blob: 2cdfeb393bed549eea7034aba553838399fe8e29 [file] [log] [blame]
/*
*******************************************************************************
* Copyright (C) 1996-2000, International Business Machines Corporation and *
* others. All Rights Reserved. *
*******************************************************************************
*/
#include "itrbnf.h"
#include "unicode/tblcoll.h"
#include "unicode/coleitr.h"
#include "unicode/ures.h"
#include "unicode/ustring.h"
#include "llong.h"
#include <string.h>
// import com.ibm.text.RuleBasedNumberFormat;
// import com.ibm.test.TestFmwk;
// import java.util.Locale;
// import java.text.NumberFormat;
// current macro not in icu1.8.1
#define TESTCASE(id,test) \
case id: \
name = #test; \
if (exec) { \
logln(#test "---"); \
logln((UnicodeString)""); \
test(); \
} \
break
void IntlTestRBNF::runIndexedTest(int32_t index, UBool exec, const char* &name, char* /*par*/)
{
if (exec) logln("TestSuite RuleBasedNumberFormat");
switch (index) {
TESTCASE(0, TestEnglishSpellout);
TESTCASE(1, TestOrdinalAbbreviations);
TESTCASE(2, TestDurations);
TESTCASE(3, TestSpanishSpellout);
TESTCASE(4, TestFrenchSpellout);
TESTCASE(5, TestSwissFrenchSpellout);
TESTCASE(6, TestItalianSpellout);
TESTCASE(7, TestGermanSpellout);
TESTCASE(8, TestThaiSpellout);
TESTCASE(9, TestAPI);
TESTCASE(10, TestFractionalRuleSet);
TESTCASE(11, TestLLong);
default:
name = "";
break;
}
}
void
IntlTestRBNF::TestAPI() {
// This test goes through the APIs that were not tested before.
// These tests are too small to have separate test classes/functions
UErrorCode status = U_ZERO_ERROR;
RuleBasedNumberFormat* formatter
= new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status);
logln("RBNF API test starting");
// test clone
{
logln("Testing Clone");
RuleBasedNumberFormat* rbnfClone = (RuleBasedNumberFormat *)formatter->clone();
if(rbnfClone != NULL) {
if(!(*rbnfClone == *formatter)) {
errln("Clone should be semantically equivalent to the original!");
}
delete rbnfClone;
} else {
errln("Cloning failed!");
}
}
// test assignment
{
logln("Testing assignment operator");
RuleBasedNumberFormat assignResult(URBNF_SPELLOUT, Locale("es", "ES", ""), status);
assignResult = *formatter;
if(!(assignResult == *formatter)) {
errln("Assignment result should be semantically equivalent to the original!");
}
}
// test rule constructor
{
logln("Testing rule constructor");
UResourceBundle *en = ures_open(NULL, "en", &status);
if(U_FAILURE(status)) {
errln("Unable to access resource bundle with data!");
} else {
int32_t ruleLen = 0;
const UChar *spelloutRules = ures_getStringByKey(en, "SpelloutRules", &ruleLen, &status);
if(U_FAILURE(status) || ruleLen == 0 || spelloutRules == NULL) {
errln("Unable to access the rules string!");
} else {
UParseError perror;
RuleBasedNumberFormat ruleCtorResult(spelloutRules, Locale::getUS(), perror, status);
if(!(ruleCtorResult == *formatter)) {
errln("Formatter constructed from the original rules should be semantically equivalent to the original!");
}
}
ures_close(en);
}
}
// test getRules
{
logln("Testing getRules function");
UnicodeString rules = formatter->getRules();
UParseError perror;
RuleBasedNumberFormat fromRulesResult(rules, Locale::getUS(), perror, status);
if(!(fromRulesResult == *formatter)) {
errln("Formatter constructed from rules obtained by getRules should be semantically equivalent to the original!");
}
}
{
logln("Testing copy constructor");
RuleBasedNumberFormat copyCtorResult(*formatter);
if(!(copyCtorResult == *formatter)) {
errln("Copy constructor result result should be semantically equivalent to the original!");
}
}
// test ruleset names
{
logln("Testing getNumberOfRuleSetNames, getRuleSetName and format using rule set names");
int32_t noOfRuleSetNames = formatter->getNumberOfRuleSetNames();
if(noOfRuleSetNames == 0) {
errln("Number of rule set names should be more than zero");
}
UnicodeString ruleSetName;
int32_t i = 0;
int32_t intFormatNum = 34567;
double doubleFormatNum = 893411.234;
logln("number of rule set names is %i", noOfRuleSetNames);
for(i = 0; i < noOfRuleSetNames; i++) {
FieldPosition pos1, pos2;
UnicodeString intFormatResult, doubleFormatResult;
Formattable intParseResult, doubleParseResult;
ruleSetName = formatter->getRuleSetName(i);
log("Rule set name %i is ", i);
log(ruleSetName);
logln(". Format results are: ");
intFormatResult = formatter->format(intFormatNum, ruleSetName, intFormatResult, pos1, status);
doubleFormatResult = formatter->format(doubleFormatNum, ruleSetName, doubleFormatResult, pos2, status);
if(U_FAILURE(status)) {
errln("Format using a rule set failed");
break;
}
logln(intFormatResult);
logln(doubleFormatResult);
formatter->setLenient(TRUE);
formatter->parse(intFormatResult, intParseResult, status);
formatter->parse(doubleFormatResult, doubleParseResult, status);
logln("Parse results for lenient = TRUE, %i, %f", intParseResult.getLong(), doubleParseResult.getDouble());
formatter->setLenient(FALSE);
formatter->parse(intFormatResult, intParseResult, status);
formatter->parse(doubleFormatResult, doubleParseResult, status);
logln("Parse results for lenient = FALSE, %i, %f", intParseResult.getLong(), doubleParseResult.getDouble());
if(U_FAILURE(status)) {
errln("Error during parsing");
}
intFormatResult = formatter->format(intFormatNum, "BLABLA", intFormatResult, pos1, status);
if(U_SUCCESS(status)) {
errln("Using invalid rule set name should have failed");
break;
}
status = U_ZERO_ERROR;
doubleFormatResult = formatter->format(doubleFormatNum, "TRUC", doubleFormatResult, pos2, status);
if(U_SUCCESS(status)) {
errln("Using invalid rule set name should have failed");
break;
}
status = U_ZERO_ERROR;
}
status = U_ZERO_ERROR;
}
// clean up
logln("Cleaning up");
delete formatter;
}
void IntlTestRBNF::TestFractionalRuleSet()
{
UnicodeString fracRules(
"%main:\n"
// this rule formats the number if it's 1 or more. It formats
// the integral part using a DecimalFormat ("#,##0" puts
// thousands separators in the right places) and the fractional
// part using %%frac. If there is no fractional part, it
// just shows the integral part.
" x.0: <#,##0<[ >%%frac>];\n"
// this rule formats the number if it's between 0 and 1. It
// shows only the fractional part (0.5 shows up as "1/2," not
// "0 1/2")
" 0.x: >%%frac>;\n"
// the fraction rule set. This works the same way as the one in the
// preceding example: We multiply the fractional part of the number
// being formatted by each rule's base value and use the rule that
// produces the result closest to 0 (or the first rule that produces 0).
// Since we only provide rules for the numbers from 2 to 10, we know
// we'll get a fraction with a denominator between 2 and 10.
// "<0<" causes the numerator of the fraction to be formatted
// using numerals
"%%frac:\n"
" 2: 1/2;\n"
" 3: <0</3;\n"
" 4: <0</4;\n"
" 5: <0</5;\n"
" 6: <0</6;\n"
" 7: <0</7;\n"
" 8: <0</8;\n"
" 9: <0</9;\n"
" 10: <0</10;\n");
UErrorCode status = U_ZERO_ERROR;
UParseError perror;
RuleBasedNumberFormat formatter(fracRules, Locale::getEnglish(), perror, status);
if (U_FAILURE(status)) {
errln("FAIL: could not construct formatter");
} else {
static const char* testData[][2] = {
{ "0", "0" },
{ ".1", "1/10" },
{ ".11", "1/9" },
{ ".125", "1/8" },
{ ".1428", "1/7" },
{ ".1667", "1/6" },
{ ".2", "1/5" },
{ ".25", "1/4" },
{ ".333", "1/3" },
{ ".5", "1/2" },
{ "1.1", "1 1/10" },
{ "2.11", "2 1/9" },
{ "3.125", "3 1/8" },
{ "4.1428", "4 1/7" },
{ "5.1667", "5 1/6" },
{ "6.2", "6 1/5" },
{ "7.25", "7 1/4" },
{ "8.333", "8 1/3" },
{ "9.5", "9 1/2" },
{ ".2222", "2/9" },
{ ".4444", "4/9" },
{ ".5555", "5/9" },
{ "1.2856", "1 2/7" },
{ NULL, NULL }
};
doTest(&formatter, testData, FALSE); // exact values aren't parsable from fractions
}
}
#define LLAssert(a) \
if (!(a)) errln("FAIL: " #a)
void IntlTestRBNF::TestLLongConstructors()
{
logln("Testing constructors");
// constant (shouldn't really be public)
LLAssert(llong(llong::kD32).asDouble() == llong::kD32);
// internal constructor (shouldn't really be public)
LLAssert(llong(0, 1).asDouble() == 1);
LLAssert(llong(1, 0).asDouble() == llong::kD32);
LLAssert(llong((uint32_t)-1, (uint32_t)-1).asDouble() == -1);
// public empty constructor
LLAssert(llong().asDouble() == 0);
// public int32_t constructor
LLAssert(llong((int32_t)0).asInt() == (int32_t)0);
LLAssert(llong((int32_t)1).asInt() == (int32_t)1);
LLAssert(llong((int32_t)-1).asInt() == (int32_t)-1);
LLAssert(llong((int32_t)0x7fffffff).asInt() == (int32_t)0x7fffffff);
LLAssert(llong((int32_t)0xffffffff).asInt() == (int32_t)-1);
LLAssert(llong((int32_t)0x80000000).asInt() == (int32_t)0x80000000);
// public int16_t constructor
LLAssert(llong((int16_t)0).asInt() == (int16_t)0);
LLAssert(llong((int16_t)1).asInt() == (int16_t)1);
LLAssert(llong((int16_t)-1).asInt() == (int16_t)-1);
LLAssert(llong((int16_t)0x7fff).asInt() == (int16_t)0x7fff);
LLAssert(llong((int16_t)0xffff).asInt() == (int16_t)0xffff);
LLAssert(llong((int16_t)0x8000).asInt() == (int16_t)0x8000);
// public int8_t constructor
LLAssert(llong((int8_t)0).asInt() == (int8_t)0);
LLAssert(llong((int8_t)1).asInt() == (int8_t)1);
LLAssert(llong((int8_t)-1).asInt() == (int8_t)-1);
LLAssert(llong((int8_t)0x7f).asInt() == (int8_t)0x7f);
LLAssert(llong((int8_t)0xff).asInt() == (int8_t)0xff);
LLAssert(llong((int8_t)0x80).asInt() == (int8_t)0x80);
// public uint16_t constructor
LLAssert(llong((uint16_t)0).asUInt() == (uint16_t)0);
LLAssert(llong((uint16_t)1).asUInt() == (uint16_t)1);
LLAssert(llong((uint16_t)-1).asUInt() == (uint16_t)-1);
LLAssert(llong((uint16_t)0x7fff).asUInt() == (uint16_t)0x7fff);
LLAssert(llong((uint16_t)0xffff).asUInt() == (uint16_t)0xffff);
LLAssert(llong((uint16_t)0x8000).asUInt() == (uint16_t)0x8000);
// public uint32_t constructor
LLAssert(llong((uint32_t)0).asUInt() == (uint32_t)0);
LLAssert(llong((uint32_t)1).asUInt() == (uint32_t)1);
LLAssert(llong((uint32_t)-1).asUInt() == (uint32_t)-1);
LLAssert(llong((uint32_t)0x7fffffff).asUInt() == (uint32_t)0x7fffffff);
LLAssert(llong((uint32_t)0xffffffff).asUInt() == (uint32_t)-1);
LLAssert(llong((uint32_t)0x80000000).asUInt() == (uint32_t)0x80000000);
// public double constructor
LLAssert(llong((double)0).asDouble() == (double)0);
LLAssert(llong((double)1).asDouble() == (double)1);
LLAssert(llong((double)0x7fffffff).asDouble() == (double)0x7fffffff);
LLAssert(llong((double)0x80000000).asDouble() == (double)0x80000000);
LLAssert(llong((double)0x80000001).asDouble() == (double)0x80000001);
// can't access uprv_maxmantissa, so fake it
double maxmantissa = (llong((int32_t)1) << 40).asDouble();
LLAssert(llong(maxmantissa).asDouble() == maxmantissa);
LLAssert(llong(-maxmantissa).asDouble() == -maxmantissa);
// copy constructor
LLAssert(llong(llong(0, 1)).asDouble() == 1);
LLAssert(llong(llong(1, 0)).asDouble() == llong::kD32);
LLAssert(llong(llong(-1, (uint32_t)-1)).asDouble() == -1);
// asInt - test unsigned to signed narrowing conversion
LLAssert(llong((uint32_t)-1).asInt() == (int32_t)0x7fffffff);
LLAssert(llong(-1, 0).asInt() == (int32_t)0x80000000);
// asUInt - test signed to unsigned narrowing conversion
LLAssert(llong((int32_t)-1).asUInt() == (uint32_t)-1);
LLAssert(llong((int32_t)0x80000000).asUInt() == (uint32_t)0x80000000);
// asDouble already tested
}
void IntlTestRBNF::TestLLongSimpleOperators()
{
logln("Testing simple operators");
// operator==
LLAssert(llong() == llong(0, 0));
LLAssert(llong(1,0) == llong(1, 0));
LLAssert(llong(0,1) == llong(0, 1));
// operator!=
LLAssert(llong(1,0) != llong(1,1));
LLAssert(llong(0,1) != llong(1,1));
LLAssert(llong(0xffffffff,0xffffffff) != llong(0x7fffffff, 0xffffffff));
// unsigned >
LLAssert(llong((int32_t)-1).ugt(llong(0x7fffffff, 0xffffffff)));
// unsigned <
LLAssert(llong(0x7fffffff, 0xffffffff).ult(llong((int32_t)-1)));
// unsigned >=
LLAssert(llong((int32_t)-1).uge(llong(0x7fffffff, 0xffffffff)));
LLAssert(llong((int32_t)-1).uge(llong((int32_t)-1)));
// unsigned <=
LLAssert(llong(0x7fffffff, 0xffffffff).ule(llong((int32_t)-1)));
LLAssert(llong((int32_t)-1).ule(llong((int32_t)-1)));
// operator>
LLAssert(llong(1, 1) > llong(1, 0));
LLAssert(llong(0, 0x80000000) > llong(0, 0x7fffffff));
LLAssert(llong(0x80000000, 1) > llong(0x80000000, 0));
LLAssert(llong(1, 0) > llong(0, 0x7fffffff));
LLAssert(llong(1, 0) > llong(0, 0xffffffff));
LLAssert(llong(0, 0) > llong(0x80000000, 1));
// operator<
LLAssert(llong(1, 0) < llong(1, 1));
LLAssert(llong(0, 0x7fffffff) < llong(0, 0x80000000));
LLAssert(llong(0x80000000, 0) < llong(0x80000000, 1));
LLAssert(llong(0, 0x7fffffff) < llong(1, 0));
LLAssert(llong(0, 0xffffffff) < llong(1, 0));
LLAssert(llong(0x80000000, 1) < llong(0, 0));
// operator>=
LLAssert(llong(1, 1) >= llong(1, 0));
LLAssert(llong(0, 0x80000000) >= llong(0, 0x7fffffff));
LLAssert(llong(0x80000000, 1) >= llong(0x80000000, 0));
LLAssert(llong(1, 0) >= llong(0, 0x7fffffff));
LLAssert(llong(1, 0) >= llong(0, 0xffffffff));
LLAssert(llong(0, 0) >= llong(0x80000000, 1));
LLAssert(llong() >= llong(0, 0));
LLAssert(llong(1,0) >= llong(1, 0));
LLAssert(llong(0,1) >= llong(0, 1));
// operator<=
LLAssert(llong(1, 0) <= llong(1, 1));
LLAssert(llong(0, 0x7fffffff) <= llong(0, 0x80000000));
LLAssert(llong(0x80000000, 0) <= llong(0x80000000, 1));
LLAssert(llong(0, 0x7fffffff) <= llong(1, 0));
LLAssert(llong(0, 0xffffffff) <= llong(1, 0));
LLAssert(llong(0x80000000, 1) <= llong(0, 0));
LLAssert(llong() <= llong(0, 0));
LLAssert(llong(1,0) <= llong(1, 0));
LLAssert(llong(0,1) <= llong(0, 1));
// operator==(int32)
LLAssert(llong() == (int32_t)0);
LLAssert(llong(0,1) == (int32_t)1);
// operator!=(int32)
LLAssert(llong(1,0) != (int32_t)0);
LLAssert(llong(0,1) != (int32_t)2);
LLAssert(llong(0,0xffffffff) != (int32_t)-1);
llong negOne(0xffffffff, 0xffffffff);
// operator>(int32)
LLAssert(llong(0, 0x80000000) > (int32_t)0x7fffffff);
LLAssert(negOne > (int32_t)-2);
LLAssert(llong(1, 0) > (int32_t)0x7fffffff);
LLAssert(llong(0, 0) > (int32_t)-1);
// operator<(int32)
LLAssert(llong(0, 0x7ffffffe) < (int32_t)0x7fffffff);
LLAssert(llong(0xffffffff, 0xfffffffe) < (int32_t)-1);
// operator>=(int32)
LLAssert(llong(0, 0x80000000) >= (int32_t)0x7fffffff);
LLAssert(negOne >= (int32_t)-2);
LLAssert(llong(1, 0) >= (int32_t)0x7fffffff);
LLAssert(llong(0, 0) >= (int32_t)-1);
LLAssert(llong() >= (int32_t)0);
LLAssert(llong(0,1) >= (int32_t)1);
// operator<=(int32)
LLAssert(llong(0, 0x7ffffffe) <= (int32_t)0x7fffffff);
LLAssert(llong(0xffffffff, 0xfffffffe) <= (int32_t)-1);
LLAssert(llong() <= (int32_t)0);
LLAssert(llong(0,1) <= (int32_t)1);
// operator=
LLAssert((llong(2,3) = llong((uint32_t)-1)).asUInt() == (uint32_t)-1);
// operator <<=
LLAssert((llong(1, 1) <<= 0) == llong(1, 1));
LLAssert((llong(1, 1) <<= 31) == llong(0x80000000, 0x80000000));
LLAssert((llong(1, 1) <<= 32) == llong(1, 0));
LLAssert((llong(1, 1) <<= 63) == llong(0x80000000, 0));
LLAssert((llong(1, 1) <<= 64) == llong(1, 1)); // only lower 6 bits are used
LLAssert((llong(1, 1) <<= -1) == llong(0x80000000, 0)); // only lower 6 bits are used
// operator <<
LLAssert((llong((int32_t)1) << 5).asUInt() == 32);
// operator >>= (sign extended)
LLAssert((llong(0x7fffa0a0, 0xbcbcdfdf) >>= 16) == llong(0x7fff,0xa0a0bcbc));
LLAssert((llong(0x8000789a, 0xbcde0000) >>= 16) == llong(0xffff8000,0x789abcde));
LLAssert((llong(0x80000000, 0) >>= 63) == llong(0xffffffff, 0xffffffff));
LLAssert((llong(0x80000000, 0) >>= 47) == llong(0xffffffff, 0xffff0000));
LLAssert((llong(0x80000000, 0x80000000) >> 64) == llong(0x80000000, 0x80000000)); // only lower 6 bits are used
LLAssert((llong(0x80000000, 0) >>= -1) == llong(0xffffffff, 0xffffffff)); // only lower 6 bits are used
// operator >> sign extended)
LLAssert((llong(0x8000789a, 0xbcde0000) >> 16) == llong(0xffff8000,0x789abcde));
// ushr (right shift without sign extension)
LLAssert(llong(0x7fffa0a0, 0xbcbcdfdf).ushr(16) == llong(0x7fff,0xa0a0bcbc));
LLAssert(llong(0x8000789a, 0xbcde0000).ushr(16) == llong(0x00008000,0x789abcde));
LLAssert(llong(0x80000000, 0).ushr(63) == llong(0, 1));
LLAssert(llong(0x80000000, 0).ushr(47) == llong(0, 0x10000));
LLAssert(llong(0x80000000, 0x80000000).ushr(64) == llong(0x80000000, 0x80000000)); // only lower 6 bits are used
LLAssert(llong(0x80000000, 0).ushr(-1) == llong(0, 1)); // only lower 6 bits are used
// operator&(llong)
LLAssert((llong(0x55555555, 0x55555555) & llong(0xaaaaffff, 0xffffaaaa)) == llong(0x00005555, 0x55550000));
// operator|(llong)
LLAssert((llong(0x55555555, 0x55555555) | llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffffff, 0xffffffff));
// operator^(llong)
LLAssert((llong(0x55555555, 0x55555555) ^ llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffaaaa, 0xaaaaffff));
// operator&(uint32)
LLAssert((llong(0x55555555, 0x55555555) & (uint32_t)0xffffaaaa) == llong(0, 0x55550000));
// operator|(uint32)
LLAssert((llong(0x55555555, 0x55555555) | (uint32_t)0xffffaaaa) == llong(0x55555555, 0xffffffff));
// operator^(uint32)
LLAssert((llong(0x55555555, 0x55555555) ^ (uint32_t)0xffffaaaa) == llong(0x55555555, 0xaaaaffff));
// operator~
LLAssert(~llong(0x55555555, 0x55555555) == llong(0xaaaaaaaa, 0xaaaaaaaa));
// operator&=(llong)
LLAssert((llong(0x55555555, 0x55555555) &= llong(0xaaaaffff, 0xffffaaaa)) == llong(0x00005555, 0x55550000));
// operator|=(llong)
LLAssert((llong(0x55555555, 0x55555555) |= llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffffff, 0xffffffff));
// operator^=(llong)
LLAssert((llong(0x55555555, 0x55555555) ^= llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffaaaa, 0xaaaaffff));
// operator&=(uint32)
LLAssert((llong(0x55555555, 0x55555555) &= (uint32_t)0xffffaaaa) == llong(0, 0x55550000));
// operator|=(uint32)
LLAssert((llong(0x55555555, 0x55555555) |= (uint32_t)0xffffaaaa) == llong(0x55555555, 0xffffffff));
// operator^=(uint32)
LLAssert((llong(0x55555555, 0x55555555) ^= (uint32_t)0xffffaaaa) == llong(0x55555555, 0xaaaaffff));
// prefix inc
LLAssert(llong(1, 0) == ++llong(0,0xffffffff));
// prefix dec
LLAssert(llong(0,0xffffffff) == --llong(1, 0));
// postfix inc
{
llong n(0, 0xffffffff);
LLAssert(llong(0, 0xffffffff) == n++);
LLAssert(llong(1, 0) == n);
}
// postfix dec
{
llong n(1, 0);
LLAssert(llong(1, 0) == n--);
LLAssert(llong(0, 0xffffffff) == n);
}
// unary minus
LLAssert(llong(0, 0) == -llong(0, 0));
LLAssert(llong(0xffffffff, 0xffffffff) == -llong(0, 1));
LLAssert(llong(0, 1) == -llong(0xffffffff, 0xffffffff));
LLAssert(llong(0x7fffffff, 0xffffffff) == -llong(0x80000000, 1));
LLAssert(llong(0x80000000, 0) == -llong(0x80000000, 0)); // !!! we don't handle overflow
// operator-=
{
llong n;
LLAssert((n -= llong(0, 1)) == llong(0xffffffff, 0xffffffff));
LLAssert(n == llong(0xffffffff, 0xffffffff));
n = llong(1, 0);
LLAssert((n -= llong(0, 1)) == llong(0, 0xffffffff));
LLAssert(n == llong(0, 0xffffffff));
}
// operator-
{
llong n;
LLAssert((n - llong(0, 1)) == llong(0xffffffff, 0xffffffff));
LLAssert(n == llong(0, 0));
n = llong(1, 0);
LLAssert((n - llong(0, 1)) == llong(0, 0xffffffff));
LLAssert(n == llong(1, 0));
}
// operator+=
{
llong n(0xffffffff, 0xffffffff);
LLAssert((n += llong(0, 1)) == llong(0, 0));
LLAssert(n == llong(0, 0));
n = llong(0, 0xffffffff);
LLAssert((n += llong(0, 1)) == llong(1, 0));
LLAssert(n == llong(1, 0));
}
// operator+
{
llong n(0xffffffff, 0xffffffff);
LLAssert((n + llong(0, 1)) == llong(0, 0));
LLAssert(n == llong(0xffffffff, 0xffffffff));
n = llong(0, 0xffffffff);
LLAssert((n + llong(0, 1)) == llong(1, 0));
LLAssert(n == llong(0, 0xffffffff));
}
}
void IntlTestRBNF::TestLLong()
{
logln("Starting TestLLong");
TestLLongConstructors();
TestLLongSimpleOperators();
logln("Testing operator*=, operator*");
// operator*=, operator*
// small and large values, positive, &NEGative, zero
// also test commutivity
{
const llong ZERO;
const llong ONE(0, 1);
const llong NEG_ONE((int32_t)-1);
const llong THREE(0, 3);
const llong NEG_THREE((int32_t)-3);
const llong TWO_TO_16(0, 0x10000);
const llong NEG_TWO_TO_16 = -TWO_TO_16;
const llong TWO_TO_32(1, 0);
const llong NEG_TWO_TO_32 = -TWO_TO_32;
const llong NINE(0, 9);
const llong NEG_NINE = -NINE;
const llong TWO_TO_16X3(0, 0x00030000);
const llong NEG_TWO_TO_16X3 = -TWO_TO_16X3;
const llong TWO_TO_32X3(3, 0);
const llong NEG_TWO_TO_32X3 = -TWO_TO_32X3;
const llong TWO_TO_48(0x10000, 0);
const llong NEG_TWO_TO_48 = -TWO_TO_48;
const int32_t VALUE_WIDTH = 9;
const llong* values[VALUE_WIDTH] = {
&ZERO, &ONE, &NEG_ONE, &THREE, &NEG_THREE, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_32, &NEG_TWO_TO_32
};
const llong* answers[VALUE_WIDTH*VALUE_WIDTH] = {
&ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO,
&ZERO, &ONE, &NEG_ONE, &THREE, &NEG_THREE, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_32, &NEG_TWO_TO_32,
&ZERO, &NEG_ONE, &ONE, &NEG_THREE, &THREE, &NEG_TWO_TO_16, &TWO_TO_16, &NEG_TWO_TO_32, &TWO_TO_32,
&ZERO, &THREE, &NEG_THREE, &NINE, &NEG_NINE, &TWO_TO_16X3, &NEG_TWO_TO_16X3, &TWO_TO_32X3, &NEG_TWO_TO_32X3,
&ZERO, &NEG_THREE, &THREE, &NEG_NINE, &NINE, &NEG_TWO_TO_16X3, &TWO_TO_16X3, &NEG_TWO_TO_32X3, &TWO_TO_32X3,
&ZERO, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_16X3, &NEG_TWO_TO_16X3, &TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_48, &NEG_TWO_TO_48,
&ZERO, &NEG_TWO_TO_16, &TWO_TO_16, &NEG_TWO_TO_16X3, &TWO_TO_16X3, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_48, &TWO_TO_48,
&ZERO, &TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_32X3, &NEG_TWO_TO_32X3, &TWO_TO_48, &NEG_TWO_TO_48, &ZERO, &ZERO,
&ZERO, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_32X3, &TWO_TO_32X3, &NEG_TWO_TO_48, &TWO_TO_48, &ZERO, &ZERO
};
for (int i = 0; i < VALUE_WIDTH; ++i) {
for (int j = 0; j < VALUE_WIDTH; ++j) {
llong lhs = *values[i];
llong rhs = *values[j];
llong ans = *answers[i*VALUE_WIDTH + j];
llong n = lhs;
LLAssert((n *= rhs) == ans);
LLAssert(n == ans);
n = lhs;
LLAssert((n * rhs) == ans);
LLAssert(n == lhs);
}
}
}
logln("Testing operator/=, operator/");
// operator/=, operator/
// test num = 0, div = 0, pos/neg, > 2^32, div > num
{
const llong ZERO;
const llong ONE(0, 1);
const llong NEG_ONE = -ONE;
const llong MAX(0x7fffffff, 0xffffffff);
const llong MIN(0x80000000, 0);
const llong TWO(0, 2);
const llong NEG_TWO = -TWO;
const llong FIVE(0, 5);
const llong NEG_FIVE = -FIVE;
const llong TWO_TO_32(1, 0);
const llong NEG_TWO_TO_32 = -TWO_TO_32;
const llong TWO_TO_32d5 = llong(TWO_TO_32.asDouble()/5.0);
const llong NEG_TWO_TO_32d5 = -TWO_TO_32d5;
const llong TWO_TO_32X5 = TWO_TO_32 * FIVE;
const llong NEG_TWO_TO_32X5 = -TWO_TO_32X5;
const llong* tuples[] = { // lhs, rhs, ans
&ZERO, &ZERO, &ZERO,
&ONE, &ZERO,&MAX,
&NEG_ONE, &ZERO, &MIN,
&ONE, &ONE, &ONE,
&ONE, &NEG_ONE, &NEG_ONE,
&NEG_ONE, &ONE, &NEG_ONE,
&NEG_ONE, &NEG_ONE, &ONE,
&FIVE, &TWO, &TWO,
&FIVE, &NEG_TWO, &NEG_TWO,
&NEG_FIVE, &TWO, &NEG_TWO,
&NEG_FIVE, &NEG_TWO, &TWO,
&TWO, &FIVE, &ZERO,
&TWO, &NEG_FIVE, &ZERO,
&NEG_TWO, &FIVE, &ZERO,
&NEG_TWO, &NEG_FIVE, &ZERO,
&TWO_TO_32, &TWO_TO_32, &ONE,
&TWO_TO_32, &NEG_TWO_TO_32, &NEG_ONE,
&NEG_TWO_TO_32, &TWO_TO_32, &NEG_ONE,
&NEG_TWO_TO_32, &NEG_TWO_TO_32, &ONE,
&TWO_TO_32, &FIVE, &TWO_TO_32d5,
&TWO_TO_32, &NEG_FIVE, &NEG_TWO_TO_32d5,
&NEG_TWO_TO_32, &FIVE, &NEG_TWO_TO_32d5,
&NEG_TWO_TO_32, &NEG_FIVE, &TWO_TO_32d5,
&TWO_TO_32X5, &FIVE, &TWO_TO_32,
&TWO_TO_32X5, &NEG_FIVE, &NEG_TWO_TO_32,
&NEG_TWO_TO_32X5, &FIVE, &NEG_TWO_TO_32,
&NEG_TWO_TO_32X5, &NEG_FIVE, &TWO_TO_32,
&TWO_TO_32X5, &TWO_TO_32, &FIVE,
&TWO_TO_32X5, &NEG_TWO_TO_32, &NEG_FIVE,
&NEG_TWO_TO_32X5, &NEG_TWO_TO_32, &FIVE,
&NEG_TWO_TO_32X5, &TWO_TO_32, &NEG_FIVE
};
const int TUPLE_WIDTH = 3;
const int TUPLE_COUNT = (int)(sizeof(tuples)/sizeof(tuples[0]))/TUPLE_WIDTH;
for (int i = 0; i < TUPLE_COUNT; ++i) {
const llong lhs = *tuples[i*TUPLE_WIDTH+0];
const llong rhs = *tuples[i*TUPLE_WIDTH+1];
const llong ans = *tuples[i*TUPLE_WIDTH+2];
llong n = lhs;
if (!((n /= rhs) == ans)) {
errln("fail: (n /= rhs) == ans");
}
LLAssert(n == ans);
n = lhs;
LLAssert((n / rhs) == ans);
LLAssert(n == lhs);
}
}
logln("Testing operator%=, operator%");
//operator%=, operator%
{
const llong ZERO;
const llong ONE(0, 1);
const llong TWO(0, 2);
const llong THREE(0,3);
const llong FOUR(0, 4);
const llong FIVE(0, 5);
const llong SIX(0, 6);
const llong NEG_ONE = -ONE;
const llong NEG_TWO = -TWO;
const llong NEG_THREE = -THREE;
const llong NEG_FOUR = -FOUR;
const llong NEG_FIVE = -FIVE;
const llong NEG_SIX = -SIX;
const llong NINETY_NINE(0, 99);
const llong HUNDRED(0, 100);
const llong HUNDRED_ONE(0, 101);
const llong BIG(0x12345678, 0x9abcdef0);
const llong BIG_FIVE(BIG * FIVE);
const llong BIG_FIVEm1 = BIG_FIVE - ONE;
const llong BIG_FIVEp1 = BIG_FIVE + ONE;
const llong* tuples[] = {
&ZERO, &FIVE, &ZERO,
&ONE, &FIVE, &ONE,
&TWO, &FIVE, &TWO,
&THREE, &FIVE, &THREE,
&FOUR, &FIVE, &FOUR,
&FIVE, &FIVE, &ZERO,
&SIX, &FIVE, &ONE,
&ZERO, &NEG_FIVE, &ZERO,
&ONE, &NEG_FIVE, &ONE,
&TWO, &NEG_FIVE, &TWO,
&THREE, &NEG_FIVE, &THREE,
&FOUR, &NEG_FIVE, &FOUR,
&FIVE, &NEG_FIVE, &ZERO,
&SIX, &NEG_FIVE, &ONE,
&NEG_ONE, &FIVE, &NEG_ONE,
&NEG_TWO, &FIVE, &NEG_TWO,
&NEG_THREE, &FIVE, &NEG_THREE,
&NEG_FOUR, &FIVE, &NEG_FOUR,
&NEG_FIVE, &FIVE, &ZERO,
&NEG_SIX, &FIVE, &NEG_ONE,
&NEG_ONE, &NEG_FIVE, &NEG_ONE,
&NEG_TWO, &NEG_FIVE, &NEG_TWO,
&NEG_THREE, &NEG_FIVE, &NEG_THREE,
&NEG_FOUR, &NEG_FIVE, &NEG_FOUR,
&NEG_FIVE, &NEG_FIVE, &ZERO,
&NEG_SIX, &NEG_FIVE, &NEG_ONE,
&NINETY_NINE, &FIVE, &FOUR,
&HUNDRED, &FIVE, &ZERO,
&HUNDRED_ONE, &FIVE, &ONE,
&BIG_FIVEm1, &FIVE, &FOUR,
&BIG_FIVE, &FIVE, &ZERO,
&BIG_FIVEp1, &FIVE, &ONE
};
const int TUPLE_WIDTH = 3;
const int TUPLE_COUNT = (int)(sizeof(tuples)/sizeof(tuples[0]))/TUPLE_WIDTH;
for (int i = 0; i < TUPLE_COUNT; ++i) {
const llong lhs = *tuples[i*TUPLE_WIDTH+0];
const llong rhs = *tuples[i*TUPLE_WIDTH+1];
const llong ans = *tuples[i*TUPLE_WIDTH+2];
llong n = lhs;
if (!((n %= rhs) == ans)) {
errln("fail: (n %= rhs) == ans");
}
LLAssert(n == ans);
n = lhs;
LLAssert((n % rhs) == ans);
LLAssert(n == lhs);
}
}
logln("Testing pow");
// pow
LLAssert(llong(0, 0).pow(0) == llong(0, 0));
LLAssert(llong(0, 0).pow(2) == llong(0, 0));
LLAssert(llong(0, 2).pow(0) == llong(0, 1));
LLAssert(llong(0, 2).pow(2) == llong(0, 4));
LLAssert(llong(0, 2).pow(32) == llong(1, 0));
LLAssert(llong(0, 5).pow(10) == llong((double)5.0 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5));
// absolute value
{
const llong n(0xffffffff,0xffffffff);
LLAssert(n.abs() == llong(0, 1));
}
#ifdef RBNF_DEBUG
logln("Testing atoll");
// atoll
const char empty[] = "";
const char zero[] = "0";
const char neg_one[] = "-1";
const char neg_12345[] = "-12345";
const char big1[] = "123456789abcdef0";
const char big2[] = "fFfFfFfFfFfFfFfF";
LLAssert(llong::atoll(empty) == llong(0, 0));
LLAssert(llong::atoll(zero) == llong(0, 0));
LLAssert(llong::atoll(neg_one) == llong(0xffffffff, 0xffffffff));
LLAssert(llong::atoll(neg_12345) == -llong(0, 12345));
LLAssert(llong::atoll(big1, 16) == llong(0x12345678, 0x9abcdef0));
LLAssert(llong::atoll(big2, 16) == llong(0xffffffff, 0xffffffff));
#endif
// u_atoll
const UChar uempty[] = { 0 };
const UChar uzero[] = { 0x30, 0 };
const UChar uneg_one[] = { 0x2d, 0x31, 0 };
const UChar uneg_12345[] = { 0x2d, 0x31, 0x32, 0x33, 0x34, 0x35, 0 };
const UChar ubig1[] = { 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x30, 0 };
const UChar ubig2[] = { 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0 };
LLAssert(llong::utoll(uempty) == llong(0, 0));
LLAssert(llong::utoll(uzero) == llong(0, 0));
LLAssert(llong::utoll(uneg_one) == llong(0xffffffff, 0xffffffff));
LLAssert(llong::utoll(uneg_12345) == -llong(0, 12345));
LLAssert(llong::utoll(ubig1, 16) == llong(0x12345678, 0x9abcdef0));
LLAssert(llong::utoll(ubig2, 16) == llong(0xffffffff, 0xffffffff));
#ifdef RBNF_DEBUG
logln("Testing lltoa");
// lltoa
{
char buf[64]; // ascii
LLAssert((llong(0, 0).lltoa(buf, (uint32_t)sizeof(buf)) == 1) && (strcmp(buf, zero) == 0));
LLAssert((llong(0xffffffff, 0xffffffff).lltoa(buf, (uint32_t)sizeof(buf)) == 2) && (strcmp(buf, neg_one) == 0));
LLAssert(((-llong(0, 12345)).lltoa(buf, (uint32_t)sizeof(buf)) == 6) && (strcmp(buf, neg_12345) == 0));
LLAssert((llong(0x12345678, 0x9abcdef0).lltoa(buf, (uint32_t)sizeof(buf), 16) == 16) && (strcmp(buf, big1) == 0));
}
#endif
logln("Testing u_lltoa");
// u_lltoa
{
UChar buf[64];
LLAssert((llong(0, 0).lltou(buf, (uint32_t)sizeof(buf)) == 1) && (u_strcmp(buf, uzero) == 0));
LLAssert((llong(0xffffffff, 0xffffffff).lltou(buf, (uint32_t)sizeof(buf)) == 2) && (u_strcmp(buf, uneg_one) == 0));
LLAssert(((-llong(0, 12345)).lltou(buf, (uint32_t)sizeof(buf)) == 6) && (u_strcmp(buf, uneg_12345) == 0));
LLAssert((llong(0x12345678, 0x9abcdef0).lltou(buf, (uint32_t)sizeof(buf), 16) == 16) && (u_strcmp(buf, ubig1) == 0));
}
}
void
IntlTestRBNF::TestEnglishSpellout()
{
UErrorCode status = U_ZERO_ERROR;
RuleBasedNumberFormat* formatter
= new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status);
if (U_FAILURE(status)) {
errln("FAIL: could not construct formatter");
} else {
static const char* testData[][2] = {
{ "1", "one" },
{ "2", "two" },
{ "15", "fifteen" },
{ "20", "twenty" },
{ "23", "twenty-three" },
{ "73", "seventy-three" },
{ "88", "eighty-eight" },
{ "100", "one hundred" },
{ "106", "one hundred and six" },
{ "127", "one hundred and twenty-seven" },
{ "200", "two hundred" },
{ "579", "five hundred and seventy-nine" },
{ "1,000", "one thousand" },
{ "2,000", "two thousand" },
{ "3,004", "three thousand and four" },
{ "4,567", "four thousand five hundred and sixty-seven" },
{ "15,943", "fifteen thousand nine hundred and forty-three" },
{ "2,345,678", "two million, three hundred and forty-five thousand, six hundred and seventy-eight" },
{ "-36", "minus thirty-six" },
{ "234.567", "two hundred and thirty-four point five six seven" },
{ NULL, NULL}
};
doTest(formatter, testData, TRUE);
formatter->setLenient(TRUE);
static const char* lpTestData[][2] = {
{ "fifty-7", "57" },
{ " fifty-7", "57" },
{ " fifty-7", "57" },
{ "2 thousand six HUNDRED fifty-7", "2,657" },
{ "fifteen hundred and zero", "1,500" },
{ "FOurhundred thiRTY six", "436" },
{ NULL, NULL}
};
doLenientParseTest(formatter, lpTestData);
}
delete formatter;
}
void
IntlTestRBNF::TestOrdinalAbbreviations()
{
UErrorCode status = U_ZERO_ERROR;
RuleBasedNumberFormat* formatter
= new RuleBasedNumberFormat(URBNF_ORDINAL, Locale::getUS(), status);
if (U_FAILURE(status)) {
errln("FAIL: could not construct formatter");
} else {
static const char* testData[][2] = {
{ "1", "1st" },
{ "2", "2nd" },
{ "3", "3rd" },
{ "4", "4th" },
{ "7", "7th" },
{ "10", "10th" },
{ "11", "11th" },
{ "13", "13th" },
{ "20", "20th" },
{ "21", "21st" },
{ "22", "22nd" },
{ "23", "23rd" },
{ "24", "24th" },
{ "33", "33rd" },
{ "102", "102nd" },
{ "312", "312th" },
{ "12,345", "12,345th" },
{ NULL, NULL}
};
doTest(formatter, testData, FALSE);
}
delete formatter;
}
void
IntlTestRBNF::TestDurations()
{
UErrorCode status = U_ZERO_ERROR;
RuleBasedNumberFormat* formatter
= new RuleBasedNumberFormat(URBNF_DURATION, Locale::getUS(), status);
if (U_FAILURE(status)) {
errln("FAIL: could not construct formatter");
} else {
static const char* testData[][2] = {
{ "3,600", "1:00:00" }, //move me and I fail
{ "0", "0 sec." },
{ "1", "1 sec." },
{ "24", "24 sec." },
{ "60", "1:00" },
{ "73", "1:13" },
{ "145", "2:25" },
{ "666", "11:06" },
// { "3,600", "1:00:00" },
{ "3,740", "1:02:20" },
{ "10,293", "2:51:33" },
{ NULL, NULL}
};
doTest(formatter, testData, TRUE);
formatter->setLenient(TRUE);
static const char* lpTestData[][2] = {
{ "2-51-33", "10,293" },
{ NULL, NULL}
};
doLenientParseTest(formatter, lpTestData);
}
delete formatter;
}
void
IntlTestRBNF::TestSpanishSpellout()
{
UErrorCode status = U_ZERO_ERROR;
RuleBasedNumberFormat* formatter
= new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("es", "ES", ""), status);
if (U_FAILURE(status)) {
errln("FAIL: could not construct formatter");
} else {
static const char* testData[][2] = {
{ "1", "uno" },
{ "6", "seis" },
{ "16", "diecis\\u00e9is" },
{ "20", "veinte" },
{ "24", "veinticuatro" },
{ "26", "veintis\\u00e9is" },
{ "73", "setenta y tres" },
{ "88", "ochenta y ocho" },
{ "100", "cien" },
{ "106", "ciento seis" },
{ "127", "ciento veintisiete" },
{ "200", "doscientos" },
{ "579", "quinientos setenta y nueve" },
{ "1,000", "mil" },
{ "2,000", "dos mil" },
{ "3,004", "tres mil cuatro" },
{ "4,567", "cuatro mil quinientos sesenta y siete" },
{ "15,943", "quince mil novecientos cuarenta y tres" },
{ "2,345,678", "dos mill\\u00f3n trescientos cuarenta y cinco mil seiscientos setenta y ocho"},
{ "-36", "menos treinta y seis" },
{ "234.567", "doscientos treinta y cuatro punto cinco seis siete" },
{ NULL, NULL}
};
doTest(formatter, testData, TRUE);
}
delete formatter;
}
void
IntlTestRBNF::TestFrenchSpellout()
{
UErrorCode status = U_ZERO_ERROR;
RuleBasedNumberFormat* formatter
= new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::FRANCE, status);
if (U_FAILURE(status)) {
errln("FAIL: could not construct formatter");
} else {
static const char* testData[][2] = {
{ "1", "un" },
{ "15", "quinze" },
{ "20", "vingt" },
{ "21", "vingt-et-un" },
{ "23", "vingt-trois" },
{ "62", "soixante-deux" },
{ "70", "soixante-dix" },
{ "71", "soixante et onze" },
{ "73", "soixante-treize" },
{ "80", "quatre-vingts" },
{ "88", "quatre-vingt-huit" },
{ "100", "cent" },
{ "106", "cent six" },
{ "127", "cent vingt-sept" },
{ "200", "deux cents" },
{ "579", "cinq cents soixante-dix-neuf" },
{ "1,000", "mille" },
{ "1,123", "onze cents vingt-trois" },
{ "1,594", "mille cinq cents quatre-vingt-quatorze" },
{ "2,000", "deux mille" },
{ "3,004", "trois mille quatre" },
{ "4,567", "quatre mille cinq cents soixante-sept" },
{ "15,943", "quinze mille neuf cents quarante-trois" },
{ "2,345,678", "deux million trois cents quarante-cinq mille six cents soixante-dix-huit" },
{ "-36", "moins trente-six" },
{ "234.567", "deux cents trente-quatre virgule cinq six sept" },
{ NULL, NULL}
};
doTest(formatter, testData, TRUE);
formatter->setLenient(TRUE);
static const char* lpTestData[][2] = {
{ "trente-un", "31" },
{ "un cents quatre vingt dix huit", "198" },
{ NULL, NULL}
};
doLenientParseTest(formatter, lpTestData);
}
delete formatter;
}
void
IntlTestRBNF::TestSwissFrenchSpellout()
{
UErrorCode status = U_ZERO_ERROR;
RuleBasedNumberFormat* formatter
= new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("fr", "CH", ""), status);
if (U_FAILURE(status)) {
errln("FAIL: could not construct formatter");
} else {
static const char* testData[][2] = {
{ "1", "un" },
{ "15", "quinze" },
{ "20", "vingt" },
{ "21", "vingt-et-un" },
{ "23", "vingt-trois" },
{ "62", "soixante-deux" },
{ "70", "septante" },
{ "71", "septante-et-un" },
{ "73", "septante-trois" },
{ "80", "octante" },
{ "88", "octante-huit" },
{ "100", "cent" },
{ "106", "cent six" },
{ "127", "cent vingt-sept" },
{ "200", "deux cents" },
{ "579", "cinq cents septante-neuf" },
{ "1,000", "mille" },
{ "1,123", "onze cents vingt-trois" },
{ "1,594", "mille cinq cents nonante-quatre" },
{ "2,000", "deux mille" },
{ "3,004", "trois mille quatre" },
{ "4,567", "quatre mille cinq cents soixante-sept" },
{ "15,943", "quinze mille neuf cents quarante-trois" },
{ "2,345,678", "deux million trois cents quarante-cinq mille six cents septante-huit" },
{ "-36", "moins trente-six" },
{ "234.567", "deux cents trente-quatre virgule cinq six sept" },
{ NULL, NULL}
};
doTest(formatter, testData, TRUE);
}
delete formatter;
}
void
IntlTestRBNF::TestItalianSpellout()
{
UErrorCode status = U_ZERO_ERROR;
RuleBasedNumberFormat* formatter
= new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getItalian(), status);
if (U_FAILURE(status)) {
errln("FAIL: could not construct formatter");
} else {
static const char* testData[][2] = {
{ "1", "uno" },
{ "15", "quindici" },
{ "20", "venti" },
{ "23", "ventitre" },
{ "73", "settantatre" },
{ "88", "ottantotto" },
{ "100", "cento" },
{ "106", "centosei" },
{ "108", "centotto" },
{ "127", "centoventisette" },
{ "181", "centottantuno" },
{ "200", "duecento" },
{ "579", "cinquecentosettantanove" },
{ "1,000", "mille" },
{ "2,000", "duemila" },
{ "3,004", "tremilaquattro" },
{ "4,567", "quattromilacinquecentosessantasette" },
{ "15,943", "quindicimilanovecentoquarantatre" },
{ "-36", "meno trentisei" },
{ "234.567", "duecentotrentiquattro virgola cinque sei sette" },
{ NULL, NULL}
};
doTest(formatter, testData, TRUE);
}
delete formatter;
}
void
IntlTestRBNF::TestGermanSpellout()
{
UErrorCode status = U_ZERO_ERROR;
RuleBasedNumberFormat* formatter
= new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getGermany(), status);
if (U_FAILURE(status)) {
errln("FAIL: could not construct formatter");
} else {
static const char* testData[][2] = {
{ "1", "eins" },
{ "15", "f\\u00fcnfzehn" },
{ "20", "zwanzig" },
{ "23", "dreiundzwanzig" },
{ "73", "dreiundsiebzig" },
{ "88", "achtundachtzig" },
{ "100", "hundert" },
{ "106", "hundertsechs" },
{ "127", "hundertsiebenundzwanzig" },
{ "200", "zweihundert" },
{ "579", "f\\u00fcnfhundertneunundsiebzig" },
{ "1,000", "tausend" },
{ "2,000", "zweitausend" },
{ "3,004", "dreitausendvier" },
{ "4,567", "viertausendf\\u00fcnfhundertsiebenundsechzig" },
{ "15,943", "f\\u00fcnfzehntausendneunhundertdreiundvierzig" },
{ "2,345,678", "zwei Millionen dreihundertf\\u00fcnfundvierzigtausendsechshundertachtundsiebzig" },
{ NULL, NULL}
};
doTest(formatter, testData, TRUE);
formatter->setLenient(TRUE);
static const char* lpTestData[][2] = {
{ "ein Tausend sechs Hundert fuenfunddreissig", "1,635" },
{ NULL, NULL}
};
doLenientParseTest(formatter, lpTestData);
}
delete formatter;
}
void
IntlTestRBNF::TestThaiSpellout()
{
UErrorCode status = U_ZERO_ERROR;
RuleBasedNumberFormat* formatter
= new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("th"), status);
if (U_FAILURE(status)) {
errln("FAIL: could not construct formatter");
} else {
static const char* testData[][2] = {
{ "0", "\\u0e28\\u0e39\\u0e19\\u0e22\\u0e4c" },
{ "1", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" },
{ "10", "\\u0e2a\\u0e34\\u0e1a" },
{ "11", "\\u0e2a\\u0e34\\u0e1a\\u0e40\\u0e2d\\u0e47\\u0e14" },
{ "21", "\\u0e22\\u0e35\\u0e48\\u0e2a\\u0e34\\u0e1a\\u0e40\\u0e2d\\u0e47\\u0e14" },
{ "101", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u0e23\\u0e49\\u0e2d\\u0e22\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" },
{ "1.234", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u0e08\\u0e38\\u0e14\\u0e2a\\u0e2d\\u0e07\\u0e2a\\u0e32\\u0e21\\u0e2a\\u0e35\\u0e48" },
{ NULL, NULL}
};
doTest(formatter, testData, TRUE);
}
delete formatter;
}
void
IntlTestRBNF::doTest(RuleBasedNumberFormat* formatter, const char* testData[][2], UBool testParsing)
{
// man, error reporting would be easier with printf-style syntax for unicode string and formattable
UErrorCode status = U_ZERO_ERROR;
NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), status);
if (U_FAILURE(status)) {
errln("FAIL: could not create NumberFormat");
} else {
for (int i = 0; testData[i][0]; ++i) {
const char* numString = testData[i][0];
const char* expectedWords = testData[i][1];
Formattable expectedNumber;
decFmt->parse(numString, expectedNumber, status);
if (U_FAILURE(status)) {
errln("FAIL: decFmt could not parse %s", numString);
break;
} else {
UnicodeString actualString;
FieldPosition pos;
formatter->format(expectedNumber, actualString/* , pos*/, status);
if (U_FAILURE(status)) {
UnicodeString msg = "Fail: formatter could not format ";
decFmt->format(expectedNumber, msg, status);
errln(msg);
break;
} else {
UnicodeString expectedString = UnicodeString(expectedWords).unescape();
if (actualString != expectedString) {
UnicodeString msg = "FAIL: check failed for ";
decFmt->format(expectedNumber, msg, status);
msg.append(", expected ");
msg.append(expectedString);
msg.append(" but got ");
msg.append(actualString);
errln(msg);
break;
} else if (testParsing) {
Formattable parsedNumber;
formatter->parse(actualString, parsedNumber, status);
if (U_FAILURE(status)) {
UnicodeString msg = "FAIL: formatter could not parse ";
msg.append(actualString);
msg.append(" status code: " );
char buffer[32];
sprintf(buffer, "0x%x", status);
msg.append(buffer);
errln(msg);
break;
} else {
if (parsedNumber != expectedNumber) {
UnicodeString msg = "FAIL: parse failed for ";
msg.append(actualString);
msg.append(", expected ");
decFmt->format(expectedNumber, msg, status);
msg.append(", but got ");
decFmt->format(parsedNumber, msg, status);
errln(msg);
break;
}
}
}
}
}
}
delete decFmt;
}
}
void
IntlTestRBNF::doLenientParseTest(RuleBasedNumberFormat* formatter, const char* testData[][2])
{
UErrorCode status = U_ZERO_ERROR;
NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), status);
if (U_FAILURE(status)) {
errln("FAIL: could not create NumberFormat");
} else {
for (int i = 0; testData[i][0]; ++i) {
const char* spelledNumber = testData[i][0]; // spelled-out number
const char* asciiUSNumber = testData[i][1]; // number as ascii digits formatted for US locale
UnicodeString spelledNumberString = UnicodeString(spelledNumber).unescape();
Formattable actualNumber;
formatter->parse(spelledNumberString, actualNumber, status);
if (U_FAILURE(status)) {
UnicodeString msg = "FAIL: formatter could not parse ";
msg.append(spelledNumberString);
errln(msg);
break;
} else {
// I changed the logic of this test somewhat from Java-- instead of comparing the
// strings, I compare the Formattables. Hmmm, but the Formattables don't compare,
// so change it back.
UnicodeString asciiUSNumberString = asciiUSNumber;
Formattable expectedNumber;
decFmt->parse(asciiUSNumberString, expectedNumber, status);
if (U_FAILURE(status)) {
UnicodeString msg = "FAIL: decFmt could not parse ";
msg.append(asciiUSNumberString);
errln(msg);
break;
} else {
UnicodeString actualNumberString;
UnicodeString expectedNumberString;
decFmt->format(actualNumber, actualNumberString, status);
decFmt->format(expectedNumber, expectedNumberString, status);
if (actualNumberString != expectedNumberString) {
UnicodeString msg = "FAIL: parsing";
msg.append(asciiUSNumberString);
msg.append("\n");
msg.append(" lenient parse failed for ");
msg.append(spelledNumberString);
msg.append(", expected ");
msg.append(expectedNumberString);
msg.append(", but got ");
msg.append(actualNumberString);
errln(msg);
break;
}
}
}
}
delete decFmt;
}
}