blob: 9cdf0842d4d3015597fffc17d68fe82b21008091 [file] [log] [blame]
/*
*******************************************************************************
*
* Copyright (C) 2001, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
* file name: ucaelems.cpp
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created 02/22/2001
* created by: Vladimir Weinstein
*
* This program reads the Franctional UCA table and generates
* internal format for UCA table as well as inverse UCA table.
* It then writes binary files containing the data: ucadata.dat
* & invuca.dat
*
* date name comments
* 03/02/2001 synwee added setMaxExpansion
* 03/07/2001 synwee merged UCA's maxexpansion and tailoring's
*/
#include "ucol_elm.h"
#include "unicode/uchar.h"
void uprv_uca_reverseElement(UCAElements *el) {
uint32_t i = 0;
UChar temp;
for(i = 0; i<el->cSize/2; i++) {
temp = el->cPoints[i];
el->cPoints[i] = el->cPoints[el->cSize-i-1];
el->cPoints[el->cSize-i-1] = temp;
}
#if 0
/* Syn Wee does not need reversed expansions at all */
UErrorCode status = U_ZERO_ERROR;
uint32_t tempCE = 0, expansion = 0;
if(el->noOfCEs>1) { /* this is an expansion that needs to be reversed and added - also, we need to change the mapValue */
uint32_t buffer[256];
#if 0
/* this is with continuations preserved */
tempCE = el->CEs[0];
i = 1;
while(i<el->noOfCEs) {
if(!isContinuation(el->CEs[i])) {
buffer[el->noOfCEs-i] = tempCE;
} else { /* it is continuation*/
buffer[el->noOfCEs-i] = el->CEs[i];
buffer[el->noOfCEs-i-1] = tempCE;
i++;
}
if(i<el->noOfCEs) {
tempCE = el->CEs[i];
i++;
}
}
if(i==el->noOfCEs) {
buffer[0] = tempCE;
}
uprv_memcpy(el->CEs, buffer, el->noOfCEs*sizeof(uint32_t));
#endif
#if 0
/* this is simple reversal */
for(i = 0; i<el->noOfCEs/2; i++) {
tempCE = el->CEs[i];
el->CEs[i] = el->CEs[el->noOfCEs-i-1];
el->CEs[el->noOfCEs-i-1] = tempCE;
}
#endif
expansion = UCOL_SPECIAL_FLAG | (EXPANSION_TAG<<UCOL_TAG_SHIFT)
| ((uprv_uca_addExpansion(expansions, el->CEs[0], &status)+(headersize>>2))<<4)
& 0xFFFFF0;
for(i = 1; i<el->noOfCEs; i++) {
uprv_uca_addExpansion(expansions, el->CEs[i], &status);
}
if(el->noOfCEs <= 0xF) {
expansion |= el->noOfCEs;
} else {
uprv_uca_addExpansion(expansions, 0, &status);
}
el->mapCE = expansion;
}
#endif
}
int32_t uprv_uca_addExpansion(ExpansionTable *expansions, uint32_t value, UErrorCode *status) {
if(U_FAILURE(*status)) {
return 0;
}
if(expansions->CEs == NULL) {
expansions->CEs = (uint32_t *)malloc(INIT_EXP_TABLE_SIZE*sizeof(uint32_t));
expansions->size = INIT_EXP_TABLE_SIZE;
expansions->position = 0;
}
if(expansions->position == expansions->size) {
uint32_t *newData = (uint32_t *)realloc(expansions->CEs, 2*expansions->size*sizeof(uint32_t));
if(newData == NULL) {
#ifdef UCOL_DEBUG
fprintf(stderr, "out of memory for expansions\n");
#endif
*status = U_MEMORY_ALLOCATION_ERROR;
return -1;
}
expansions->CEs = newData;
expansions->size *= 2;
}
expansions->CEs[expansions->position] = value;
return(expansions->position++);
}
tempUCATable * uprv_uca_initTempTable(UCATableHeader *image, UColOptionSet *opts, const UCollator *UCA, UErrorCode *status) {
tempUCATable *t = (tempUCATable *)uprv_malloc(sizeof(tempUCATable));
MaxExpansionTable *maxet = (MaxExpansionTable *)uprv_malloc(
sizeof(MaxExpansionTable));
t->image = image;
t->options = opts;
t->UCA = UCA;
t->expansions = (ExpansionTable *)uprv_malloc(sizeof(ExpansionTable));
uprv_memset(t->expansions, 0, sizeof(ExpansionTable));
t->mapping = ucmp32_open(UCOL_NOT_FOUND);
t->contractions = uprv_cnttab_open(t->mapping, status);
/* copy UCA's maxexpansion and merge as we go along */
t->maxExpansions = maxet;
if (UCA != NULL) {
/* adding an extra initial value for easier manipulation */
maxet->size = (UCA->lastEndExpansionCE - UCA->endExpansionCE)
+ 2;
maxet->position = maxet->size - 1;
maxet->endExpansionCE =
(uint32_t *)uprv_malloc(sizeof(uint32_t) * maxet->size);
maxet->expansionCESize =
(uint8_t *)uprv_malloc(sizeof(uint8_t) * maxet->size);
/* initialized value */
*(maxet->endExpansionCE) = 0;
*(maxet->expansionCESize) = 0;
uprv_memcpy(maxet->endExpansionCE + 1, UCA->endExpansionCE,
sizeof(uint32_t) * (maxet->size - 1));
uprv_memcpy(maxet->expansionCESize + 1, UCA->expansionCESize,
sizeof(uint8_t) * (maxet->size - 1));
}
else {
maxet->size = 0;
}
t->unsafeCP = (uint8_t *)uprv_malloc(UCOL_UNSAFECP_TABLE_SIZE);
t->contrEndCP = (uint8_t *)uprv_malloc(UCOL_UNSAFECP_TABLE_SIZE);
uprv_memset(t->unsafeCP, 0, UCOL_UNSAFECP_TABLE_SIZE);
uprv_memset(t->contrEndCP, 0, UCOL_UNSAFECP_TABLE_SIZE);
return t;
}
tempUCATable *uprv_uca_cloneTempTable(tempUCATable *t, UErrorCode *status) {
if(U_FAILURE(*status)) {
return NULL;
}
tempUCATable *r = (tempUCATable *)uprv_malloc(sizeof(tempUCATable));
uprv_memset(r, 0, sizeof(tempUCATable));
/* mapping */
if(t->mapping != NULL) {
uint16_t *index = (uint16_t *)uprv_malloc(sizeof(uint16_t)*t->mapping->fCount);
int32_t *array = (int32_t *)uprv_malloc(sizeof(int32_t)*t->mapping->fCount);
uprv_memcpy(array, t->mapping->fArray, t->mapping->fCount*sizeof(int32_t));
uprv_memcpy(index, t->mapping->fIndex, UCMP32_kIndexCount*sizeof(uint16_t));
r->mapping = ucmp32_openAdopt(index, array, t->mapping->fCount);
}
/* expansions */
if(t->expansions != NULL) {
r->expansions = (ExpansionTable *)uprv_malloc(sizeof(ExpansionTable));
r->expansions->position = t->expansions->position;
r->expansions->size = t->expansions->size;
if(t->expansions->CEs != NULL) {
r->expansions->CEs = (uint32_t *)uprv_malloc(sizeof(uint32_t)*t->expansions->size);
uprv_memcpy(r->expansions->CEs, t->expansions->CEs, sizeof(uint32_t)*t->expansions->size);
} else {
t->expansions->CEs = NULL;
}
}
if(t->contractions != NULL) {
r->contractions = uprv_cnttab_clone(t->contractions);
r->contractions->mapping = r->mapping;
}
if(t->maxExpansions != NULL) {
r->maxExpansions = (MaxExpansionTable *)uprv_malloc(sizeof(MaxExpansionTable));
r->maxExpansions->size = t->maxExpansions->size;
r->maxExpansions->position = t->maxExpansions->position;
if(t->maxExpansions->endExpansionCE != NULL) {
r->maxExpansions->endExpansionCE = (uint32_t *)uprv_malloc(sizeof(uint32_t)*t->maxExpansions->size);
uprv_memcpy(r->maxExpansions->endExpansionCE, t->maxExpansions->endExpansionCE, t->maxExpansions->size*sizeof(uint32_t));
} else {
r->maxExpansions->endExpansionCE = NULL;
}
if(t->maxExpansions->expansionCESize != NULL) {
r->maxExpansions->expansionCESize = (uint8_t *)uprv_malloc(sizeof(uint8_t)*t->maxExpansions->size);
uprv_memcpy(r->maxExpansions->expansionCESize, t->maxExpansions->expansionCESize, t->maxExpansions->size*sizeof(uint8_t));
} else {
r->maxExpansions->expansionCESize = NULL;
}
}
if(t->unsafeCP != NULL) {
r->unsafeCP = (uint8_t *)uprv_malloc(UCOL_UNSAFECP_TABLE_SIZE);
uprv_memcpy(r->unsafeCP, t->unsafeCP, UCOL_UNSAFECP_TABLE_SIZE);
}
if(t->contrEndCP != NULL) {
r->contrEndCP = (uint8_t *)uprv_malloc(UCOL_UNSAFECP_TABLE_SIZE);
uprv_memcpy(r->contrEndCP, t->contrEndCP, UCOL_UNSAFECP_TABLE_SIZE);
}
r->UCA = t->UCA;
r->image = t->image;
r->options = t->options;
return r;
}
void uprv_uca_closeTempTable(tempUCATable *t) {
uprv_free(t->expansions->CEs);
uprv_free(t->expansions);
if(t->contractions != NULL) {
uprv_cnttab_close(t->contractions);
}
ucmp32_close(t->mapping);
uprv_free(t->maxExpansions->endExpansionCE);
uprv_free(t->maxExpansions->expansionCESize);
uprv_free(t->maxExpansions);
uprv_free(t->unsafeCP);
uprv_free(t->contrEndCP);
uprv_free(t);
}
/**
* Looks for the maximum length of all expansion sequences ending with the same
* collation element. The size required for maxexpansion and maxsize is
* returned if the arrays are too small.
* @param endexpansion the last expansion collation element to be added
* @param expansionsize size of the expansion
* @param maxexpansion data structure to store the maximum expansion data.
* @param status error status
* @returns size of the maxexpansion and maxsize used.
*/
int uprv_uca_setMaxExpansion(uint32_t endexpansion,
uint8_t expansionsize,
MaxExpansionTable *maxexpansion,
UErrorCode *status)
{
if (maxexpansion->size == 0) {
/* we'll always make the first element 0, for easier manipulation */
maxexpansion->endExpansionCE =
(uint32_t *)uprv_malloc(INIT_EXP_TABLE_SIZE * sizeof(int32_t));
*(maxexpansion->endExpansionCE) = 0;
maxexpansion->expansionCESize =
(uint8_t *)uprv_malloc(INIT_EXP_TABLE_SIZE * sizeof(uint8_t));
*(maxexpansion->expansionCESize) = 0;
maxexpansion->size = INIT_EXP_TABLE_SIZE;
maxexpansion->position = 0;
}
if (maxexpansion->position + 1 == maxexpansion->size) {
uint32_t *neweece = (uint32_t *)uprv_realloc(maxexpansion->endExpansionCE,
2 * maxexpansion->size * sizeof(uint32_t));
uint8_t *neweces = (uint8_t *)uprv_realloc(maxexpansion->expansionCESize,
2 * maxexpansion->size * sizeof(uint8_t));
if (neweece == NULL || neweces == NULL) {
#ifdef UCOL_DEBUG
fprintf(stderr, "out of memory for maxExpansions\n");
#endif
*status = U_MEMORY_ALLOCATION_ERROR;
return -1;
}
maxexpansion->endExpansionCE = neweece;
maxexpansion->expansionCESize = neweces;
maxexpansion->size *= 2;
}
uint32_t *pendexpansionce = maxexpansion->endExpansionCE;
uint8_t *pexpansionsize = maxexpansion->expansionCESize;
int pos = maxexpansion->position;
uint32_t *start = pendexpansionce;
uint32_t *limit = pendexpansionce + pos;
/* using binary search to determine if last expansion element is
already in the array */
uint32_t *mid;
int result = -1;
while (start < limit - 1) {
mid = start + ((limit - start) >> 1);
if (endexpansion <= *mid) {
limit = mid;
}
else {
start = mid;
}
}
if (*start == endexpansion) {
result = start - pendexpansionce;
}
else
if (*limit == endexpansion) {
result = limit - pendexpansionce;
}
if (result > -1) {
/* found the ce in expansion, we'll just modify the size if it is
smaller */
uint8_t *currentsize = pexpansionsize + result;
if (*currentsize < expansionsize) {
*currentsize = expansionsize;
}
}
else {
/* we'll need to squeeze the value into the array.
initial implementation. */
/* shifting the subarray down by 1 */
int shiftsize = (pendexpansionce + pos) - start;
uint32_t *shiftpos = start + 1;
uint8_t *sizeshiftpos = pexpansionsize + (shiftpos - pendexpansionce);
/* okay need to rearrange the array into sorted order */
if (shiftsize == 0 || *(pendexpansionce + pos) < endexpansion) {
*(pendexpansionce + pos + 1) = endexpansion;
*(pexpansionsize + pos + 1) = expansionsize;
}
else {
uprv_memmove(shiftpos + 1, shiftpos, shiftsize * sizeof(int32_t));
uprv_memmove(sizeshiftpos + 1, sizeshiftpos,
shiftsize * sizeof(uint8_t));
*shiftpos = endexpansion;
*sizeshiftpos = expansionsize;
}
maxexpansion->position ++;
#ifdef UCOL_DEBUG
int temp;
UBool found = FALSE;
for (temp = 0; temp < maxexpansion->position; temp ++) {
if (pendexpansionce[temp] >= pendexpansionce[temp + 1]) {
fprintf(stderr, "expansions %d\n", temp);
}
if (pendexpansionce[temp] == endexpansion) {
found =TRUE;
if (pexpansionsize[temp] < expansionsize) {
fprintf(stderr, "expansions size %d\n", temp);
}
}
}
if (pendexpansionce[temp] == endexpansion) {
found =TRUE;
if (pexpansionsize[temp] < expansionsize) {
fprintf(stderr, "expansions size %d\n", temp);
}
}
if (!found)
fprintf(stderr, "expansion not found %d\n", temp);
#endif
}
return maxexpansion->position;
}
static void ContrEndCPSet(uint8_t *table, UChar c) {
uint32_t hash;
uint8_t *htByte;
hash = c;
if (hash >= UCOL_UNSAFECP_TABLE_SIZE*8) {
hash = (hash & UCOL_UNSAFECP_TABLE_MASK) + 256;
}
htByte = &table[hash>>3];
*htByte |= (1 << (hash & 7));
}
static void unsafeCPSet(uint8_t *table, UChar c) {
uint32_t hash;
uint8_t *htByte;
hash = c;
if (hash >= UCOL_UNSAFECP_TABLE_SIZE*8) {
if (hash >= 0xd800 && hash <= 0xf8ff) {
/* Part of a surrogate, or in private use area. */
/* These don't go in the table */
return;
}
hash = (hash & UCOL_UNSAFECP_TABLE_MASK) + 256;
}
htByte = &table[hash>>3];
*htByte |= (1 << (hash & 7));
}
/* to the UnsafeCP hash table, add all chars with combining class != 0 */
void uprv_uca_unsafeCPAddCCNZ(tempUCATable *t) {
UChar c;
for (c=0; c<0xffff; c++) {
if (u_getCombiningClass(c) != 0)
unsafeCPSet(t->unsafeCP, c);
}
}
uint32_t uprv_uca_addContraction(tempUCATable *t, uint32_t CE, UCAElements *element, UErrorCode *status) {
uint32_t i = 0;
for (i=1; i<element->cSize; i++) { /* First add contraction chars to unsafe CP hash table */
unsafeCPSet(t->unsafeCP, element->cPoints[i]);
}
// Add the last char of the contraction to the contraction-end hash table.
ContrEndCPSet(t->contrEndCP, element->cPoints[element->cSize -1]);
if(UCOL_ISJAMO(element->cPoints[0])) {
t->image->jamoSpecial = TRUE;
}
/* then we need to deal with it */
/* we could aready have something in table - or we might not */
/* The fact is that we want to add or modify an existing contraction */
/* and add it backwards then */
uint32_t result = uprv_uca_processContraction(t->contractions, element, CE, status);
if(CE == UCOL_NOT_FOUND || !isContraction(CE)) {
ucmp32_set(t->mapping, element->cPoints[0], result);
}
return result;
}
/* This adds a read element, while testing for existence */
uint32_t uprv_uca_addAnElement(tempUCATable *t, UCAElements *element, UErrorCode *status) {
CompactIntArray *mapping = t->mapping;
ExpansionTable *expansions = t->expansions;
CntTable *contractions = t->contractions;
uint32_t i = 1;
uint32_t expansion = 0;
uint32_t CE;
if(U_FAILURE(*status)) {
return 0xFFFF;
}
if(element->noOfCEs == 1) {
if(element->isThai == FALSE) {
element->mapCE = element->CEs[0];
} else { /* add thai - totally bad here */
expansion = UCOL_SPECIAL_FLAG | (THAI_TAG<<UCOL_TAG_SHIFT)
| ((uprv_uca_addExpansion(expansions, element->CEs[0], status)+(headersize>>2))<<4)
| 0x1;
element->mapCE = expansion;
}
} else {
expansion = UCOL_SPECIAL_FLAG | (EXPANSION_TAG<<UCOL_TAG_SHIFT)
| ((uprv_uca_addExpansion(expansions, element->CEs[0], status)+(headersize>>2))<<4)
& 0xFFFFF0;
for(i = 1; i<element->noOfCEs; i++) {
uprv_uca_addExpansion(expansions, element->CEs[i], status);
}
if(element->noOfCEs <= 0xF) {
expansion |= element->noOfCEs;
} else {
uprv_uca_addExpansion(expansions, 0, status);
}
element->mapCE = expansion;
uprv_uca_setMaxExpansion(element->CEs[element->noOfCEs - 1],
(uint8_t)element->noOfCEs,
t->maxExpansions,
status);
if(UCOL_ISJAMO(element->cPoints[0])) {
t->image->jamoSpecial = TRUE;
}
}
CE = ucmp32_get(mapping, element->cPoints[0]);
if(element->cSize > 1) { /* we're adding a contraction */
UCAElements *composed = (UCAElements *)uprv_malloc(sizeof(UCAElements));
uprv_memcpy(composed, element, sizeof(UCAElements));
composed->cPoints = composed->uchars;
*composed->cPoints = *element->cPoints;
composed->cSize = unorm_normalize(element->cPoints+1, element->cSize-1, UNORM_NFC, 0, composed->cPoints+1, 128, status);
composed->cSize++;
if(composed->cSize != element->cSize || uprv_memcmp(composed->cPoints+1, element->cPoints+1, element->cSize-1)) {
// do it!
CE = uprv_uca_addContraction(t, CE, composed, status);
#ifdef UCOL_DEBUG
fprintf(stderr, "Adding composed for %04X\n", *element->cPoints);
#endif
}
uprv_free(composed);
CE = uprv_uca_addContraction(t, CE, element, status);
} else { /* easy case, */
if( CE != UCOL_NOT_FOUND) {
if(isContraction(CE)) { /* adding a non contraction element (thai, expansion, single) to already existing contraction */
uprv_cnttab_setContraction(contractions, CE, 0, 0, element->mapCE, status);
/* This loop has to change the CE at the end of contraction REDO!*/
uprv_cnttab_changeLastCE(contractions, CE, element->mapCE, status);
} else {
ucmp32_set(mapping, element->cPoints[0], element->mapCE);
#ifdef UCOL_DEBUG
fprintf(stderr, "Warning - trying to overwrite existing data %08X for cp %04X with %08X\n", CE, element->cPoints[0], element->CEs[0]);
//*status = U_ILLEGAL_ARGUMENT_ERROR;
#endif
}
} else {
ucmp32_set(mapping, element->cPoints[0], element->mapCE);
}
}
return CE;
}
uint32_t uprv_uca_processContraction(CntTable *contractions, UCAElements *element, uint32_t existingCE, UErrorCode *status) {
int32_t firstContractionOffset = 0;
int32_t contractionOffset = 0;
uint32_t contractionElement = UCOL_NOT_FOUND;
if(U_FAILURE(*status)) {
return UCOL_NOT_FOUND;
}
/* end of recursion */
if(element->cSize == 1) {
if(isContraction(existingCE)) {
uprv_cnttab_changeContraction(contractions, existingCE, 0, element->mapCE, status);
uprv_cnttab_changeContraction(contractions, existingCE, 0xFFFF, element->mapCE, status);
return existingCE;
} else {
return element->mapCE; /*can't do just that. existingCe might be a contraction, meaning that we need to do another step */
}
}
/* this recursion currently feeds on the only element we have... We will have to copy it in order to accomodate */
/* for both backward and forward cycles */
/* we encountered either an empty space or a non-contraction element */
/* this means we are constructing a new contraction sequence */
if(existingCE == UCOL_NOT_FOUND || !isContraction(existingCE)) {
/* if it wasn't contraction, we wouldn't end up here*/
firstContractionOffset = uprv_cnttab_addContraction(contractions, UPRV_CNTTAB_NEWELEMENT, 0, existingCE, status);
UChar toAdd = element->cPoints[1];
element->cPoints++;
element->cSize--;
uint32_t newCE = uprv_uca_processContraction(contractions, element, UCOL_NOT_FOUND, status);
element->cPoints--;
element->cSize++;
contractionOffset = uprv_cnttab_addContraction(contractions, firstContractionOffset, toAdd, newCE, status);
contractionOffset = uprv_cnttab_addContraction(contractions, firstContractionOffset, 0xFFFF, existingCE, status);
contractionElement = constructContractCE(firstContractionOffset);
return contractionElement;
} else { /* we are adding to existing contraction */
/* there were already some elements in the table, so we need to add a new contraction */
/* Two things can happen here: either the codepoint is already in the table, or it is not */
uint32_t position = uprv_cnttab_findCP(contractions, existingCE, *(element->cPoints+1), status);
element->cPoints++;
element->cSize--;
if(position != 0) { /* if it is we just continue down the chain */
uint32_t eCE = uprv_cnttab_getCE(contractions, existingCE, position, status);
uint32_t newCE = uprv_uca_processContraction(contractions, element, eCE, status);
uprv_cnttab_setContraction(contractions, existingCE, position, *(element->cPoints), newCE, status);
} else { /* if it isn't, we will have to create a new sequence */
uint32_t newCE = uprv_uca_processContraction(contractions, element, UCOL_NOT_FOUND, status);
uprv_cnttab_insertContraction(contractions, existingCE, *(element->cPoints), newCE, status);
}
element->cPoints--;
element->cSize++;
return existingCE;
}
}
void uprv_uca_getMaxExpansionHangul(CompactIntArray *mapping,
MaxExpansionTable *maxexpansion,
UErrorCode *status)
{
const uint32_t VBASE = 0x1161;
const uint32_t TBASE = 0x11A7;
const uint32_t VCOUNT = 21;
const uint32_t TCOUNT = 28;
uint32_t v = VBASE + VCOUNT - 1;
uint32_t t = TBASE + TCOUNT - 1;
uint32_t ce;
while (v >= VBASE)
{
ce = ucmp32_get(mapping, v);
uprv_uca_setMaxExpansion(ce, 2, maxexpansion, status);
v --;
}
while (t >= TBASE)
{
ce = ucmp32_get(mapping, t);
uprv_uca_setMaxExpansion(ce, 3, maxexpansion, status);
t --;
}
}
UCATableHeader *uprv_uca_assembleTable(tempUCATable *t, UErrorCode *status) {
CompactIntArray *mapping = t->mapping;
ExpansionTable *expansions = t->expansions;
CntTable *contractions = t->contractions;
MaxExpansionTable *maxexpansion = t->maxExpansions;
if(U_FAILURE(*status)) {
return NULL;
}
uint32_t beforeContractions = (headersize+paddedsize(expansions->position*sizeof(uint32_t)))/sizeof(UChar);
int32_t contractionsSize = 0;
contractionsSize = uprv_cnttab_constructTable(contractions, beforeContractions, status);
ucmp32_compact(mapping, 1);
UMemoryStream *ms = uprv_mstrm_openNew(8192);
int32_t mappingSize = ucmp32_flattenMem(mapping, ms);
const uint8_t *flattened = uprv_mstrm_getBuffer(ms, &mappingSize);
/* sets hangul expansions */
uprv_uca_getMaxExpansionHangul(mapping, maxexpansion, status);
uint32_t tableOffset = 0;
uint8_t *dataStart;
uint32_t toAllocate = headersize+
paddedsize(expansions->position*sizeof(uint32_t))+
paddedsize(mappingSize)+
paddedsize(contractionsSize*(sizeof(UChar)+sizeof(uint32_t)))+
paddedsize(0x100*sizeof(uint32_t))
/* maxexpansion array */
+ paddedsize(maxexpansion->position * sizeof(uint32_t)) +
/* maxexpansion size array */
paddedsize(maxexpansion->position * sizeof(uint8_t)) +
paddedsize(UCOL_UNSAFECP_TABLE_SIZE) + /* Unsafe chars */
paddedsize(UCOL_UNSAFECP_TABLE_SIZE); /* Contraction Ending chars */
dataStart = (uint8_t *)malloc(toAllocate);
UCATableHeader *myData = (UCATableHeader *)dataStart;
uprv_memcpy(myData, t->image, sizeof(UCATableHeader));
#if 0
/* above memcpy should save us from problems */
myData->variableTopValue = t->image->variableTopValue;
myData->strength = t->image->strength;
myData->frenchCollation = t->image->frenchCollation;
myData->alternateHandling = t->image->alternateHandling; /* attribute for handling variable elements*/
myData->caseFirst = t->image->caseFirst; /* who goes first, lower case or uppercase */
myData->caseLevel = t->image->caseLevel; /* do we have an extra case level */
myData->normalizationMode = t->image->normalizationMode; /* attribute for normalization */
myData->version[0] = t->image->version[0];
myData->version[1] = t->image->version[1];
#endif
myData->contractionSize = contractionsSize;
tableOffset += paddedsize(sizeof(UCATableHeader));
myData->options = tableOffset;
memcpy(dataStart+tableOffset, t->options, sizeof(UColOptionSet));
tableOffset += paddedsize(sizeof(UColOptionSet));
/* copy expansions */
/*myData->expansion = (uint32_t *)dataStart+tableOffset;*/
myData->expansion = tableOffset;
memcpy(dataStart+tableOffset, expansions->CEs, expansions->position*sizeof(uint32_t));
tableOffset += paddedsize(expansions->position*sizeof(uint32_t));
/* contractions block */
if(contractionsSize != 0) {
/* copy contraction index */
/*myData->contractionIndex = (UChar *)(dataStart+tableOffset);*/
myData->contractionIndex = tableOffset;
memcpy(dataStart+tableOffset, contractions->codePoints, contractionsSize*sizeof(UChar));
tableOffset += paddedsize(contractionsSize*sizeof(UChar));
/* copy contraction collation elements */
/*myData->contractionCEs = (uint32_t *)(dataStart+tableOffset);*/
myData->contractionCEs = tableOffset;
memcpy(dataStart+tableOffset, contractions->CEs, contractionsSize*sizeof(uint32_t));
tableOffset += paddedsize(contractionsSize*sizeof(uint32_t));
} else {
myData->contractionIndex = 0;
myData->contractionIndex = 0;
}
/* copy mapping table */
/*myData->mappingPosition = dataStart+tableOffset;*/
myData->mappingPosition = tableOffset;
memcpy(dataStart+tableOffset, flattened, mappingSize);
tableOffset += paddedsize(mappingSize);
/* construct the fast tracker for latin one*/
myData->latinOneMapping = tableOffset;
uint32_t *store = (uint32_t*)(dataStart+tableOffset);
int32_t i = 0;
for(i = 0; i<=0xFF; i++) {
*(store++) = ucmp32_get(mapping,i);
tableOffset+=sizeof(uint32_t);
}
/* copy max expansion table */
myData->endExpansionCE = tableOffset;
myData->endExpansionCECount = maxexpansion->position;
/* not copying the first element which is a dummy */
uprv_memcpy(dataStart + tableOffset, maxexpansion->endExpansionCE + 1,
maxexpansion->position * sizeof(uint32_t));
tableOffset += paddedsize(maxexpansion->position * sizeof(uint32_t));
myData->expansionCESize = tableOffset;
uprv_memcpy(dataStart + tableOffset, maxexpansion->expansionCESize + 1,
maxexpansion->position * sizeof(uint8_t));
tableOffset += paddedsize(maxexpansion->position * sizeof(uint8_t));
/* Unsafe chars table. Finish it off, then copy it. */
uprv_uca_unsafeCPAddCCNZ(t);
if (t->UCA != 0) { /* Or in unsafebits from UCA, making a combined table. */
for (i=0; i<UCOL_UNSAFECP_TABLE_SIZE; i++) {
t->unsafeCP[i] |= t->UCA->unsafeCP[i];
}
}
myData->unsafeCP = tableOffset;
uprv_memcpy(dataStart + tableOffset, t->unsafeCP, UCOL_UNSAFECP_TABLE_SIZE);
tableOffset += paddedsize(UCOL_UNSAFECP_TABLE_SIZE);
/* Finish building Contraction Ending chars hash table and then copy it out. */
if (t->UCA != 0) { /* Or in unsafebits from UCA, making a combined table. */
for (i=0; i<UCOL_UNSAFECP_TABLE_SIZE; i++) {
t->contrEndCP[i] |= t->UCA->contrEndCP[i];
}
}
myData->contrEndCP = tableOffset;
uprv_memcpy(dataStart + tableOffset, t->contrEndCP, UCOL_UNSAFECP_TABLE_SIZE);
tableOffset += paddedsize(UCOL_UNSAFECP_TABLE_SIZE);
if(tableOffset != toAllocate) {
#ifdef UCOL_DEBUG
fprintf(stderr, "calculation screwup!!! Expected to write %i but wrote %i instead!!!\n", toAllocate, tableOffset);
#endif
*status = U_INTERNAL_PROGRAM_ERROR;
free(dataStart);
return 0;
}
myData->size = tableOffset;
/* This should happen upon ressurection */
/*const uint8_t *mapPosition = (uint8_t*)myData+myData->mappingPosition;*/
uprv_mstrm_close(ms);
return myData;
}