreviousStarter(start, prevStarter, ccOrQCMask, decompQCMask, minNoMaybe);
/* find the next true starter in [src..limit[ - modifies src to point to the next starter */
src=_findNextStarter(src, limit, qcMask, decompQCMask, minNoMaybe);
/* decompose and recompose [prevStarter..src[ */
_composePart(stackBuffer, buffer, bufferCapacity,
length,
prevStarter,
src,
qcMask,
prevCC, pErrorCode);
if(U_FAILURE(*pErrorCode)) {
result=UNORM_MAYBE; /* error (out of memory) */
break;
}
/* compare the normalized version with the original */
if(0!=uprv_strCompare(prevStarter, (int32_t)(src-prevStarter), buffer, length, FALSE, FALSE)) {
result=UNORM_NO; /* normalization differs */
break;
}
/* continue after the next starter */
}
}
}
endloop:
if(buffer!=stackBuffer) {
uprv_free(buffer);
}
return result;
}
U_CAPI UNormalizationCheckResult U_EXPORT2
unorm_quickCheck(const UChar *src,
int32_t srcLength,
UNormalizationMode mode,
UErrorCode *pErrorCode) {
return _quickCheck(src, srcLength, mode, TRUE, pErrorCode);
}
U_CAPI UBool U_EXPORT2
unorm_isNormalized(const UChar *src, int32_t srcLength,
UNormalizationMode mode,
UErrorCode *pErrorCode) {
return (UBool)(UNORM_YES==_quickCheck(src, srcLength, mode, FALSE, pErrorCode));
}
/* make NFD & NFKD ---------------------------------------------------------- */
U_CAPI int32_t U_EXPORT2
unorm_getDecomposition(UChar32 c, UBool compat,
UChar *dest, int32_t destCapacity) {
UErrorCode errorCode=U_ZERO_ERROR;
if( (uint32_t)c<=0x10ffff &&
_haveData(errorCode) &&
((dest!=NULL && destCapacity>0) || destCapacity==0)
) {
uint32_t norm32, qcMask;
UChar32 minNoMaybe;
int32_t length;
/* initialize */
if(!compat) {
minNoMaybe=(UChar32)indexes[_NORM_INDEX_MIN_NFD_NO_MAYBE];
qcMask=_NORM_QC_NFD;
} else {
minNoMaybe=(UChar32)indexes[_NORM_INDEX_MIN_NFKD_NO_MAYBE];
qcMask=_NORM_QC_NFKD;
}
if(c<minNoMaybe) {
/* trivial case */
if(destCapacity>0) {
dest[0]=(UChar)c;
}
return -1;
}
/* data lookup */
UTRIE_GET32(&normTrie, c, norm32);
if((norm32&qcMask)==0) {
/* simple case: no decomposition */
if(c<=0xffff) {
if(destCapacity>0) {
dest[0]=(UChar)c;
}
return -1;
} else {
if(destCapacity>=2) {
dest[0]=UTF16_LEAD(c);
dest[1]=UTF16_TRAIL(c);
}
return -2;
}
} else if(isNorm32HangulOrJamo(norm32)) {
/* Hangul syllable: decompose algorithmically */
UChar c2;
c-=HANGUL_BASE;
c2=(UChar)(c%JAMO_T_COUNT);
c/=JAMO_T_COUNT;
if(c2>0) {
if(destCapacity>=3) {
dest[2]=(UChar)(JAMO_T_BASE+c2);
}
length=3;
} else {
length=2;
}
if(destCapacity>=2) {
dest[1]=(UChar)(JAMO_V_BASE+c%JAMO_V_COUNT);
dest[0]=(UChar)(JAMO_L_BASE+c/JAMO_V_COUNT);
}
return length;
} else {
/* c decomposes, get everything from the variable-length extra data */
const UChar *p, *limit;
uint8_t cc, trailCC;
p=_decompose(norm32, qcMask, length, cc, trailCC);
if(length<=destCapacity) {
limit=p+length;
do {
*dest++=*p++;
} while(p<limit);
}
return length;
}
} else {
return 0;
}
}
static int32_t
_decompose(UChar *dest, int32_t destCapacity,
const UChar *src, int32_t srcLength,
UBool compat, UBool ignoreHangul,
uint8_t &outTrailCC) {
UChar buffer[3];
const UChar *limit, *prevSrc, *p;
uint32_t norm32, ccOrQCMask, qcMask;
int32_t destIndex, reorderStartIndex, length;
UChar c, c2, minNoMaybe;
uint8_t cc, prevCC, trailCC;
if(!compat) {
minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFD_NO_MAYBE];
qcMask=_NORM_QC_NFD;
} else {
minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFKD_NO_MAYBE];
qcMask=_NORM_QC_NFKD;
}
/* initialize */
ccOrQCMask=_NORM_CC_MASK|qcMask;
destIndex=reorderStartIndex=0;
prevCC=0;
/* avoid compiler warnings */
norm32=0;
c=0;
if(srcLength>=0) {
/* string with length */
limit=src+srcLength;
} else /* srcLength==-1 */ {
/* zero-terminated string */
limit=NULL;
}
U_ALIGN_CODE(16);
for(;;) {
/* count code units below the minimum or with irrelevant data for the quick check */
prevSrc=src;
if(limit==NULL) {
while((c=*src)<minNoMaybe ? c!=0 : ((norm32=_getNorm32(c))&ccOrQCMask)==0) {
prevCC=0;
++src;
}
} else {
while(src!=limit && ((c=*src)<minNoMaybe || ((norm32=_getNorm32(c))&ccOrQCMask)==0)) {
prevCC=0;
++src;
}
}
/* copy these code units all at once */
if(src!=prevSrc) {
length=(int32_t)(src-prevSrc);
if((destIndex+length)<=destCapacity) {
uprv_memcpy(dest+destIndex, prevSrc, length*U_SIZEOF_UCHAR);
}
destIndex+=length;
reorderStartIndex=destIndex;
}
/* end of source reached? */
if(limit==NULL ? c==0 : src==limit) {
break;
}
/* c already contains *src and norm32 is set for it, increment src */
++src;
/* check one above-minimum, relevant code unit */
/*
* generally, set p and length to the decomposition string
* in simple cases, p==NULL and (c, c2) will hold the length code units to append
* in all cases, set cc to the lead and trailCC to the trail combining class
*
* the following merge-sort of the current character into the preceding,
* canonically ordered result text will use the optimized _insertOrdered()
* if there is only one single code point to process;
* this is indicated with p==NULL, and (c, c2) is the character to insert
* ((c, 0) for a BMP character and (lead surrogate, trail surrogate)
* for a supplementary character)
* otherwise, p[length] is merged in with _mergeOrdered()
*/
if(isNorm32HangulOrJamo(norm32)) {
if(ignoreHangul) {
c2=0;
p=NULL;
length=1;
} else {
/* Hangul syllable: decompose algorithmically */
p=buffer;
cc=trailCC=0;
c-=HANGUL_BASE;
c2=(UChar)(c%JAMO_T_COUNT);
c/=JAMO_T_COUNT;
if(c2>0) {
buffer[2]=(UChar)(JAMO_T_BASE+c2);
length=3;
} else {
length=2;
}
buffer[1]=(UChar)(JAMO_V_BASE+c%JAMO_V_COUNT);
buffer[0]=(UChar)(JAMO_L_BASE+c/JAMO_V_COUNT);
}
} else {
if(isNorm32Regular(norm32)) {
c2=0;
length=1;
} else {
/* c is a lead surrogate, get the real norm32 */
if(src!=limit && UTF_IS_SECOND_SURROGATE(c2=*src)) {
++src;
length=2;
norm32=_getNorm32FromSurrogatePair(norm32, c2);
} else {
c2=0;
length=1;
norm32=0;
}
}
/* get the decomposition and the lead and trail cc's */
if((norm32&qcMask)==0) {
/* c does not decompose */
cc=trailCC=(uint8_t)(norm32>>_NORM_CC_SHIFT);
p=NULL;
} else {
/* c decomposes, get everything from the variable-length extra data */
p=_decompose(norm32, qcMask, length, cc, trailCC);
if(length==1) {
/* fastpath a single code unit from decomposition */
c=*p;
c2=0;
p=NULL;
}
}
}
/* append the decomposition to the destination buffer, assume length>0 */
if((destIndex+length)<=destCapacity) {
UChar *reorderSplit=dest+destIndex;
if(p==NULL) {
/* fastpath: single code point */
if(cc!=0 && cc<prevCC) {
/* (c, c2) is out of order with respect to the preceding text */
destIndex+=length;
trailCC=_insertOrdered(dest+reorderStartIndex, reorderSplit, dest+destIndex, c, c2, cc);
} else {
/* just append (c, c2) */
dest[destIndex++]=c;
if(c2!=0) {
dest[destIndex++]=c2;
}
}
} else {
/* general: multiple code points (ordered by themselves) from decomposition */
if(cc!=0 && cc<prevCC) {
/* the decomposition is out of order with respect to the preceding text */
destIndex+=length;
trailCC=_mergeOrdered(dest+reorderStartIndex, reorderSplit, p, p+length);
} else {
/* just append the decomposition */
do {
dest[destIndex++]=*p++;
} while(--length>0);
}
}
} else {
/* buffer overflow */
/* keep incrementing the destIndex for preflighting */
destIndex+=length;
}
prevCC=trailCC;
if(prevCC==0) {
reorderStartIndex=destIndex;
}
}
outTrailCC=prevCC;
return destIndex;
}
U_CAPI int32_t U_EXPORT2
unorm_decompose(UChar *dest, int32_t destCapacity,
const UChar *src, int32_t srcLength,
UBool compat, UBool ignoreHangul,
UErrorCode *pErrorCode) {
int32_t destIndex;
uint8_t trailCC;
if(!_haveData(*pErrorCode)) {
return 0;
}
destIndex=_decompose(dest, destCapacity,
src, srcLength,
compat, ignoreHangul,
trailCC);
return u_terminateUChars(dest, destCapacity, destIndex, pErrorCode);
}
/* make FCD ----------------------------------------------------------------- */
static const UChar *
_findSafeFCD(const UChar *src, const UChar *limit, uint16_t fcd16) {
UChar c, c2;
/*
* find the first position in [src..limit[ after some cc==0 according to FCD data
*
* at the beginning of the loop, we have fcd16 from before src
*
* stop at positions:
* - after trail cc==0
* - at the end of the source
* - before lead cc==0
*/
for(;;) {
/* stop if trail cc==0 for the previous character */
if((fcd16&0xff)==0) {
break;
}
/* get c=*src - stop at end of string */
if(src==limit) {
break;
}
c=*src;
/* stop if lead cc==0 for this character */
if(c<_NORM_MIN_WITH_LEAD_CC || (fcd16=_getFCD16(c))==0) {
break; /* catches terminating NUL, too */
}
if(!UTF_IS_FIRST_SURROGATE(c)) {
if(fcd16<=0xff) {
break;
}
++src;
} else if((src+1)!=limit && (c2=*(src+1), UTF_IS_SECOND_SURROGATE(c2))) {
/* c is a lead surrogate, get the real fcd16 */
fcd16=_getFCD16FromSurrogatePair(fcd16, c2);
if(fcd16<=0xff) {
break;
}
src+=2;
} else {
/* c is an unpaired first surrogate, lead cc==0 */
break;
}
}
return src;
}
static uint8_t
_decomposeFCD(const UChar *src, const UChar *decompLimit,
UChar *dest, int32_t &destIndex, int32_t destCapacity) {
const UChar *p;
uint32_t norm32;
int32_t reorderStartIndex, length;
UChar c, c2;
uint8_t cc, prevCC, trailCC;
/*
* canonically decompose [src..decompLimit[
*
* all characters in this range have some non-zero cc,
* directly or in decomposition,
* so that we do not need to check in the following for quick-check limits etc.
*
* there _are_ _no_ Hangul syllables or Jamos in here because they are FCD-safe (cc==0)!
*
* we also do not need to check for c==0 because we have an established decompLimit
*/
reorderStartIndex=destIndex;
prevCC=0;
while(src<decompLimit) {
c=*src++;
norm32=_getNorm32(c);
if(isNorm32Regular(norm32)) {
c2=0;
length=1;
} else {
/*
* reminder: this function is called with [src..decompLimit[
* not containing any Hangul/Jamo characters,
* therefore the only specials are lead surrogates
*/
/* c is a lead surrogate, get the real norm32 */
if(src!=decompLimit && UTF_IS_SECOND_SURROGATE(c2=*src)) {
++src;
length=2;
norm32=_getNorm32FromSurrogatePair(norm32, c2);
} else {
c2=0;
length=1;
norm32=0;
}
}
/* get the decomposition and the lead and trail cc's */
if((norm32&_NORM_QC_NFD)==0) {
/* c does not decompose */
cc=trailCC=(uint8_t)(norm32>>_NORM_CC_SHIFT);
p=NULL;
} else {
/* c decomposes, get everything from the variable-length extra data */
p=_decompose(norm32, length, cc, trailCC);
if(length==1) {
/* fastpath a single code unit from decomposition */
c=*p;
c2=0;
p=NULL;
}
}
/* append the decomposition to the destination buffer, assume length>0 */
if((destIndex+length)<=destCapacity) {
UChar *reorderSplit=dest+destIndex;
if(p==NULL) {
/* fastpath: single code point */
if(cc!=0 && cc<prevCC) {
/* (c, c2) is out of order with respect to the preceding text */
destIndex+=length;
trailCC=_insertOrdered(dest+reorderStartIndex, reorderSplit, dest+destIndex, c, c2, cc);
} else {
/* just append (c, c2) */
dest[destIndex++]=c;
if(c2!=0) {
dest[destIndex++]=c2;
}
}
} else {
/* general: multiple code points (ordered by themselves) from decomposition */
if(cc!=0 && cc<prevCC) {
/* the decomposition is out of order with respect to the preceding text */
destIndex+=length;
trailCC=_mergeOrdered(dest+reorderStartIndex, reorderSplit, p, p+length);
} else {
/* just append the decomposition */
do {
dest[destIndex++]=*p++;
} while(--length>0);
}
}
} else {
/* buffer overflow */
/* keep incrementing the destIndex for preflighting */
destIndex+=length;
}
prevCC=trailCC;
if(prevCC==0) {
reorderStartIndex=destIndex;
}
}
return prevCC;
}
static int32_t
unorm_makeFCD(UChar *dest, int32_t destCapacity,
const UChar *src, int32_t srcLength,
UErrorCode *pErrorCode) {
const UChar *limit, *prevSrc, *decompStart;
int32_t destIndex, length;
UChar c, c2;
uint16_t fcd16;
int16_t prevCC, cc;
if(!_haveData(*pErrorCode)) {
return 0;
}
/* initialize */
decompStart=src;
destIndex=0;
prevCC=0;
/* avoid compiler warnings */
c=0;
fcd16=0;
if(srcLength>=0) {
/* string with length */
limit=src+srcLength;
} else /* srcLength==-1 */ {
/* zero-terminated string */
limit=NULL;
}
U_ALIGN_CODE(16);
for(;;) {
/* skip a run of code units below the minimum or with irrelevant data for the FCD check */
prevSrc=src;
if(limit==NULL) {
for(;;) {
c=*src;
if(c<_NORM_MIN_WITH_LEAD_CC) {
if(c==0) {
break;
}
prevCC=(int16_t)-c;
} else if((fcd16=_getFCD16(c))==0) {
prevCC=0;
} else {
break;
}
++src;
}
} else {
for(;;) {
if(src==limit) {
break;
} else if((c=*src)<_NORM_MIN_WITH_LEAD_CC) {
prevCC=(int16_t)-c;
} else if((fcd16=_getFCD16(c))==0) {
prevCC=0;
} else {
break;
}
++src;
}
}
/*
* prevCC has values from the following ranges:
* 0..0xff - the previous trail combining class
* <0 - the negative value of the previous code unit;
* that code unit was <_NORM_MIN_WITH_LEAD_CC and its _getFCD16()
* was deferred so that average text is checked faster
*/
/* copy these code units all at once */
if(src!=prevSrc) {
length=(int32_t)(src-prevSrc);
if((destIndex+length)<=destCapacity) {
uprv_memcpy(dest+destIndex, prevSrc, length*U_SIZEOF_UCHAR);
}
destIndex+=length;
prevSrc=src;
/* prevCC<0 is only possible from the above loop, i.e., only if prevSrc<src */
if(prevCC<0) {
/* the previous character was <_NORM_MIN_WITH_LEAD_CC, we need to get its trail cc */
prevCC=(int16_t)(_getFCD16((UChar)-prevCC)&0xff);
/*
* set a pointer to this below-U+0300 character;
* if prevCC==0 then it will moved to after this character below
*/
decompStart=prevSrc-1;
}
}
/*
* now:
* prevSrc==src - used later to adjust destIndex before decomposition
* prevCC>=0
*/
/* end of source reached? */
if(limit==NULL ? c==0 : src==limit) {
break;
}
/* set a pointer to after the last source position where prevCC==0 */
if(prevCC==0) {
decompStart=prevSrc;
}
/* c already contains *src and fcd16 is set for it, increment src */
++src;
/* check one above-minimum, relevant code unit */
if(UTF_IS_FIRST_SURROGATE(c)) {
/* c is a lead surrogate, get the real fcd16 */
if(src!=limit && UTF_IS_SECOND_SURROGATE(c2=*src)) {
++src;
fcd16=_getFCD16FromSurrogatePair(fcd16, c2);
} else {
c2=0;
fcd16=0;
}
} else {
c2=0;
}
/* we are looking at the character (c, c2) at [prevSrc..src[ */
/* check the combining order, get the lead cc */
cc=(int16_t)(fcd16>>8);
if(cc==0 || cc>=prevCC) {
/* the order is ok */
if(cc==0) {
decompStart=prevSrc;
}
prevCC=(int16_t)(fcd16&0xff);
/* just append (c, c2) */
length= c2==0 ? 1 : 2;
if((destIndex+length)<=destCapacity) {
dest[destIndex++]=c;
if(c2!=0) {
dest[destIndex++]=c2;
}
} else {
destIndex+=length;
}
} else {
/*
* back out the part of the source that we copied already but
* is now going to be decomposed;
* prevSrc is set to after what was copied
*/
destIndex-=(int32_t)(prevSrc-decompStart);
/*
* find the part of the source that needs to be decomposed;
* to be safe and simple, decompose to before the next character with lead cc==0
*/
src=_findSafeFCD(src, limit, fcd16);
/*
* the source text does not fulfill the conditions for FCD;
* decompose and reorder a limited piece of the text
*/
prevCC=_decomposeFCD(decompStart, src,
dest, destIndex, destCapacity);
decompStart=src;
}
}
return u_terminateUChars(dest, destCapacity, destIndex, pErrorCode);
}
/* make NFC & NFKC ---------------------------------------------------------- */
/* get the composition properties of the next character */
static inline uint32_t
_getNextCombining(UChar *&p, const UChar *limit,
UChar &c, UChar &c2,
uint16_t &combiningIndex, uint8_t &cc) {
uint32_t norm32, combineFlags;
c=*p++;
norm32=_getNorm32(c);
if((norm32&(_NORM_CC_MASK|_NORM_COMBINES_ANY))==0) {
c2=0;
combiningIndex=0;
cc=0;
return 0;
} else {
if(isNorm32Regular(norm32)) {
c2=0;
} else if(isNorm32HangulOrJamo(norm32)) {
/* a compatibility decomposition contained Jamos */
c2=0;
combiningIndex=(uint16_t)(0xfff0|(norm32>>_NORM_EXTRA_SHIFT));
cc=0;
return norm32&_NORM_COMBINES_ANY;
} else {
/* c is a lead surrogate, get the real norm32 */
if(p!=limit && UTF_IS_SECOND_SURROGATE(c2=*p)) {
++p;
norm32=_getNorm32FromSurrogatePair(norm32, c2);
} else {
c2=0;
combiningIndex=0;
cc=0;
return 0;
}
}
combineFlags=norm32&_NORM_COMBINES_ANY;
if(combineFlags!=0) {
combiningIndex=*(_getExtraData(norm32)-1);
}
cc=(uint8_t)(norm32>>_NORM_CC_SHIFT);
return combineFlags;
}
}
/*
* given a composition-result starter (c, c2) - which means its cc==0,
* it combines forward, it has extra data, its norm32!=0,
* it is not a Hangul or Jamo,
* get just its combineFwdIndex
*
* norm32(c) is special if and only if c2!=0
*/
static inline uint16_t
_getCombiningIndexFromStarter(UChar c, UChar c2) {
uint32_t norm32;
norm32=_getNorm32(c);
if(c2!=0) {
norm32=_getNorm32FromSurrogatePair(norm32, c2);
}
return *(_getExtraData(norm32)-1);
}
/*
* Find the recomposition result for
* a forward-combining character
* (specified with a pointer to its part of the combiningTable[])
* and a backward-combining character
* (specified with its combineBackIndex).
*
* If these two characters combine, then set (value, value2)
* with the code unit(s) of the composition character.
*
* Return value:
* 0 do not combine
* 1 combine
* >1 combine, and the composition is a forward-combining starter
*
* See unormimp.h for a description of the composition table format.
*/
static inline uint16_t
_combine(const uint16_t *table, uint16_t combineBackIndex,
uint16_t &value, uint16_t &value2) {
uint16_t key;
/* search in the starter's composition table */
for(;;) {
key=*table++;
if(key>=combineBackIndex) {
break;
}
table+= *table&0x8000 ? 2 : 1;
}
/* mask off bit 15, the last-entry-in-the-list flag */
if((key&0x7fff)==combineBackIndex) {
/* found! combine! */
value=*table;
/* is the composition a starter that combines forward? */
key=(uint16_t)((value&0x2000)+1);
/* get the composition result code point from the variable-length result value */
if(value&0x8000) {
if(value&0x4000) {
/* surrogate pair composition result */
value=(uint16_t)((value&0x3ff)|0xd800);
value2=*(table+1);
} else {
/* BMP composition result U+2000..U+ffff */
value=*(table+1);
value2=0;
}
} else {
/* BMP composition result U+0000..U+1fff */
value&=0x1fff;
value2=0;
}
return key;
} else {
/* not found */
return 0;
}
}
/*
* recompose the characters in [p..limit[
* (which is in NFD - decomposed and canonically ordered),
* adjust limit, and return the trailing cc
*
* since for NFKC we may get Jamos in decompositions, we need to
* recompose those too
*
* note that recomposition never lengthens the text:
* any character consists of either one or two code units;
* a composition may contain at most one more code unit than the original starter,
* while the combining mark that is removed has at least one code unit
*/
static uint8_t
_recompose(UChar *p, UChar *&limit) {
UChar *starter, *pRemove, *q, *r;
uint32_t combineFlags;
UChar c, c2;
uint16_t combineFwdIndex, combineBackIndex;
uint16_t result, value, value2;
uint8_t cc, prevCC;
UBool starterIsSupplementary;
starter=NULL; /* no starter */
combineFwdIndex=0; /* will not be used until starter!=NULL - avoid compiler warnings */
combineBackIndex=0; /* will always be set if combineFlags!=0 - avoid compiler warnings */
value=value2=0; /* always set by _combine() before used - avoid compiler warnings */
starterIsSupplementary=FALSE; /* will not be used until starter!=NULL - avoid compiler warnings */
prevCC=0;
for(;;) {
combineFlags=_getNextCombining(p, limit, c, c2, combineBackIndex, cc);
if((combineFlags&_NORM_COMBINES_BACK) && starter!=NULL) {
if(combineBackIndex&0x8000) {
/* c is a Jamo V/T, see if we can compose it with the previous character */
pRemove=NULL; /* NULL while no Hangul composition */
c2=*starter;
if(combineBackIndex==0xfff2) {
/* Jamo V, compose with previous Jamo L and following Jamo T */
c2=(UChar)(c2-JAMO_L_BASE);
if(c2<JAMO_L_COUNT) {
pRemove=p-1;
c=(UChar)(HANGUL_BASE+(c2*JAMO_V_COUNT+(c-JAMO_V_BASE))*JAMO_T_COUNT);
if(p!=limit && (c2=(UChar)(*p-JAMO_T_BASE))<JAMO_T_COUNT) {
++p;
c+=c2;
}
*starter=c;
}
#if 0
/*
* The following is disabled with #if 0 because it can not occur:
* Since the input is in NFD, there are no Hangul LV syllables that
* a Jamo T could combine with.
* All Jamo Ts are combined above when handling Jamo Ls.
*/
} else {
/* Jamo T, compose with previous Hangul that does not have a Jamo T */
if(isHangulWithoutJamoT(c2)) {
pRemove=p-1;
*starter=(UChar)(c2+(c-JAMO_T_BASE));
}
#endif
}
if(pRemove!=NULL) {
/* remove the Jamo(s) */
q=pRemove;
r=p;
while(r<limit) {
*q++=*r++;
}
p=pRemove;
limit=q;
}
c2=0; /* c2 held *starter temporarily */
/*
* now: cc==0 and the combining index does not include "forward" ->
* the rest of the loop body will reset starter to NULL;
* technically, a composed Hangul syllable is a starter, but it
* does not combine forward now that we have consumed all eligible Jamos;
* for Jamo V/T, combineFlags does not contain _NORM_COMBINES_FWD
*/
} else if(
/* the starter is not a Jamo V/T and */
!(combineFwdIndex&0x8000) &&
/* the combining mark is not blocked and */
(prevCC<cc || prevCC==0) &&
/* the starter and the combining mark (c, c2) do combine */
0!=(result=_combine(combiningTable+combineFwdIndex, combineBackIndex, value, value2))
) {
/* replace the starter with the composition, remove the combining mark */
pRemove= c2==0 ? p-1 : p-2; /* pointer to the combining mark */
/* replace the starter with the composition */
*starter=(UChar)value;
if(starterIsSupplementary) {
if(value2!=0) {
/* both are supplementary */
*(starter+1)=(UChar)value2;
} else {
/* the composition is shorter than the starter, move the intermediate characters forward one */
starterIsSupplementary=FALSE;
q=starter+1;
r=q+1;
while(r<pRemove) {
*q++=*r++;
}
--pRemove;
}
} else if(value2!=0) {
/* the composition is longer than the starter, move the intermediate characters back one */
starterIsSupplementary=TRUE;
++starter; /* temporarily increment for the loop boundary */
q=pRemove;
r=++pRemove;
while(starter<q) {
*--r=*--q;
}
*starter=(UChar)value2;
--starter; /* undo the temporary increment */
/* } else { both are on the BMP, nothing more to do */
}
/* remove the combining mark by moving the following text over it */
if(pRemove<p) {
q=pRemove;
r=p;
while(r<limit) {
*q++=*r++;
}
p=pRemove;
limit=q;
}
/* keep prevCC because we removed the combining mark */
/* done? */
if(p==limit) {
return prevCC;
}
/* is the composition a starter that combines forward? */
if(result>1) {
combineFwdIndex=_getCombiningIndexFromStarter((UChar)value, (UChar)value2);
} else {
starter=NULL;
}
/* we combined and set prevCC, continue with looking for compositions */
continue;
}
}
/* no combination this time */
prevCC=cc;
if(p==limit) {
return prevCC;
}
/* if (c, c2) did not combine, then check if it is a starter */
if(cc==0) {
/* found a new starter */
if(combineFlags&_NORM_COMBINES_FWD) {
/* it may combine with something, prepare for it */
if(c2==0) {
starterIsSupplementary=FALSE;
starter=p-1;
} else {
starterIsSupplementary=TRUE;
starter=p-2;
}
combineFwdIndex=combineBackIndex;
} else {
/* it will not combine with anything */
starter=NULL;
}
}
}
}
/* find the last true starter in [start..src[ and return the pointer to it */
static const UChar *
_findPreviousStarter(const UChar *start, const UChar *src,
uint32_t ccOrQCMask, uint32_t decompQCMask, UChar minNoMaybe) {
uint32_t norm32;
UChar c, c2;
while(start<src) {
norm32=_getPrevNorm32(start, src, minNoMaybe, ccOrQCMask|decompQCMask, c, c2);
if(_isTrueStarter(norm32, ccOrQCMask, decompQCMask)) {
break;
}
}
return src;
}
/* find the first true starter in [src..limit[ and return the pointer to it */
static const UChar *
_findNextStarter(const UChar *src, const UChar *limit,
uint32_t qcMask, uint32_t decompQCMask, UChar minNoMaybe) {
const UChar *p;
uint32_t norm32, ccOrQCMask;
int32_t length;
UChar c, c2;
uint8_t cc, trailCC;
ccOrQCMask=_NORM_CC_MASK|qcMask;
for(;;) {
if(src==limit) {
break; /* end of string */
}
c=*src;
if(c<minNoMaybe) {
break; /* catches NUL terminater, too */
}
norm32=_getNorm32(c);
if((norm32&ccOrQCMask)==0) {
break; /* true starter */
}
if(isNorm32LeadSurrogate(norm32)) {
/* c is a lead surrogate, get the real norm32 */
if((src+1)==limit || !UTF_IS_SECOND_SURROGATE(c2=*(src+1))) {
break; /* unmatched first surrogate: counts as a true starter */
}
norm32=_getNorm32FromSurrogatePair(norm32, c2);
if((norm32&ccOrQCMask)==0) {
break; /* true starter */
}
} else {
c2=0;
}
/* (c, c2) is not a true starter but its decomposition may be */
if(norm32&decompQCMask) {
/* (c, c2) decomposes, get everything from the variable-length extra data */
p=_decompose(norm32, decompQCMask, length, cc, trailCC);
/* get the first character's norm32 to check if it is a true starter */
if(cc==0 && (_getNorm32(p, qcMask)&qcMask)==0) {
break; /* true starter */
}
}
src+= c2==0 ? 1 : 2; /* not a true starter, continue */
}
return src;
}
/* decompose and recompose [prevStarter..src[ */
static const UChar *
_composePart(UChar *stackBuffer, UChar *&buffer, int32_t &bufferCapacity, int32_t &length,
const UChar *prevStarter, const UChar *src,
uint32_t qcMask, uint8_t &prevCC,
UErrorCode *pErrorCode) {
UChar *recomposeLimit;
uint8_t trailCC;
UBool compat;
compat=(UBool)((qcMask&_NORM_QC_NFKC)!=0);
/* decompose [prevStarter..src[ */
length=_decompose(buffer, bufferCapacity,
prevStarter, src-prevStarter,
compat, FALSE,
trailCC);
if(length>bufferCapacity) {
if(!u_growBufferFromStatic(stackBuffer, &buffer, &bufferCapacity, 2*length, 0)) {
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
length=_decompose(buffer, bufferCapacity,
prevStarter, src-prevStarter,
compat, FALSE,
trailCC);
}
/* recompose the decomposition */
recomposeLimit=buffer+length;
if(length>=2) {
prevCC=_recompose(buffer, recomposeLimit);
}
/* return with a pointer to the recomposition and its length */
length=recomposeLimit-buffer;
return buffer;
}
static inline UBool
_composeHangul(UChar prev, UChar c, uint32_t norm32, const UChar *&src, const UChar *limit,
UBool compat, UChar *dest) {
if(isJamoVTNorm32JamoV(norm32)) {
/* c is a Jamo V, compose with previous Jamo L and following Jamo T */
prev=(UChar)(prev-JAMO_L_BASE);
if(prev<JAMO_L_COUNT) {
c=(UChar)(HANGUL_BASE+(prev*JAMO_V_COUNT+(c-JAMO_V_BASE))*JAMO_T_COUNT);
/* check if the next character is a Jamo T (normal or compatibility) */
if(src!=limit) {
UChar next, t;
next=*src;
if((t=(UChar)(next-JAMO_T_BASE))<JAMO_T_COUNT) {
/* normal Jamo T */
++src;
c+=t;
} else if(compat) {
/* if NFKC, then check for compatibility Jamo T (BMP only) */
norm32=_getNorm32(next);
if(isNorm32Regular(norm32) && (norm32&_NORM_QC_NFKD)) {
const UChar *p;
int32_t length;
uint8_t cc, trailCC;
p=_decompose(norm32, _NORM_QC_NFKD, length, cc, trailCC);
if(length==1 && (t=(UChar)(*p-JAMO_T_BASE))<JAMO_T_COUNT) {
/* compatibility Jamo T */
++src;
c+=t;
}
}
}
}
if(dest!=0) {
*dest=c;
}
return TRUE;
}
} else if(isHangulWithoutJamoT(prev)) {
/* c is a Jamo T, compose with previous Hangul LV that does not contain a Jamo T */
if(dest!=0) {
*dest=(UChar)(prev+(c-JAMO_T_BASE));
}
return TRUE;
}
return FALSE;
}
static int32_t
_compose(UChar *dest, int32_t destCapacity,
const UChar *src, int32_t srcLength,
UBool compat, UBool /* ### TODO: need to do this? -- ignoreHangul -- ### */,
UErrorCode *pErrorCode) {
UChar stackBuffer[_STACK_BUFFER_CAPACITY];
UChar *buffer;
int32_t bufferCapacity;
const UChar *limit, *prevSrc, *prevStarter;
uint32_t norm32, ccOrQCMask, qcMask;
int32_t destIndex, reorderStartIndex, length;
UChar c, c2, minNoMaybe;
uint8_t cc, prevCC;
if(!compat) {
minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFC_NO_MAYBE];
qcMask=_NORM_QC_NFC;
} else {
minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFKC_NO_MAYBE];
qcMask=_NORM_QC_NFKC;
}
/* initialize */
buffer=stackBuffer;
bufferCapacity=_STACK_BUFFER_CAPACITY;
/*
* prevStarter points to the last character before the current one
* that is a "true" starter with cc==0 and quick check "yes".
*
* prevStarter will be used instead of looking for a true starter
* while incrementally decomposing [prevStarter..prevSrc[
* in _composePart(). Having a good prevStarter allows to just decompose
* the entire [prevStarter..prevSrc[.
*
* When _composePart() backs out from prevSrc back to prevStarter,
* then it also backs out destIndex by the same amount.
* Therefore, at all times, the (prevSrc-prevStarter) source units
* must correspond 1:1 to destination units counted with destIndex,
* except for reordering.
* This is true for the qc "yes" characters copied in the fast loop,
* and for pure reordering.
* prevStarter must be set forward to src when this is not true:
* In _composePart() and after composing a Hangul syllable.
*
* This mechanism relies on the assumption that the decomposition of a true starter
* also begins with a true starter. gennorm/store.c checks for this.
*/
prevStarter=src;
ccOrQCMask=_NORM_CC_MASK|qcMask;
destIndex=reorderStartIndex=0;
prevCC=0;
/* avoid compiler warnings */
norm32=0;
c=0;
if(srcLength>=0) {
/* string with length */
limit=src+srcLength;
} else /* srcLength==-1 */ {
/* zero-terminated string */
limit=NULL;
}
U_ALIGN_CODE(16);
for(;;) {
/* count code units below the minimum or with irrelevant data for the quick check */
prevSrc=src;
if(limit==NULL) {
while((c=*src)<minNoMaybe ? c!=0 : ((norm32=_getNorm32(c))&ccOrQCMask)==0) {
prevCC=0;
++src;
}
} else {
while(src!=limit && ((c=*src)<minNoMaybe || ((norm32=_getNorm32(c))&ccOrQCMask)==0)) {
prevCC=0;
++src;
}
}
/* copy these code units all at once */
if(src!=prevSrc) {
length=(int32_t)(src-prevSrc);
if((destIndex+length)<=destCapacity) {
uprv_memcpy(dest+destIndex, prevSrc, length*U_SIZEOF_UCHAR);
}
destIndex+=length;
reorderStartIndex=destIndex;
/* set prevStarter to the last character in the quick check loop */
prevStarter=src-1;
if(UTF_IS_SECOND_SURROGATE(*prevStarter) && prevSrc<prevStarter && UTF_IS_FIRST_SURROGATE(*(prevStarter-1))) {
--prevStarter;
}
prevSrc=src;
}
/* end of source reached? */
if(limit==NULL ? c==0 : src==limit) {
break;
}
/* c already contains *src and norm32 is set for it, increment src */
++src;
/*
* source buffer pointers:
*
* all done quick check current char not yet
* "yes" but (c, c2) processed
* may combine
* forward
* [-------------[-------------[-------------[-------------[
* | | | | |
* start prevStarter prevSrc src limit
*
*
* destination buffer pointers and indexes:
*
* all done might take not filled yet
* characters for
* reordering
* [-------------[-------------[-------------[
* | | | |
* dest reorderStartIndex destIndex destCapacity
*/
/* check one above-minimum, relevant code unit */
/*
* norm32 is for c=*(src-1), and the quick check flag is "no" or "maybe", and/or cc!=0
* check for Jamo V/T, then for surrogates and regular characters
* c is not a Hangul syllable or Jamo L because
* they are not marked with no/maybe for NFC & NFKC (and their cc==0)
*/
if(isNorm32HangulOrJamo(norm32)) {
/*
* c is a Jamo V/T:
* try to compose with the previous character, Jamo V also with a following Jamo T,
* and set values here right now in case we just continue with the main loop
*/
prevCC=cc=0;
reorderStartIndex=destIndex;
if( /* ### TODO: do we need to do this? !ignoreHangul && ### */
destIndex>0 &&
_composeHangul(
*(prevSrc-1), c, norm32, src, limit, compat,
destIndex<=destCapacity ? dest+(destIndex-1) : 0)
) {
prevStarter=src;
continue;
}
/* the Jamo V/T did not compose into a Hangul syllable, just append to dest */
c2=0;
length=1;
prevStarter=prevSrc;
} else {
if(isNorm32Regular(norm32)) {
c2=0;
length=1;
} else {
/* c is a lead surrogate, get the real norm32 */
if(src!=limit && UTF_IS_SECOND_SURROGATE(c2=*src)) {
++src;
length=2;
norm32=_getNorm32FromSurrogatePair(norm32, c2);
} else {
/* c is an unpaired lead surrogate, nothing to do */
c2=0;
length=1;
norm32=0;
}
}
/* we are looking at the character (c, c2) at [prevSrc..src[ */
if((norm32&qcMask)==0) {
cc=(uint8_t)(norm32>>_NORM_CC_SHIFT);
} else {
const UChar *p;
uint32_t decompQCMask;
/*
* find appropriate boundaries around this character,
* decompose the source text from between the boundaries,
* and recompose it
*
* this puts the intermediate text into the side buffer because
* it might be longer than the recomposition end result,
* or the destination buffer may be too short or missing
*
* note that destIndex may be adjusted backwards to account
* for source text that passed the quick check but needed to
* take part in the recomposition
*/
decompQCMask=(qcMask<<2)&0xf; /* decomposition quick check mask */
/*
* find the last true starter in [prevStarter..src[
* it is either the decomposition of the current character (at prevSrc),
* or prevStarter
*/
if(_isTrueStarter(norm32, ccOrQCMask, decompQCMask)) {
prevStarter=prevSrc;
} else {
/* adjust destIndex: back out what had been copied with qc "yes" */
destIndex-=(int32_t)(prevSrc-prevStarter);
}
/* find the next true starter in [src..limit[ - modifies src to point to the next starter */
src=_findNextStarter(src, limit, qcMask, decompQCMask, minNoMaybe);
/* compose [prevStarter..src[ */
p=_composePart(stackBuffer, buffer, bufferCapacity,
length, /* output */
prevStarter, src,
qcMask,
prevCC, /* output */
pErrorCode);
if(p==NULL) {
destIndex=0; /* an error occurred (out of memory) */
break;
}
/* append the recomposed buffer contents to the destination buffer */
if((destIndex+length)<=destCapacity) {
while(length>0) {
dest[destIndex++]=*p++;
--length;
}
} else {
/* buffer overflow */
/* keep incrementing the destIndex for preflighting */
destIndex+=length;
}
/* set the next starter */
prevStarter=src;
continue;
}
}
/* append the single code point (c, c2) to the destination buffer */
if((destIndex+length)<=destCapacity) {
if(cc!=0 && cc<prevCC) {
/* (c, c2) is out of order with respect to the preceding text */
UChar *reorderSplit=dest+destIndex;
destIndex+=length;
prevCC=_insertOrdered(dest+reorderStartIndex, reorderSplit, dest+destIndex, c, c2, cc);
} else {
/* just append (c, c2) */
dest[destIndex++]=c;
if(c2!=0) {
dest[destIndex++]=c2;
}
prevCC=cc;
}
} else {
/* buffer overflow */
/* keep incrementing the destIndex for preflighting */
destIndex+=length;
prevCC=cc;
}
}
/* cleanup */
if(buffer!=stackBuffer) {
uprv_free(buffer);
}
return destIndex;
}
U_CAPI int32_t U_EXPORT2
unorm_compose(UChar *dest, int32_t destCapacity,
const UChar *src, int32_t srcLength,
UBool compat, UBool ignoreHangul,
UErrorCode *pErrorCode) {
int32_t destIndex;
if(!_haveData(*pErrorCode)) {
return 0;
}
destIndex=_compose(dest, destCapacity,
src, srcLength,
compat, ignoreHangul,
pErrorCode);
return u_terminateUChars(dest, destCapacity, destIndex, pErrorCode);
}
/*
### TODO
task items:
- 2.0 Java sample code from unicode.org compare vs. JNI around C implementation - do monkey test
- 2.1 port that sample code to C/C++ and run as part of regular test suite
*/
/* normalize() API ---------------------------------------------------------- */
/**
* Internal API for normalizing.
* Does not check for bad input.
* @internal
*/
U_CAPI int32_t U_EXPORT2
unorm_internalNormalize(UChar *dest, int32_t destCapacity,
const UChar *src, int32_t srcLength,
UNormalizationMode mode, UBool ignoreHangul,
UErrorCode *pErrorCode) {
switch(mode) {
case UNORM_NFD:
return unorm_decompose(dest, destCapacity,
src, srcLength,
FALSE, ignoreHangul,
pErrorCode);
case UNORM_NFKD:
return unorm_decompose(dest, destCapacity,
src, srcLength,
TRUE, ignoreHangul,
pErrorCode);
case UNORM_NFC:
return unorm_compose(dest, destCapacity,
src, srcLength,
FALSE, ignoreHangul,
pErrorCode);
case UNORM_NFKC:
return unorm_compose(dest, destCapacity,
src, srcLength,
TRUE, ignoreHangul,
pErrorCode);
case UNORM_FCD:
return unorm_makeFCD(dest, destCapacity,
src, srcLength,
pErrorCode);
case UNORM_NONE:
/* just copy the string */
if(srcLength==-1) {
srcLength=u_strlen(src);
}
if(srcLength>0 && srcLength<=destCapacity) {
uprv_memcpy(dest, src, srcLength*U_SIZEOF_UCHAR);
}
return u_terminateUChars(dest, destCapacity, srcLength, pErrorCode);
default:
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
}
/** Public API for normalizing. */
U_CAPI int32_t U_EXPORT2
unorm_normalize(const UChar *src, int32_t srcLength,
UNormalizationMode mode, int32_t option,
UChar *dest, int32_t destCapacity,
UErrorCode *pErrorCode) {
/* check argument values */
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return 0;
}
if( destCapacity<0 || (dest==NULL && destCapacity>0) ||
src==NULL || srcLength<-1
) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
/* check for overlapping src and destination */
if( dest!=NULL &&
((src>=dest && src<(dest+destCapacity)) ||
(srcLength>0 && dest>=src && dest<(src+srcLength)))
) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
return unorm_internalNormalize(dest, destCapacity,
src, srcLength,
mode, (UBool)((option&(UNORM_IGNORE_HANGUL|1))!=0),
pErrorCode);
}
/* iteration functions ------------------------------------------------------ */
/*
* These iteration functions are the core implementations of the
* Normalizer class iteration API.
* They read from a UCharIterator into their own buffer
* and normalize into the Normalizer iteration buffer.
* Normalizer itself then iterates over its buffer until that needs to be
* filled again.
*/
/*
* ### TODO:
* Now that UCharIterator.next/previous return (int32_t)-1 not (UChar)0xffff
* if iteration bounds are reached,
* try to not call hasNext/hasPrevious and instead check for >=0.
*/
/* backward iteration ------------------------------------------------------- */
/*
* read backwards and get norm32
* return 0 if the character is <minC
* if c2!=0 then (c2, c) is a surrogate pair (reversed - c2 is first surrogate but read second!)
*/
static inline uint32_t
_getPrevNorm32(UCharIterator &src, uint32_t minC, uint32_t mask, UChar &c, UChar &c2) {
uint32_t norm32;
/* need src.hasPrevious() */
c=(UChar)src.previous(&src);
c2=0;
/* check for a surrogate before getting norm32 to see if we need to predecrement further */
if(c<minC) {
return 0;
} else if(!UTF_IS_SURROGATE(c)) {
return _getNorm32(c);
} else if(UTF_IS_SURROGATE_FIRST(c) || !src.hasPrevious(&src)) {
/* unpaired surrogate */
return 0;
} else if(UTF_IS_FIRST_SURROGATE(c2=(UChar)src.previous(&src))) {
norm32=_getNorm32(c2);
if((norm32&mask)==0) {
/* all surrogate pairs with this lead surrogate have irrelevant data */
return 0;
} else {
/* norm32 must be a surrogate special */
return _getNorm32FromSurrogatePair(norm32, c);
}
} else {
/* unpaired second surrogate, undo the c2=src.previous() movement */
src.move(&src, 1, UITER_CURRENT);
return 0;
}
}
/*
* read backwards and check if the character is a previous-iteration boundary
* if c2!=0 then (c2, c) is a surrogate pair (reversed - c2 is first surrogate but read second!)
*/
typedef UBool
IsPrevBoundaryFn(UCharIterator &src, uint32_t minC, uint32_t mask, UChar &c, UChar &c2);
/*
* for NF*D:
* read backwards and check if the lead combining class is 0
* if c2!=0 then (c2, c) is a surrogate pair (reversed - c2 is first surrogate but read second!)
*/
static UBool
_isPrevNFDSafe(UCharIterator &src, uint32_t minC, uint32_t ccOrQCMask, UChar &c, UChar &c2) {
return _isNFDSafe(_getPrevNorm32(src, minC, ccOrQCMask, c, c2), ccOrQCMask, ccOrQCMask&_NORM_QC_MASK);
}
/*
* read backwards and check if the character is (or its decomposition begins with)
* a "true starter" (cc==0 and NF*C_YES)
* if c2!=0 then (c2, c) is a surrogate pair (reversed - c2 is first surrogate but read second!)
*/
static UBool
_isPrevTrueStarter(UCharIterator &src, uint32_t minC, uint32_t ccOrQCMask, UChar &c, UChar &c2) {
uint32_t norm32, decompQCMask;
decompQCMask=(ccOrQCMask<<2)&0xf; /* decomposition quick check mask */
norm32=_getPrevNorm32(src, minC, ccOrQCMask|decompQCMask, c, c2);
return _isTrueStarter(norm32, ccOrQCMask, decompQCMask);
}
static int32_t
_findPreviousIterationBoundary(UCharIterator &src,
IsPrevBoundaryFn *isPrevBoundary, uint32_t minC, uint32_t mask,
UChar *&buffer, int32_t &bufferCapacity,
int32_t &startIndex,
UErrorCode *pErrorCode) {
UChar *stackBuffer;
UChar c, c2;
UBool isBoundary;
/* initialize */
stackBuffer=buffer;
startIndex=bufferCapacity; /* fill the buffer from the end backwards */
while(src.hasPrevious(&src)) {
isBoundary=isPrevBoundary(src, minC, mask, c, c2);
/* always write this character to the front of the buffer */
/* make sure there is enough space in the buffer */
if(startIndex < (c2==0 ? 1 : 2)) {
int32_t bufferLength=bufferCapacity;
if(!u_growBufferFromStatic(stackBuffer, &buffer, &bufferCapacity, 2*bufferCapacity, bufferLength)) {
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
src.move(&src, 0, UITER_START);
return 0;
}
/* move the current buffer contents up */
uprv_memmove(buffer+(bufferCapacity-bufferLength), buffer, bufferLength*U_SIZEOF_UCHAR);
startIndex+=bufferCapacity-bufferLength;
}
buffer[--startIndex]=c;
if(c2!=0) {
buffer[--startIndex]=c2;
}
/* stop if this just-copied character is a boundary */
if(isBoundary) {
break;
}
}
/* return the length of the buffer contents */
return bufferCapacity-startIndex;
}
U_CAPI int32_t U_EXPORT2
unorm_previous(UCharIterator *src,
UChar *dest, int32_t destCapacity,
UNormalizationMode mode, int32_t options,
UBool doNormalize, UBool *pNeededToNormalize,
UErrorCode *pErrorCode) {
UChar stackBuffer[100];
UChar *buffer;
IsPrevBoundaryFn *isPreviousBoundary;
uint32_t mask;
int32_t startIndex, bufferLength, bufferCapacity, destLength;
int32_t c, c2;
UChar minC;
/* check argument values */
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return 0;
}
if( destCapacity<0 || (dest==NULL && destCapacity>0) ||
src==NULL
) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
if(!_haveData(*pErrorCode)) {
return 0;
}
if(pNeededToNormalize!=NULL) {
*pNeededToNormalize=FALSE;
}
switch(mode) {
case UNORM_NFD:
case UNORM_FCD:
isPreviousBoundary=_isPrevNFDSafe;
minC=_NORM_MIN_WITH_LEAD_CC;
mask=_NORM_CC_MASK|_NORM_QC_NFD;
break;
case UNORM_NFKD:
isPreviousBoundary=_isPrevNFDSafe;
minC=_NORM_MIN_WITH_LEAD_CC;
mask=_NORM_CC_MASK|_NORM_QC_NFKD;
break;
case UNORM_NFC:
isPreviousBoundary=_isPrevTrueStarter;
minC=(UChar)indexes[_NORM_INDEX_MIN_NFC_NO_MAYBE];
mask=_NORM_CC_MASK|_NORM_QC_NFC;
break;
case UNORM_NFKC:
isPreviousBoundary=_isPrevTrueStarter;
minC=(UChar)indexes[_NORM_INDEX_MIN_NFKC_NO_MAYBE];
mask=_NORM_CC_MASK|_NORM_QC_NFKC;
break;
case UNORM_NONE:
destLength=0;
if((c=src->previous(src))>=0) {
destLength=1;
if(UTF_IS_TRAIL(c) && (c2=src->previous(src))>=0) {
if(UTF_IS_LEAD(c2)) {
if(destCapacity>=2) {
dest[1]=(UChar)c; /* trail surrogate */
destLength=2;
}
c=c2; /* lead surrogate to be written below */
} else {
src->move(src, 1, UITER_CURRENT);
}
}
if(destCapacity>0) {
dest[0]=(UChar)c;
}
}
return u_terminateUChars(dest, destCapacity, destLength, pErrorCode);
default:
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
buffer=stackBuffer;
bufferCapacity=(int32_t)(sizeof(stackBuffer)/U_SIZEOF_UCHAR);
bufferLength=_findPreviousIterationBoundary(*src,
isPreviousBoundary, minC, mask,
buffer, bufferCapacity,
startIndex,
pErrorCode);
if(bufferLength>0) {
if(doNormalize) {
destLength=unorm_internalNormalize(dest, destCapacity,
buffer+startIndex, bufferLength,
mode, (UBool)((options&(UNORM_IGNORE_HANGUL|1))!=0),
pErrorCode);
if(pNeededToNormalize!=0 && U_SUCCESS(*pErrorCode)) {
*pNeededToNormalize=
(UBool)(destLength!=bufferLength ||
0!=uprv_memcmp(dest, buffer, destLength*U_SIZEOF_UCHAR));
}
} else {
/* just copy the source characters */
if(destCapacity>0) {
uprv_memcpy(dest, buffer+startIndex, uprv_min(bufferLength, destCapacity)*U_SIZEOF_UCHAR);
}
destLength=u_terminateUChars(dest, destCapacity, bufferLength, pErrorCode);
}
} else {
destLength=u_terminateUChars(dest, destCapacity, 0, pErrorCode);
}
/* cleanup */
if(buffer!=stackBuffer) {
uprv_free(buffer);
}
return destLength;
}
/* forward iteration -------------------------------------------------------- */
/*
* read forward and get norm32
* return 0 if the character is <minC
* if c2!=0 then (c2, c) is a surrogate pair
* always reads complete characters
*/
static inline uint32_t
_getNextNorm32(UCharIterator &src, uint32_t minC, uint32_t mask, UChar &c, UChar &c2) {
uint32_t norm32;
/* need src.hasNext() to be true */
c=(UChar)src.next(&src);
c2=0;
if(c<minC) {
return 0;
}
norm32=_getNorm32(c);
if(UTF_IS_FIRST_SURROGATE(c)) {
if(src.hasNext(&src) && UTF_IS_SECOND_SURROGATE(c2=(UChar)src.current(&src))) {
src.move(&src, 1, UITER_CURRENT); /* skip the c2 surrogate */
if((norm32&mask)==0) {
/* irrelevant data */
return 0;
} else {
/* norm32 must be a surrogate special */
return _getNorm32FromSurrogatePair(norm32, c2);
}
} else {
/* unmatched surrogate */
return 0;
}
}
return norm32;
}
/*
* read forward and check if the character is a next-iteration boundary
* if c2!=0 then (c, c2) is a surrogate pair
*/
typedef UBool
IsNextBoundaryFn(UCharIterator &src, uint32_t minC, uint32_t mask, UChar &c, UChar &c2);
/*
* for NF*D:
* read forward and check if the lead combining class is 0
* if c2!=0 then (c, c2) is a surrogate pair
*/
static UBool
_isNextNFDSafe(UCharIterator &src, uint32_t minC, uint32_t ccOrQCMask, UChar &c, UChar &c2) {
return _isNFDSafe(_getNextNorm32(src, minC, ccOrQCMask, c, c2), ccOrQCMask, ccOrQCMask&_NORM_QC_MASK);
}
/*
* for NF*C:
* read forward and check if the character is (or its decomposition begins with)
* a "true starter" (cc==0 and NF*C_YES)
* if c2!=0 then (c, c2) is a surrogate pair
*/
static UBool
_isNextTrueStarter(UCharIterator &src, uint32_t minC, uint32_t ccOrQCMask, UChar &c, UChar &c2) {
uint32_t norm32, decompQCMask;
decompQCMask=(ccOrQCMask<<2)&0xf; /* decomposition quick check mask */
norm32=_getNextNorm32(src, minC, ccOrQCMask|decompQCMask, c, c2);
return _isTrueStarter(norm32, ccOrQCMask, decompQCMask);
}
static int32_t
_findNextIterationBoundary(UCharIterator &src,
IsNextBoundaryFn *isNextBoundary, uint32_t minC, uint32_t mask,
UChar *&buffer, int32_t &bufferCapacity,
UErrorCode *pErrorCode) {
UChar *stackBuffer;
int32_t bufferIndex;
UChar c, c2;
if(!src.hasNext(&src)) {
return 0;
}
/* initialize */
stackBuffer=buffer;
/* get one character and ignore its properties */
buffer[0]=c=(UChar)src.next(&src);
bufferIndex=1;
if(UTF_IS_FIRST_SURROGATE(c) && src.hasNext(&src)) {
if(UTF_IS_SECOND_SURROGATE(c2=(UChar)src.next(&src))) {
buffer[bufferIndex++]=c2;
} else {
src.move(&src, -1, UITER_CURRENT); /* back out the non-trail-surrogate */
}
}
/* get all following characters until we see a boundary */
/* checking hasNext() instead of c!=DONE on the off-chance that U+ffff is part of the string */
while(src.hasNext(&src)) {
if(isNextBoundary(src, minC, mask, c, c2)) {
/* back out the latest movement to stop at the boundary */
src.move(&src, c2==0 ? -1 : -2, UITER_CURRENT);
break;
} else {
if(bufferIndex+(c2==0 ? 1 : 2)<=bufferCapacity ||
/* attempt to grow the buffer */
u_growBufferFromStatic(stackBuffer, &buffer, &bufferCapacity,
2*bufferCapacity,
bufferIndex)
) {
buffer[bufferIndex++]=c;
if(c2!=0) {
buffer[bufferIndex++]=c2;
}
} else {
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
src.move(&src, 0, UITER_LIMIT);
return 0;
}
}
}
/* return the length of the buffer contents */
return bufferIndex;
}
U_CAPI int32_t U_EXPORT2
unorm_next(UCharIterator *src,
UChar *dest, int32_t destCapacity,
UNormalizationMode mode, int32_t options,
UBool doNormalize, UBool *pNeededToNormalize,
UErrorCode *pErrorCode) {
UChar stackBuffer[100];
UChar *buffer;
IsNextBoundaryFn *isNextBoundary;
uint32_t mask;
int32_t bufferLength, bufferCapacity, destLength;
int32_t c, c2;
UChar minC;
/* check argument values */
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return 0;
}
if( destCapacity<0 || (dest==NULL && destCapacity>0) ||
src==NULL
) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
if(!_haveData(*pErrorCode)) {
return 0;
}
if(pNeededToNormalize!=NULL) {
*pNeededToNormalize=FALSE;
}
switch(mode) {
case UNORM_NFD:
case UNORM_FCD:
isNextBoundary=_isNextNFDSafe;
minC=_NORM_MIN_WITH_LEAD_CC;
mask=_NORM_CC_MASK|_NORM_QC_NFD;
break;
case UNORM_NFKD:
isNextBoundary=_isNextNFDSafe;
minC=_NORM_MIN_WITH_LEAD_CC;
mask=_NORM_CC_MASK|_NORM_QC_NFKD;
break;
case UNORM_NFC:
isNextBoundary=_isNextTrueStarter;
minC=(UChar)indexes[_NORM_INDEX_MIN_NFC_NO_MAYBE];
mask=_NORM_CC_MASK|_NORM_QC_NFC;
break;
case UNORM_NFKC:
isNextBoundary=_isNextTrueStarter;
minC=(UChar)indexes[_NORM_INDEX_MIN_NFKC_NO_MAYBE];
mask=_NORM_CC_MASK|_NORM_QC_NFKC;
break;
case UNORM_NONE:
destLength=0;
if((c=src->next(src))>=0) {
destLength=1;
if(UTF_IS_LEAD(c) && (c2=src->next(src))>=0) {
if(UTF_IS_TRAIL(c2)) {
if(destCapacity>=2) {
dest[1]=(UChar)c2; /* trail surrogate */
destLength=2;
}
/* lead surrogate to be written below */
} else {
src->move(src, -1, UITER_CURRENT);
}
}
if(destCapacity>0) {
dest[0]=(UChar)c;
}
}
return u_terminateUChars(dest, destCapacity, destLength, pErrorCode);
default:
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
buffer=stackBuffer;
bufferCapacity=(int32_t)(sizeof(stackBuffer)/U_SIZEOF_UCHAR);
bufferLength=_findNextIterationBoundary(*src,
isNextBoundary, minC, mask,
buffer, bufferCapacity,
pErrorCode);
if(bufferLength>0) {
if(doNormalize) {
destLength=unorm_internalNormalize(dest, destCapacity,
buffer, bufferLength,
mode, (UBool)((options&(UNORM_IGNORE_HANGUL|1))!=0),
pErrorCode);
if(pNeededToNormalize!=0 && U_SUCCESS(*pErrorCode)) {
*pNeededToNormalize=
(UBool)(destLength!=bufferLength ||
0!=uprv_memcmp(dest, buffer, destLength*U_SIZEOF_UCHAR));
}
} else {
/* just copy the source characters */
if(destCapacity>0) {
uprv_memcpy(dest, buffer, uprv_min(bufferLength, destCapacity)*U_SIZEOF_UCHAR);
}
destLength=u_terminateUChars(dest, destCapacity, bufferLength, pErrorCode);
}
} else {
destLength=u_terminateUChars(dest, destCapacity, 0, pErrorCode);
}
/* cleanup */
if(buffer!=stackBuffer) {
uprv_free(buffer);
}
return destLength;
}
/*
* ### TODO: check if NF*D and FCD iteration finds optimal boundaries
* and if not, how hard it would be to improve it.
* For example, see _findSafeFCD().
*/
/* Concatenation of normalized strings -------------------------------------- */
U_CAPI int32_t U_EXPORT2
unorm_concatenate(const UChar *left, int32_t leftLength,
const UChar *right, int32_t rightLength,
UChar *dest, int32_t destCapacity,
UNormalizationMode mode, int32_t options,
UErrorCode *pErrorCode) {
UChar stackBuffer[100];
UChar *buffer;
int32_t bufferLength, bufferCapacity;
UCharIterator iter;
int32_t leftBoundary, rightBoundary, destLength;
/* check argument values */
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return 0;
}
if( destCapacity<0 || (dest==NULL && destCapacity>0) ||
left==NULL || leftLength<-1 ||
right==NULL || rightLength<-1
) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
/* check for overlapping right and destination */
if( dest!=NULL &&
((right>=dest && right<(dest+destCapacity)) ||
(rightLength>0 && dest>=right && dest<(right+rightLength)))
) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
/* allow left==dest */
/* set up intermediate buffer */
buffer=stackBuffer;
bufferCapacity=(int32_t)(sizeof(stackBuffer)/U_SIZEOF_UCHAR);
/*
* Input: left[0..leftLength[ + right[0..rightLength[
*
* Find normalization-safe boundaries leftBoundary and rightBoundary
* and copy the end parts together:
* buffer=left[leftBoundary..leftLength[ + right[0..rightBoundary[
*
* dest=left[0..leftBoundary[ +
* normalize(buffer) +
* right[rightBoundary..rightLength[
*/
/*
* find a normalization boundary at the end of the left string
* and copy the end part into the buffer
*/
uiter_setString(&iter, left, leftLength);
iter.index=leftLength=iter.length; /* end of left string */
bufferLength=unorm_previous(&iter, buffer, bufferCapacity,
mode, options,
FALSE, NULL,
pErrorCode);
leftBoundary=iter.index;
if(*pErrorCode==U_BUFFER_OVERFLOW_ERROR) {
*pErrorCode=U_ZERO_ERROR;
if(!u_growBufferFromStatic(stackBuffer, &buffer, &bufferCapacity, 2*bufferLength, 0)) {
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
/* dont need to cleanup here since
* u_growBufferFromStatic frees buffer if(buffer!=stackBuffer)
*/
return 0;
}
/* just copy from the left string: we know the boundary already */
uprv_memcpy(buffer, left+leftBoundary, bufferLength*U_SIZEOF_UCHAR);
}
/*
* find a normalization boundary at the beginning of the right string
* and concatenate the beginning part to the buffer
*/
uiter_setString(&iter, right, rightLength);
rightLength=iter.length; /* in case it was -1 */
rightBoundary=unorm_next(&iter, buffer+bufferLength, bufferCapacity-bufferLength,
mode, options,
FALSE, NULL,
pErrorCode);
if(*pErrorCode==U_BUFFER_OVERFLOW_ERROR) {
*pErrorCode=U_ZERO_ERROR;
if(!u_growBufferFromStatic(stackBuffer, &buffer, &bufferCapacity, bufferLength+rightBoundary, 0)) {
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
/* dont need to cleanup here since
* u_growBufferFromStatic frees buffer if(buffer!=stackBuffer)
*/
return 0;
}
/* just copy from the right string: we know the boundary already */
uprv_memcpy(buffer+bufferLength, right, rightBoundary*U_SIZEOF_UCHAR);
}
bufferLength+=rightBoundary;
/* copy left[0..leftBoundary[ to dest */
if(left!=dest && leftBoundary>0 && destCapacity>0) {
uprv_memcpy(dest, left, uprv_min(leftBoundary, destCapacity)*U_SIZEOF_UCHAR);
}
destLength=leftBoundary;
/* concatenate the normalization of the buffer to dest */
if(destCapacity>destLength) {
destLength+=unorm_internalNormalize(dest+destLength, destCapacity-destLength,
buffer, bufferLength,
mode, (UBool)((options&(UNORM_IGNORE_HANGUL|1))!=0),
pErrorCode);
} else {
destLength+=unorm_internalNormalize(NULL, 0,
buffer, bufferLength,
mode, (UBool)((options&(UNORM_IGNORE_HANGUL|1))!=0),
pErrorCode);
}
/*
* only errorCode that is expected is a U_BUFFER_OVERFLOW_ERROR
* so we dont check for the error code here..just let it pass through
*/
/* concatenate right[rightBoundary..rightLength[ to dest */
right+=rightBoundary;
rightLength-=rightBoundary;
if(rightLength>0 && destCapacity>destLength) {
uprv_memcpy(dest+destLength, right, uprv_min(rightLength, destCapacity-destLength)*U_SIZEOF_UCHAR);
}
destLength+=rightLength;
/* cleanup */
if(buffer!=stackBuffer) {
uprv_free(buffer);
}
return u_terminateUChars(dest, destCapacity, destLength, pErrorCode);
}
/* compare canonically equivalent ------------------------------------------- */
/*
* Compare two strings for canonical equivalence.
* Further options include case-insensitive comparison and
* code point order (as opposed to code unit order).
*
* In this function, canonical equivalence is optional as well.
* If canonical equivalence is tested, then both strings must fulfill
* the FCD check.
*
* Semantically, this is equivalent to
* strcmp[CodePointOrder](NFD(foldCase(s1)), NFD(foldCase(s2)))
* where code point order, NFD and foldCase are all optional.
*
* String comparisons almost always yield results before processing both strings
* completely.
* They are generally more efficient working incrementally instead of
* performing the sub-processing (strlen, normalization, case-folding)
* on the entire strings first.
*
* It is also unnecessary to not normalize identical characters.
*
* This function works in principle as follows:
*
* loop {
* get one code unit c1 from s1 (-1 if end of source)
* get one code unit c2 from s2 (-1 if end of source)
*
* if(either string finished) {
* return result;
* }
* if(c1==c2) {
* continue;
* }
*
* // c1!=c2
* try to decompose/case-fold c1/c2, and continue if one does;
*
* // still c1!=c2 and neither decomposes/case-folds, return result
* return c1-c2;
* }
*
* When a character decomposes, then the pointer for that source changes to
* the decomposition, pushing the previous pointer onto a stack.
* When the end of the decomposition is reached, then the code unit reader
* pops the previous source from the stack.
* (Same for case-folding.)
*
* This is complicated further by operating on variable-width UTF-16.
* The top part of the loop works on code units, while lookups for decomposition
* and case-folding need code points.
* Code points are assembled after the equality/end-of-source part.
* The source pointer is only advanced beyond all code units when the code point
* actually decomposes/case-folds.
*
* If we were on a trail surrogate unit when assembling a code point,
* and the code point decomposes/case-folds, then the decomposition/folding
* result must be compared with the part of the other string that corresponds to
* this string's lead surrogate.
* Since we only assemble a code point when hitting a trail unit when the
* preceding lead units were identical, we back up the other string by one unit
* in such a case.
*
* The optional code point order comparison at the end works with
* the same fix-up as the other code point order comparison functions.
* See ustring.c and the comment near the end of this function.
*
* Assumption: A decomposition or case-folding result string never contains
* a single surrogate. This is a safe assumption in the Unicode Standard.
* Therefore, we do not need to check for surrogate pairs across
* decomposition/case-folding boundaries.
*
* Further assumptions (see verifications tstnorm.cpp):
* The API function checks for FCD first, while the core function
* first case-folds and then decomposes. This requires that case-folding does not
* un-FCD any strings.
*
* The API function may also NFD the input and turn off decomposition.
* This requires that case-folding does not un-NFD strings either.
*
* TODO If any of the above two assumptions is violated,
* then this entire code must be re-thought.
* If this happens, then a simple solution is to case-fold both strings up front
* and to turn off UNORM_INPUT_IS_FCD.
* We already do this when not both strings are in FCD because makeFCD
* would be a partial NFD before the case folding, which does not work.
* Note that all of this is only a problem when case-folding _and_
* canonical equivalence come together.
*
* This function could be moved to a different source file, at increased cost
* for calling the decomposition access function.
*/
// stack element for previous-level source/decomposition pointers
struct CmpEquivLevel {
const UChar *start, *s, *limit;
};
typedef struct CmpEquivLevel CmpEquivLevel;
// internal function
U_CAPI int32_t U_EXPORT2
unorm_cmpEquivFold(const UChar *s1, int32_t length1,
const UChar *s2, int32_t length2,
uint32_t options,
UErrorCode *pErrorCode) {
// current-level start/limit - s1/s2 as current
const UChar *start1, *start2, *limit1, *limit2;
// decomposition variables
const UChar *p;
int32_t length;
// stacks of previous-level start/current/limit
CmpEquivLevel stack1[2], stack2[2];
// decomposition buffers for Hangul
UChar decomp1[4], decomp2[4];
// case folding buffers, only use current-level start/limit
UChar fold1[32], fold2[32];
// track which is the current level per string
int32_t level1, level2;
// current code units, and code points for lookups
int32_t c1, c2, cp1, cp2;
// no argument error checking because this itself is not an API
// assume that at least one of the options _COMPARE_EQUIV and U_COMPARE_IGNORE_CASE is set
// otherwise this function must behave exactly as uprv_strCompare()
// not checking for that here makes testing this function easier
// normalization/properties data loaded?
if( ((options&_COMPARE_EQUIV)!=0 && !_haveData(*pErrorCode)) ||
((options&U_COMPARE_IGNORE_CASE)!=0 && !uprv_haveProperties())
) {
return 0;
}
// initialize
start1=s1;
if(length1==-1) {
limit1=NULL;
} else {
limit1=s1+length1;
}
start2=s2;
if(length2==-1) {
limit2=NULL;
} else {
limit2=s2+length2;
}
level1=level2=0;
c1=c2=-1;
// comparison loop
for(;;) {
// here a code unit value of -1 means "get another code unit"
// below it will mean "this source is finished"
if(c1<0) {
// get next code unit from string 1, post-increment
for(;;) {
if(s1==limit1 || ((c1=*s1)==0 && (limit1==NULL || (options&_STRNCMP_STYLE)))) {
if(level1==0) {
c1=-1;
break;
}
} else {
++s1;
break;
}
// reached end of level buffer, pop one level
do {
--level1;
start1=stack1[level1].start;
} while(start1==NULL);
s1=stack1[level1].s;
limit1=stack1[level1].limit;
}
}
if(c2<0) {
// get next code unit from string 2, post-increment
for(;;) {
if(s2==limit2 || ((c2=*s2)==0 && (limit2==NULL || (options&_STRNCMP_STYLE)))) {
if(level2==0) {
c2=-1;
break;
}
} else {
++s2;
break;
}
// reached end of level buffer, pop one level
do {
--level2;
start2=stack2[level2].start;
} while(start2==NULL);
s2=stack2[level2].s;
limit2=stack2[level2].limit;
}
}
// compare c1 and c2
// either variable c1, c2 is -1 only if the corresponding string is finished
if(c1==c2) {
if(c1<0) {
return 0; // c1==c2==-1 indicating end of strings
}
c1=c2=-1; // make us fetch new code units
continue;
} else if(c1<0) {
return -1; // string 1 ends before string 2
} else if(c2<0) {
return 1; // string 2 ends before string 1
}
// c1!=c2 && c1>=0 && c2>=0
// get complete code points for c1, c2 for lookups if either is a surrogate
cp1=c1;
if(UTF_IS_SURROGATE(c1)) {
UChar c;
if(UTF_IS_SURROGATE_FIRST(c1)) {
if(s1!=limit1 && UTF_IS_TRAIL(c=*s1)) {
// advance ++s1; only below if cp1 decomposes/case-folds
cp1=UTF16_GET_PAIR_VALUE(c1, c);
}
} else /* isTrail(c1) */ {
if(start1<=(s1-2) && UTF_IS_LEAD(c=*(s1-2))) {
cp1=UTF16_GET_PAIR_VALUE(c, c1);
}
}
}
cp2=c2;
if(UTF_IS_SURROGATE(c2)) {
UChar c;
if(UTF_IS_SURROGATE_FIRST(c2)) {
if(s2!=limit2 && UTF_IS_TRAIL(c=*s2)) {
// advance ++s2; only below if cp2 decomposes/case-folds
cp2=UTF16_GET_PAIR_VALUE(c2, c);
}
} else /* isTrail(c2) */ {
if(start2<=(s2-2) && UTF_IS_LEAD(c=*(s2-2))) {
cp2=UTF16_GET_PAIR_VALUE(c, c2);
}
}
}
// go down one level for each string
// continue with the main loop as soon as there is a real change
if( level1==0 && (options&U_COMPARE_IGNORE_CASE) &&
(length=u_internalFoldCase((UChar32)cp1, fold1, 32, options))>=0
) {
// cp1 case-folds to fold1[length]
if(UTF_IS_SURROGATE(c1)) {
if(UTF_IS_SURROGATE_FIRST(c1)) {
// advance beyond source surrogate pair if it case-folds
++s1;
} else /* isTrail(c1) */ {
// we got a supplementary code point when hitting its trail surrogate,
// therefore the lead surrogate must have been the same as in the other string;
// compare this decomposition with the lead surrogate in the other string
// remember that this simulates bulk text replacement:
// the decomposition would replace the entire code point
--s2;
c2=*(s2-1);
}
}
// push current level pointers
stack1[0].start=start1;
stack1[0].s=s1;
stack1[0].limit=limit1;
++level1;
// set next level pointers to case folding
start1=s1=fold1;
limit1=fold1+length;
// get ready to read from decomposition, continue with loop
c1=-1;
continue;
}
if( level2==0 && (options&U_COMPARE_IGNORE_CASE) &&
(length=u_internalFoldCase((UChar32)cp2, fold2, 32, options))>=0
) {
// cp2 case-folds to fold2[length]
if(UTF_IS_SURROGATE(c2)) {
if(UTF_IS_SURROGATE_FIRST(c2)) {
// advance beyond source surrogate pair if it case-folds
++s2;
} else /* isTrail(c2) */ {
// we got a supplementary code point when hitting its trail surrogate,
// therefore the lead surrogate must have been the same as in the other string;
// compare this decomposition with the lead surrogate in the other string
// remember that this simulates bulk text replacement:
// the decomposition would replace the entire code point
--s1;
c1=*(s1-1);
}
}
// push current level pointers
stack2[0].start=start2;
stack2[0].s=s2;
stack2[0].limit=limit2;
++level2;
// set next level pointers to case folding
start2=s2=fold2;
limit2=fold2+length;
// get ready to read from decomposition, continue with loop
c2=-1;
continue;
}
if( level1<2 && (options&_COMPARE_EQUIV) &&
0!=(p=_decompose((UChar32)cp1, decomp1, length))
) {
// cp1 decomposes into p[length]
if(UTF_IS_SURROGATE(c1)) {
if(UTF_IS_SURROGATE_FIRST(c1)) {
// advance beyond source surrogate pair if it decomposes
++s1;
} else /* isTrail(c1) */ {
// we got a supplementary code point when hitting its trail surrogate,
// therefore the lead surrogate must have been the same as in the other string;
// compare this decomposition with the lead surrogate in the other string
// remember that this simulates bulk text replacement:
// the decomposition would replace the entire code point
--s2;
c2=*(s2-1);
}
}
// push current level pointers
stack1[level1].start=start1;
stack1[level1].s=s1;
stack1[level1].limit=limit1;
++level1;
// set empty intermediate level if skipped
if(level1<2) {
stack1[level1++].start=NULL;
}
// set next level pointers to decomposition
start1=s1=p;
limit1=p+length;
// get ready to read from decomposition, continue with loop
c1=-1;
continue;
}
if( level2<2 && (options&_COMPARE_EQUIV) &&
0!=(p=_decompose((UChar32)cp2, decomp2, length))
) {
// cp2 decomposes into p[length]
if(UTF_IS_SURROGATE(c2)) {
if(UTF_IS_SURROGATE_FIRST(c2)) {
// advance beyond source surrogate pair if it decomposes
++s2;
} else /* isTrail(c2) */ {
// we got a supplementary code point when hitting its trail surrogate,
// therefore the lead surrogate must have been the same as in the other string;
// compare this decomposition with the lead surrogate in the other string
// remember that this simulates bulk text replacement:
// the decomposition would replace the entire code point
--s1;
c1=*(s1-1);
}
}
// push current level pointers
stack2[level2].start=start2;
stack2[level2].s=s2;
stack2[level2].limit=limit2;
++level2;
// set empty intermediate level if skipped
if(level2<2) {
stack2[level2++].start=NULL;
}
// set next level pointers to decomposition
start2=s2=p;
limit2=p+length;
// get ready to read from decomposition, continue with loop
c2=-1;
continue;
}
// no decomposition/case folding, max level for both sides:
// return difference result
// code point order comparison must not just return cp1-cp2
// because when single surrogates are present then the surrogate pairs
// that formed cp1 and cp2 may be from different string indexes
// example: { d800 d800 dc01 } vs. { d800 dc00 }, compare at second code units
// c1=d800 cp1=10001 c2=dc00 cp2=10000
// cp1-cp2>0 but c1-c2<0 and in fact in UTF-32 it is { d800 10001 } < { 10000 }
// therefore, use same fix-up as in ustring.c/uprv_strCompare()
// except: uprv_strCompare() fetches c=*s while this functions fetches c=*s++
// so we have slightly different pointer/start/limit comparisons here
if(c1>=0xd800 && c2>=0xd800 && (options&U_COMPARE_CODE_POINT_ORDER)) {
/* subtract 0x2800 from BMP code points to make them smaller than supplementary ones */
if(
(c1<=0xdbff && s1!=limit1 && UTF_IS_TRAIL(*s1)) ||
(UTF_IS_TRAIL(c1) && start1!=(s1-1) && UTF_IS_LEAD(*(s1-2)))
) {
/* part of a surrogate pair, leave >=d800 */
} else {
/* BMP code point - may be surrogate code point - make <d800 */
c1-=0x2800;
}
if(
(c2<=0xdbff && s2!=limit2 && UTF_IS_TRAIL(*s2)) ||
(UTF_IS_TRAIL(c2) && start2!=(s2-1) && UTF_IS_LEAD(*(s2-2)))
) {
/* part of a surrogate pair, leave >=d800 */
} else {
/* BMP code point - may be surrogate code point - make <d800 */
c2-=0x2800;
}
}
return c1-c2;
}
}
U_CAPI int32_t U_EXPORT2
unorm_compare(const UChar *s1, int32_t length1,
const UChar *s2, int32_t length2,
uint32_t options,
UErrorCode *pErrorCode) {
UChar fold1[300], fold2[300], fcd1[300], fcd2[300];
UChar *f1, *f2, *d1, *d2;
int32_t result;
/* argument checking */
if(pErrorCode==0 || U_FAILURE(*pErrorCode)) {
return 0;
}
if(s1==0 || length1<-1 || s2==0 || length2<-1) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
if(!_haveData(*pErrorCode)) {
return 0;
}
if(!uprv_haveProperties()) {
*pErrorCode=U_FILE_ACCESS_ERROR;
return 0;
}
f1=f2=d1=d2=0;
options|=_COMPARE_EQUIV;
result=0;
if(!(options&UNORM_INPUT_IS_FCD)) {
int32_t _len1, _len2;
UBool isFCD1, isFCD2;
// check if s1 and/or s2 fulfill the FCD conditions
isFCD1=unorm_checkFCD(s1, length1);
isFCD2=unorm_checkFCD(s2, length2);
if((options&U_COMPARE_IGNORE_CASE)!=0 && !(isFCD1 && isFCD2)) {
// case-fold first to keep the order of operations as in UAX 21 2.5
_len1=u_strFoldCase(fold1, sizeof(fold1)/U_SIZEOF_UCHAR,
s1, length1,
options,
pErrorCode);
if(*pErrorCode!=U_BUFFER_OVERFLOW_ERROR) {
s1=fold1;
} else {
f1=(UChar *)uprv_malloc(_len1*U_SIZEOF_UCHAR);
if(f1==0) {
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
goto cleanup;
}
*pErrorCode=U_ZERO_ERROR;
_len1=u_strFoldCase(f1, _len1,
s1, length1,
options,
pErrorCode);
if(U_FAILURE(*pErrorCode)) {
goto cleanup;
}
s1=f1;
}
length1=_len1;
_len2=u_strFoldCase(fold2, sizeof(fold2)/U_SIZEOF_UCHAR,
s2, length2,
options,
pErrorCode);
if(*pErrorCode!=U_BUFFER_OVERFLOW_ERROR) {
s2=fold2;
} else {
f2=(UChar *)uprv_malloc(_len2*U_SIZEOF_UCHAR);
if(f2==0) {
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
goto cleanup;
}
*pErrorCode=U_ZERO_ERROR;
_len2=u_strFoldCase(f2, _len2,
s2, length2,
options,
pErrorCode);
if(U_FAILURE(*pErrorCode)) {
goto cleanup;
}
s2=f2;
}
length2=_len2;
// turn off U_COMPARE_IGNORE_CASE and re-check FCD
options&=~U_COMPARE_IGNORE_CASE;
isFCD1=unorm_checkFCD(s1, length1);
isFCD2=unorm_checkFCD(s2, length2);
}
if(!isFCD1 && !isFCD2) {
// if both strings need normalization then make them NFD right away and
// turn off normalization in the comparison function
uint8_t trailCC;
// fully decompose (NFD) s1 and s2
_len1=_decompose(fcd1, sizeof(fcd1)/U_SIZEOF_UCHAR,
s1, length1,
FALSE, FALSE,
trailCC);
if(_len1<=(int32_t)(sizeof(fcd1)/U_SIZEOF_UCHAR)) {
s1=fcd1;
} else {
d1=(UChar *)uprv_malloc(_len1*U_SIZEOF_UCHAR);
if(d1==0) {
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
goto cleanup;
}
_len1=_decompose(d1, _len1,
s1, length1,
FALSE, FALSE,
trailCC);
s1=d1;
}
length1=_len1;
_len2=_decompose(fcd2, sizeof(fcd2)/U_SIZEOF_UCHAR,
s2, length2,
FALSE, FALSE,
trailCC);
if(_len2<=(int32_t)(sizeof(fcd2)/U_SIZEOF_UCHAR)) {
s2=fcd2;
} else {
d2=(UChar *)uprv_malloc(_len2*U_SIZEOF_UCHAR);
if(d2==0) {
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
goto cleanup;
}
_len2=_decompose(d2, _len2,
s2, length2,
FALSE, FALSE,
trailCC);
s2=d2;
}
length2=_len2;
// compare NFD strings
options&=~_COMPARE_EQUIV;
} else {
// if at least one string is already in FCD then only makeFCD the other
// and compare for equivalence
if(!isFCD1) {
_len1=unorm_makeFCD(fcd1, sizeof(fcd1)/U_SIZEOF_UCHAR,
s1, length1,
pErrorCode);
if(*pErrorCode!=U_BUFFER_OVERFLOW_ERROR) {
s1=fcd1;
} else {
d1=(UChar *)uprv_malloc(_len1*U_SIZEOF_UCHAR);
if(d1==0) {
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
goto cleanup;
}
*pErrorCode=U_ZERO_ERROR;
_len1=unorm_makeFCD(d1, _len1,
s1, length1,
pErrorCode);
if(U_FAILURE(*pErrorCode)) {
goto cleanup;
}
s1=d1;
}
length1=_len1;
}
if(!isFCD2) {
_len2=unorm_makeFCD(fcd2, sizeof(fcd2)/U_SIZEOF_UCHAR,
s2, length2,
pErrorCode);
if(*pErrorCode!=U_BUFFER_OVERFLOW_ERROR) {
s2=fcd2;
} else {
d2=(UChar *)uprv_malloc(_len2*U_SIZEOF_UCHAR);
if(d2==0) {
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
goto cleanup;
}
*pErrorCode=U_ZERO_ERROR;
_len2=unorm_makeFCD(d2, _len2,
s2, length2,
pErrorCode);
if(U_FAILURE(*pErrorCode)) {
goto cleanup;
}
s2=d2;
}
length2=_len2;
}
}
}
if(U_FAILURE(*pErrorCode)) {
// do nothing
} else if(!(options&(_COMPARE_EQUIV|U_COMPARE_IGNORE_CASE))) {
// compare NFD strings case-sensitive: just use normal comparison
result=uprv_strCompare(s1, length1, s2, length2,
FALSE, (UBool)(0!=(options&U_COMPARE_CODE_POINT_ORDER)));
} else {
result=unorm_cmpEquivFold(s1, length1, s2, length2, options, pErrorCode);
}
cleanup:
if(f1!=0) {
uprv_free(f1);
}
if(f2!=0) {
uprv_free(f2);
}
if(d1!=0) {
uprv_free(d1);
}
if(d2!=0) {
uprv_free(d2);
}
return result;
}