blob: 43b9ba105f3a3b4a281800866ed04a0eeaabb65a [file] [log] [blame]
/*
*******************************************************************************
* Copyright (C) 1999, International Business Machines Corporation and *
* others. All Rights Reserved. *
*******************************************************************************
*
* File unistr.cpp
*
* Modification History:
*
* Date Name Description
* 09/25/98 stephen Creation.
* 04/20/99 stephen Overhauled per 4/16 code review.
* 07/09/99 stephen Renamed {hi,lo},{byte,word} to icu_X for HP/UX
* 11/18/99 aliu Added handleReplaceBetween() to make inherit from
* Replaceable.
*******************************************************************************
*/
#include "unicode/utypes.h"
#include "unicode/putil.h"
#include "unicode/locid.h"
#include "cstring.h"
#include "cmemory.h"
#include "unicode/ustring.h"
#include "mutex.h"
#include "unicode/unistr.h"
#include "uhash.h"
#if U_IOSTREAM_SOURCE >= 199711
#include <iostream>
using namespace std;
#elif U_IOSTREAM_SOURCE >= 198506
#include <iostream.h>
#endif
#if 0
//DEBUGGING
void
print(const UnicodeString& s,
const char *name)
{
UChar c;
cout << name << ":|";
for(int i = 0; i < s.length(); ++i) {
c = s[i];
if(c>= 0x007E || c < 0x0020)
cout << "[0x" << hex << s[i] << "]";
else
cout << (char) s[i];
}
cout << '|' << endl;
}
void
print(const UChar *s,
int32_t len,
const char *name)
{
UChar c;
cout << name << ":|";
for(int i = 0; i < len; ++i) {
c = s[i];
if(c>= 0x007E || c < 0x0020)
cout << "[0x" << hex << s[i] << "]";
else
cout << (char) s[i];
}
cout << '|' << endl;
}
// END DEBUGGING
#endif
// Local function definitions for now
// need to copy areas that may overlap
inline void
us_arrayCopy(const UChar *src, int32_t srcStart,
UChar *dst, int32_t dstStart, int32_t count)
{
if(count>0) {
uprv_memmove(dst+dstStart, src+srcStart, (size_t)(count*sizeof(*src)));
}
}
UConverter* UnicodeString::fgDefaultConverter = 0;
//========================================
// Unescaping
//========================================
U_COMMON_API UnicodeString
u_unescape(const UnicodeString &s) {
/* ### TBD */
return s;
}
U_COMMON_API UChar32
u_unescape(const UnicodeString &s, int32_t &offset) {
/* ### TBD */
return 0xffff;
}
//========================================
// Constructors
//========================================
UnicodeString::UnicodeString()
: fArray(fStackBuffer),
fLength(0),
fCapacity(US_STACKBUF_SIZE),
fFlags(kShortString)
{}
UnicodeString::UnicodeString(int32_t capacity, UChar32 c, int32_t count)
: fArray(0),
fLength(0),
fCapacity(US_STACKBUF_SIZE),
fFlags(0)
{
if(count <= 0) {
// just allocate and do not do anything else
allocate(capacity);
} else {
// count > 0, allocate and fill the new string with count c's
int32_t unitCount = UTF_CHAR_LENGTH(c), length = count * unitCount;
if(capacity < length) {
capacity = length;
}
if(allocate(capacity)) {
int32_t i = 0;
// fill the new string with c
if(unitCount == 1) {
// fill with length UChars
while(i < length) {
fArray[i++] = (UChar)c;
}
} else {
// get the code units for c
UChar units[UTF_MAX_CHAR_LENGTH];
UTF_APPEND_CHAR_UNSAFE(units, i, c);
// now it must be i==unitCount
i = 0;
// for Unicode, unitCount can only be 1, 2, 3, or 4
// 1 is handled above
switch(unitCount) {
case 2:
while(i < length) {
fArray[i++]=units[0];
fArray[i++]=units[1];
}
break;
case 3:
while(i < length) {
fArray[i++]=units[0];
fArray[i++]=units[1];
fArray[i++]=units[2];
}
break;
case 4:
while(i < length) {
fArray[i++]=units[0];
fArray[i++]=units[1];
fArray[i++]=units[2];
fArray[i++]=units[3];
}
break;
default:
break;
}
}
}
fLength = length;
}
}
UnicodeString::UnicodeString(UChar ch)
: fArray(fStackBuffer),
fLength(1),
fCapacity(US_STACKBUF_SIZE),
fFlags(kShortString)
{
fStackBuffer[0] = ch;
}
UnicodeString::UnicodeString(UChar32 ch)
: fArray(fStackBuffer),
fLength(1),
fCapacity(US_STACKBUF_SIZE),
fFlags(kShortString)
{
UTextOffset i = 0;
UTF_APPEND_CHAR(fStackBuffer, i, US_STACKBUF_SIZE, ch);
fLength = i;
}
UnicodeString::UnicodeString(const UChar *text)
: fArray(fStackBuffer),
fLength(0),
fCapacity(US_STACKBUF_SIZE),
fFlags(kShortString)
{
doReplace(0, 0, text, 0, u_strlen(text));
}
UnicodeString::UnicodeString(const UChar *text,
int32_t textLength)
: fArray(fStackBuffer),
fLength(0),
fCapacity(US_STACKBUF_SIZE),
fFlags(kShortString)
{
doReplace(0, 0, text, 0, textLength);
}
UnicodeString::UnicodeString(UBool isTerminated,
const UChar *text,
int32_t textLength)
: fArray((UChar *)text),
fLength(textLength),
fCapacity(isTerminated ? textLength + 1 : textLength),
fFlags(kReadonlyAlias)
{
if(text == 0 || textLength < -1 || textLength == -1 && !isTerminated) {
setToBogus();
} else if(textLength == -1) {
// text is terminated, or else it would have failed the above test
fLength = u_strlen(text);
fCapacity = fLength + 1;
}
}
UnicodeString::UnicodeString(UChar *buff,
int32_t bufLength,
int32_t buffCapacity)
: fArray(buff),
fLength(bufLength),
fCapacity(buffCapacity),
fFlags(kWriteableAlias)
{
if(buff == 0 || bufLength < 0 || bufLength > buffCapacity) {
setToBogus();
}
}
UnicodeString::UnicodeString(const char *codepageData,
const char *codepage)
: fArray(fStackBuffer),
fLength(0),
fCapacity(US_STACKBUF_SIZE),
fFlags(kShortString)
{
if(codepageData != 0) {
doCodepageCreate(codepageData, uprv_strlen(codepageData), codepage);
}
}
UnicodeString::UnicodeString(const char *codepageData,
int32_t dataLength,
const char *codepage)
: fArray(fStackBuffer),
fLength(0),
fCapacity(US_STACKBUF_SIZE),
fFlags(kShortString)
{
if(codepageData != 0) {
doCodepageCreate(codepageData, dataLength, codepage);
}
}
UnicodeString::UnicodeString(const UnicodeString& that)
: Replaceable(),
fArray(fStackBuffer),
fLength(0),
fCapacity(US_STACKBUF_SIZE),
fFlags(kShortString)
{
*this = that;
}
//========================================
// array allocation
//========================================
UBool
UnicodeString::allocate(int32_t capacity) {
if(capacity <= US_STACKBUF_SIZE) {
fArray = fStackBuffer;
fCapacity = US_STACKBUF_SIZE;
fFlags = kShortString;
} else {
// count bytes for the refCounter and the string capacity, and
// round up to a multiple of 16; then divide by 4 and allocate int32_t's
// to be safely aligned for the refCount
int32_t words = ((sizeof(int32_t) + capacity * U_SIZEOF_UCHAR + 15) & ~15) >> 2;
int32_t *array = new int32_t[words];
if(array != 0) {
// set initial refCount and point behind the refCount
*array++ = 1;
// have fArray point to the first UChar
fArray = (UChar *)array;
fCapacity = (words - 1) * (sizeof(int32_t) / U_SIZEOF_UCHAR);
fFlags = kLongString;
} else {
fArray = 0;
fCapacity = 0;
fFlags = kIsBogus;
return FALSE;
}
}
return TRUE;
}
//========================================
// Destructor
//========================================
UnicodeString::~UnicodeString()
{
releaseArray();
}
//========================================
// Assignment
//========================================
UnicodeString&
UnicodeString::operator= (const UnicodeString& src)
{
// if assigning to ourselves, do nothing
if(this == 0 || this == &src) {
return *this;
}
// is the right side bogus?
if(&src == 0 || src.isBogus()) {
setToBogus();
return *this;
}
// delete the current contents
releaseArray();
// we always copy the length and the hash code
fLength = src.fLength;
switch(src.fFlags) {
case kShortString:
// short string using the stack buffer, do the same
fArray = fStackBuffer;
fCapacity = US_STACKBUF_SIZE;
fFlags = kShortString;
if(fLength > 0) {
uprv_memcpy(fStackBuffer, src.fArray, fLength * U_SIZEOF_UCHAR);
}
break;
case kLongString:
// src uses a refCounted string buffer, use that buffer with refCount
// src is const, use a cast - we don't really change it
((UnicodeString &)src).addRef();
// fall through to readonly alias copying: copy all fields
case kReadonlyAlias:
// src is a readonly alias, do the same
fArray = src.fArray;
fCapacity = src.fCapacity;
fFlags = src.fFlags;
break;
case kWriteableAlias:
// src is a writeable alias; we make a copy of that instead
if(allocate(fLength)) {
if(fLength > 0) {
uprv_memcpy(fArray, src.fArray, fLength * U_SIZEOF_UCHAR);
}
break;
}
// if there is not enough memory, then fall through to setting to bogus
default:
// if src is bogus, set ourselves to bogus
// do not call setToBogus() here because fArray and fFlags are not consistent here
fArray = 0;
fLength = 0;
fCapacity = 0;
fFlags = kIsBogus;
break;
}
return *this;
}
//========================================
// Miscellaneous operations
//========================================
int32_t
UnicodeString::numDisplayCells( UTextOffset start,
int32_t length,
UBool asian) const
{
// pin indices to legal values
pinIndices(start, length);
UChar32 c;
int32_t result = 0;
UTextOffset limit = start + length;
while(start < limit) {
UTF_NEXT_CHAR(fArray, start, limit, c);
switch(Unicode::getCellWidth(c)) {
case Unicode::ZERO_WIDTH:
break;;
case Unicode::HALF_WIDTH:
result += 1;
break;
case Unicode::FULL_WIDTH:
result += 2;
break;
case Unicode::NEUTRAL:
result += (asian ? 2 : 1);
break;
}
}
return result;
}
UCharReference
UnicodeString::operator[] (UTextOffset pos)
{
return UCharReference(this, pos);
}
UnicodeString UnicodeString::unescape() const {
UnicodeString result;
for (int32_t i=0; i<length(); ) {
UChar32 c = char32At(i++);
if (c == 0x005C /*'\\'*/) {
c = unescapeAt(i); // advances i
if (c == (UChar32)0xFFFFFFFF) {
break; // invalid escape sequence
}
}
result.append(c);
}
return result;
}
// u_unescapeAt() callback to get a UChar from a UnicodeString
U_CFUNC UChar _charAt(int32_t offset, void *context) {
return ((UnicodeString*) context)->charAt(offset);
}
UChar32 UnicodeString::unescapeAt(int32_t &offset) const {
return u_unescapeAt(_charAt, &offset, length(), (void*)this);
}
//========================================
// Read-only implementation
//========================================
int8_t
UnicodeString::doCompare( UTextOffset start,
int32_t length,
const UChar *srcChars,
UTextOffset srcStart,
int32_t srcLength) const
{
// compare illegal string values
if(isBogus()) {
if(srcChars==0) {
return 0;
} else {
return -1;
}
} else if(srcChars==0) {
return 1;
}
// pin indices to legal values
pinIndices(start, length);
// get the correct pointer
const UChar *chars = getArrayStart();
// are we comparing the same buffer contents?
if(chars + start == srcChars + srcStart) {
return 0;
}
UTextOffset minLength;
int8_t lengthResult;
// are we comparing different lengths?
if(length != srcLength) {
if(length < srcLength) {
minLength = length;
lengthResult = -1;
} else {
minLength = srcLength;
lengthResult = 1;
}
} else {
minLength = length;
lengthResult = 0;
}
/*
* note that uprv_memcmp() returns an int but we return an int8_t;
* we need to take care not to truncate the result -
* one way to do this is to right-shift the value to
* move the sign bit into the lower 8 bits and making sure that this
* does not become 0 itself
*/
if(minLength > 0) {
int32_t result;
if(U_IS_BIG_ENDIAN) {
// big-endian: byte comparison works
result = uprv_memcmp(chars + start, srcChars + srcStart, minLength * sizeof(UChar));
if(result != 0) {
return (int8_t)(result >> 15 | 1);
}
} else {
// little-endian: compare UChar units
chars += start;
srcChars += srcStart;
do {
result = ((int32_t)*chars - (int32_t)*srcChars);
if(result != 0) {
return (int8_t)(result >> 15 | 1);
}
++chars;
++srcChars;
} while(--minLength > 0);
}
}
return lengthResult;
}
void
UnicodeString::doExtract(UTextOffset start,
int32_t length,
UChar *dst,
UTextOffset dstStart) const
{
// do not copy anything if we alias dst itself
if(fArray + start != dst + dstStart) {
// pin indices to legal values
pinIndices(start, length);
us_arrayCopy(getArrayStart(), start, dst, dstStart, length);
}
}
UTextOffset
UnicodeString::indexOf(const UChar *srcChars,
UTextOffset srcStart,
int32_t srcLength,
UTextOffset start,
int32_t length) const
{
if(isBogus() || srcChars == 0 || srcStart < 0 || srcLength <= 0) {
return -1;
}
// now we will only work with srcLength-1
--srcLength;
// get the indices within bounds
pinIndices(start, length);
// set length for the last possible match start position
// note the --srcLength above
length -= srcLength;
if(length <= 0) {
return -1;
}
const UChar *array = getArrayStart();
UTextOffset limit = start + length;
// search for the first char, then compare the rest of the string
// increment srcStart here for that, matching the --srcLength above
UChar ch = srcChars[srcStart++];
do {
if(array[start] == ch && (srcLength == 0 || compare(start + 1, srcLength, srcChars, srcStart, srcLength) == 0)) {
return start;
}
} while(++start < limit);
return -1;
}
UTextOffset
UnicodeString::doIndexOf(UChar c,
UTextOffset start,
int32_t length) const
{
// pin indices
pinIndices(start, length);
if(length == 0) {
return -1;
}
// find the first occurrence of c
const UChar *begin = getArrayStart() + start;
const UChar *limit = begin + length;
do {
if(*begin == c) {
return begin - getArrayStart();
}
} while(++begin < limit);
return -1;
}
UTextOffset
UnicodeString::lastIndexOf(const UChar *srcChars,
UTextOffset srcStart,
int32_t srcLength,
UTextOffset start,
int32_t length) const
{
if(isBogus() || srcChars == 0 || srcStart < 0 || srcLength <= 0) {
return -1;
}
// now we will only work with srcLength-1
--srcLength;
// get the indices within bounds
pinIndices(start, length);
// set length for the last possible match start position
// note the --srcLength above
length -= srcLength;
if(length <= 0) {
return -1;
}
const UChar *array = getArrayStart();
UTextOffset pos;
// search for the first char, then compare the rest of the string
// increment srcStart here for that, matching the --srcLength above
UChar ch = srcChars[srcStart++];
pos = start + length;
do {
if(array[--pos] == ch && (srcLength == 0 || compare(pos + 1, srcLength, srcChars, srcStart, srcLength) == 0)) {
return pos;
}
} while(pos > start);
return -1;
}
UTextOffset
UnicodeString::doLastIndexOf(UChar c,
UTextOffset start,
int32_t length) const
{
if(isBogus()) {
return -1;
}
// pin indices
pinIndices(start, length);
if(length == 0) {
return -1;
}
const UChar *begin = getArrayStart() + start;
const UChar *limit = begin + length;
do {
if(*--limit == c) {
return limit - getArrayStart();
}
} while(limit > begin);
return -1;
}
UnicodeString&
UnicodeString::findAndReplace(UTextOffset start,
int32_t length,
const UnicodeString& oldText,
UTextOffset oldStart,
int32_t oldLength,
const UnicodeString& newText,
UTextOffset newStart,
int32_t newLength)
{
if(isBogus() || oldText.isBogus() || newText.isBogus()) {
return *this;
}
pinIndices(start, length);
oldText.pinIndices(oldStart, oldLength);
newText.pinIndices(newStart, newLength);
if(oldLength == 0) {
return *this;
}
while(length > 0 && length >= oldLength) {
UTextOffset pos = indexOf(oldText, oldStart, oldLength, start, length);
if(pos < 0) {
// no more oldText's here: done
break;
} else {
// we found oldText, replace it by newText and go beyond it
replace(pos, oldLength, newText, newStart, newLength);
length -= pos + oldLength - start;
start = pos + newLength;
}
}
return *this;
}
//========================================
// Write implementation
//========================================
void
UnicodeString::setToBogus()
{
releaseArray();
fArray = 0;
fCapacity = fLength = 0;
fFlags = kIsBogus;
}
// setTo() analogous to the readonly-aliasing constructor with the same signature
UnicodeString &
UnicodeString::setTo(UBool isTerminated,
const UChar *text,
int32_t textLength)
{
if(text == 0 || textLength < -1 || textLength == -1 && !isTerminated) {
setToBogus();
return *this;
}
releaseArray();
fArray = (UChar *)text;
if(textLength != -1) {
fLength = textLength;
} else {
// text is terminated, or else it would have failed the above test
fLength = u_strlen(text);
fCapacity = fLength + 1;
}
fCapacity = isTerminated ? fLength + 1 : fLength;
fFlags = kReadonlyAlias;
return *this;
}
// setTo() analogous to the writeable-aliasing constructor with the same signature
UnicodeString &
UnicodeString::setTo(UChar *buffer,
int32_t buffLength,
int32_t buffCapacity) {
if(buffer == 0 || buffLength < 0 || buffLength > buffCapacity) {
setToBogus();
return *this;
}
releaseArray();
fArray = buffer;
fLength = buffLength;
fCapacity = buffCapacity;
fFlags = kWriteableAlias;
return *this;
}
UnicodeString&
UnicodeString::setCharAt(UTextOffset offset,
UChar c)
{
if(cloneArrayIfNeeded()) {
if(offset < 0) {
offset = 0;
} else if(offset >= fLength) {
offset = fLength - 1;
}
fArray[offset] = c;
}
return *this;
}
UnicodeString&
UnicodeString::toUpper()
{ return toUpper(Locale::getDefault()); }
UnicodeString&
UnicodeString::toLower()
{ return toLower(Locale::getDefault()); }
/*
* The following toUpper() and toLower() implementations are designed
* for UTF-16 and UTF-32, not for UTF-8.
* In UTF-16 and UTF-32, the number of code units per code point is fixed,
* and a case mapping is assumed to always stay within the same plane
* (64k code range) with the original code point. This allows to write
* the mapping into the same space as the source character without
* expansions or contractions except in the special cases.
*
* For UTF-8, where a source code point may take up a variable number
* of code units, it is more efficient to get the mapping and write
* the result only if it is a different code point from the original.
* Also, a sharp s and the "SS" string typically both take up 2 bytes in UTF-8,
* while the turkish i's typically result in expansions and contractions.
* Therefore, for UTF-8, these functions should be reimplemented.
* One single implementation for all UTF's would be either clumsy
* or inefficient.
*/
#if UTF_SIZE==8
# error reimplement toUpper() and toLower() for UTF-8, see comment above
#endif
UnicodeString&
UnicodeString::toUpper(const Locale& locale)
{
if(!cloneArrayIfNeeded()) {
return *this;
}
const char *langChars = locale.getLanguage();
UTextOffset start = 0, next = 0;
UTextOffset limit = fLength;
UChar32 c;
// The German sharp S character (U+00DF)'s uppercase equivalent is
// "SS", making it the only character that expands to two characters
// when its case is changed (we don't automatically convert "SS" to
// U+00DF going to lowercase because it can only be determined from
// knowing the language whether a particular "SS" should map to
// U+00DF or "ss"). So we make a preliminary pass through the
// string looking for sharp S characters and then go back and make
// room for the extra capital Ses if we find any. [For performance,
// we only do this extra work if the language is actually German]
if(uprv_strcmp(langChars, "de") == 0) {
static UChar SS [] = { 0x0053, 0x0053 };
while(start < limit) {
// start == next here by design
UTF_NEXT_CHAR(fArray, next, limit, c);
// A sharp s needs to be replaced with two capital S's.
if(c == 0x00DF) {
doReplace(start, 1, SS, 0, 2);
start += 2;
++next; // the string expanded by one
++limit;
} else {
// Otherwise, the case conversion can be handled by the Unicode code point.
c = Unicode::toUpperCase(c);
UTF_APPEND_CHAR(fArray, start, limit, c);
}
}
} else if(uprv_strcmp(langChars, "tr") == 0) {
// If the specfied language is Turkish, then we have to special-case
// for the Turkish dotted and dotless Is. The regular lowercase i
// maps to the capital I with a dot (U+0130), and the lowercase i
// without the dot (U+0131) maps to the regular capital I
while(start < limit) {
// start == next here by design
UTF_NEXT_CHAR(fArray, next, limit, c);
if(c == 0x0069/*'i'*/) {
fArray[start++] = 0x0130;
} else if(c == 0x0131) {
fArray[start++] = 0x0049/*'I'*/;
} else {
c = Unicode::toUpperCase(c);
UTF_APPEND_CHAR(fArray, start, limit, c);
}
}
} else {
while(start < limit) {
// start == next here by design
UTF_NEXT_CHAR(fArray, next, limit, c);
c = Unicode::toUpperCase(c);
UTF_APPEND_CHAR(fArray, start, limit, c);
}
}
return *this;
}
UnicodeString&
UnicodeString::toLower(const Locale& locale)
{
if(!cloneArrayIfNeeded()) {
return *this;
}
const char *langChars = locale.getLanguage();
UTextOffset start = 0, next = 0;
UTextOffset limit = fLength;
UChar32 c;
// if the specfied language is Turkish, then we have to special-case
// for the Turkish dotted and dotless Is. The capital I with a dot
// (U+0130) maps to the regular lowercase i, and the regular capital
// I maps to the lowercase i without the dot (U+0131)
if(uprv_strcmp(langChars, "tr") == 0) {
while(start < limit) {
// start == next here by design
UTF_NEXT_CHAR(fArray, next, limit, c);
if(c == 0x0049) { // 'I'
fArray[start++] = 0x0131;
} else if(c == 0x0130) {
fArray[start++] = 0x0069; // 'i'
} else {
c = Unicode::toLowerCase(c);
UTF_APPEND_CHAR(fArray, start, limit, c);
}
}
} else if(uprv_strcmp(langChars, "el") == 0) {
// if the specfied language is Greek, then we have to special-case
// for the capital letter sigma (U+3A3), which has two lower-case
// forms. If the character following the capital sigma is a letter,
// we use the medial form (U+3C3); otherwise, we use the final form
// (U+3C2).
while(start < limit) {
// start == next here by design
UTF_NEXT_CHAR(fArray, next, limit, c);
if(c == 0x3a3) {
if(next < limit) {
UTextOffset next2 = next;
UChar32 c2;
UTF_NEXT_CHAR(fArray, next2, limit, c2);
if(Unicode::isLetter(c2)) {
fArray[start++] = 0x3C3;
} else {
fArray[start++] = 0x3C2;
}
} else {
fArray[start++] = 0x3C2;
}
} else {
c = Unicode::toLowerCase(c);
UTF_APPEND_CHAR(fArray, start, limit, c);
}
}
} else {
// if the specified language is anything other than Turkish or
// Greek, we rely on the Unicode class to do all our case mapping--
// there are no other special cases
while(start < limit) {
// start == next here by design
UTF_NEXT_CHAR(fArray, next, limit, c);
c = Unicode::toLowerCase(c);
UTF_APPEND_CHAR(fArray, start, limit, c);
}
}
return *this;
}
UnicodeString&
UnicodeString::doReplace( UTextOffset start,
int32_t length,
const UnicodeString& src,
UTextOffset srcStart,
int32_t srcLength)
{
if(!src.isBogus()) {
// pin the indices to legal values
src.pinIndices(srcStart, srcLength);
// get the characters from src
// and replace the range in ourselves with them
return doReplace(start, length, src.getArrayStart(), srcStart, srcLength);
} else {
// remove the range
return doReplace(start, length, 0, 0, 0);
}
}
UnicodeString&
UnicodeString::doReplace(UTextOffset start,
int32_t length,
const UChar *srcChars,
UTextOffset srcStart,
int32_t srcLength)
{
// if we're bogus, set us to empty first
if(isBogus()) {
fArray = fStackBuffer;
fLength = 0;
fCapacity = US_STACKBUF_SIZE;
fFlags = kShortString;
}
if(srcChars == 0) {
srcStart = srcLength = 0;
}
int32_t *bufferToDelete = 0;
// the following may change fArray but will not copy the current contents;
// therefore we need to keep the current fArray
UChar *oldArray = fArray;
int32_t oldLength = fLength;
// pin the indices to legal values
pinIndices(start, length);
// calculate the size of the string after the replace
int32_t newSize = oldLength - length + srcLength;
// clone our array and allocate a bigger array if needed
if(!cloneArrayIfNeeded(newSize, newSize + (newSize >> 2) + kGrowSize,
FALSE, &bufferToDelete)
) {
return *this;
}
// now do the replace
if(fArray != oldArray) {
// if fArray changed, then we need to copy everything except what will change
us_arrayCopy(oldArray, 0, fArray, 0, start);
us_arrayCopy(oldArray, start + length,
fArray, start + srcLength,
oldLength - (start + length));
} else if(length != srcLength) {
// fArray did not change; copy only the portion that isn't changing, leaving a hole
us_arrayCopy(oldArray, start + length,
fArray, start + srcLength,
oldLength - (start + length));
}
// now fill in the hole with the new string
us_arrayCopy(srcChars, srcStart, getArrayStart(), start, srcLength);
fLength = newSize;
// delayed delete in case srcChars == fArray when we started, and
// to keep oldArray alive for the above operations
delete [] bufferToDelete;
return *this;
}
/**
* Replaceable API
*/
void
UnicodeString::handleReplaceBetween(UTextOffset start,
UTextOffset limit,
const UnicodeString& text) {
replaceBetween(start, limit, text);
}
/**
* Replaceable API
*/
void
UnicodeString::copy(int32_t start, int32_t limit, int32_t dest) {
UChar* text = new UChar[limit - start];
extractBetween(start, limit, text, 0);
insert(dest, text, 0, limit - start);
delete[] text;
}
UnicodeString&
UnicodeString::doReverse(UTextOffset start,
int32_t length)
{
// if we're bogus, do nothing
if(isBogus() || !cloneArrayIfNeeded()) {
return *this;
}
// pin the indices to legal values
pinIndices(start, length);
UChar *left = getArrayStart() + start;
UChar *right = getArrayStart() + start + length;
UChar swap;
while(left < --right) {
swap = *left;
*left++ = *right;
*right = swap;
}
return *this;
}
UBool
UnicodeString::padLeading(int32_t targetLength,
UChar padChar)
{
if(isBogus() || fLength >= targetLength || !cloneArrayIfNeeded(targetLength)) {
return FALSE;
} else {
// move contents up by padding width
int32_t start = targetLength - fLength;
us_arrayCopy(fArray, 0, fArray, start, fLength);
// fill in padding character
while(--start >= 0) {
fArray[start] = padChar;
}
fLength = targetLength;
return TRUE;
}
}
UBool
UnicodeString::padTrailing(int32_t targetLength,
UChar padChar)
{
if(isBogus() || fLength >= targetLength || !cloneArrayIfNeeded(targetLength)) {
return FALSE;
} else {
// fill in padding character
int32_t length = targetLength;
while(--length >= fLength) {
fArray[length] = padChar;
}
fLength = targetLength;
return TRUE;
}
}
UnicodeString&
UnicodeString::trim()
{
if(isBogus()) {
return *this;
}
UChar32 c;
UTextOffset i = fLength, length;
// first cut off trailing white space
for(;;) {
length = i;
if(i <= 0) {
break;
}
UTF_PREV_CHAR(fArray, 0, i, c);
if(!(c == 0x20 || Unicode::isWhitespace(c))) {
break;
}
}
if(length < fLength) {
fLength = length;
}
// find leading white space
UTextOffset start;
i = 0;
for(;;) {
start = i;
if(i >= length) {
break;
}
UTF_NEXT_CHAR(fArray, i, length, c);
if(!(c == 0x20 || Unicode::isWhitespace(c))) {
break;
}
}
// move string forward over leading white space
if(start > 0) {
doReplace(0, start, 0, 0, 0);
}
return *this;
}
//========================================
// Hashing
//========================================
int32_t
UnicodeString::doHashCode() const
{
/* Delegate hash computation to uhash. This makes UnicodeString
* hashing consistent with UChar* hashing. */
int32_t hashCode = uhash_hashUCharsN(getArrayStart(), fLength);
if (hashCode == kInvalidHashCode) {
hashCode = kEmptyHashCode;
}
return hashCode;
}
//========================================
// Codeset conversion
//========================================
int32_t
UnicodeString::extract(UTextOffset start,
int32_t length,
char *dst,
const char *codepage) const
{
// if we're bogus or there's nothing to convert, do nothing
if(isBogus() || length <= 0) {
return 0;
}
// pin the indices to legal values
pinIndices(start, length);
// set up the conversion parameters
const UChar *mySource = getArrayStart() + start;
const UChar *mySourceEnd = mySource + length;
char *myTarget = dst;
char *myTargetLimit;
UErrorCode status = U_ZERO_ERROR;
int32_t arraySize = 0x0FFFFFFF;
// create the converter
UConverter *converter;
// if the codepage is the default, use our cache
if(codepage == 0) {
converter = getDefaultConverter(status);
} else if(*codepage == 0) {
converter = 0;
} else {
converter = ucnv_open(codepage, &status);
}
// if we failed, set the appropriate flags and return
// if it is an empty string, then use the "invariant character" conversion
if(U_FAILURE(status)) {
// close the converter
if(codepage == 0) {
releaseDefaultConverter(converter);
} else {
ucnv_close(converter);
}
return 0;
}
// perform the conversion
if(converter == 0) {
// use the "invariant characters" conversion
if(length > fLength - start) {
length = fLength - start;
}
u_UCharsToChars(mySource, myTarget, length);
return length;
}
// there is no loop here since we assume the buffer is large enough
myTargetLimit = myTarget + arraySize;
/* Pin the limit to U_MAX_PTR. NULL check is for AS/400. */
if((myTargetLimit < myTarget) || (myTargetLimit == NULL)) {
myTargetLimit = (char*)U_MAX_PTR;
}
ucnv_fromUnicode(converter, &myTarget, myTargetLimit,
&mySource, mySourceEnd, 0, TRUE, &status);
// close the converter
if(codepage == 0) {
releaseDefaultConverter(converter);
} else {
ucnv_close(converter);
}
return (myTarget - dst);
}
void
UnicodeString::doCodepageCreate(const char *codepageData,
int32_t dataLength,
const char *codepage)
{
// if there's nothing to convert, do nothing
if(codepageData == 0 || dataLength <= 0) {
return;
}
UErrorCode status = U_ZERO_ERROR;
// create the converter
// if the codepage is the default, use our cache
// if it is an empty string, then use the "invariant character" conversion
UConverter *converter = (codepage == 0 ?
getDefaultConverter(status) :
*codepage == 0 ?
0 :
ucnv_open(codepage, &status));
// if we failed, set the appropriate flags and return
if(U_FAILURE(status)) {
// close the converter
if(codepage == 0) {
releaseDefaultConverter(converter);
} else {
ucnv_close(converter);
}
setToBogus();
return;
}
// perform the conversion
if(converter == 0) {
// use the "invariant characters" conversion
if(cloneArrayIfNeeded(dataLength, dataLength, FALSE)) {
u_charsToUChars(codepageData, getArrayStart(), dataLength);
fLength = dataLength;
} else {
setToBogus();
}
return;
}
// set up the conversion parameters
const char *mySource = codepageData;
const char *mySourceEnd = mySource + dataLength;
UChar *myTarget;
// estimate the size needed:
// 1.25 UChar's per source byte should cover most cases
int32_t arraySize = dataLength + (dataLength >> 2);
// we do not care about the current contents
UBool doCopyArray = FALSE;
for(;;) {
if(!cloneArrayIfNeeded(arraySize, arraySize, doCopyArray)) {
setToBogus();
break;
}
// perform the conversion
myTarget = fArray + fLength;
ucnv_toUnicode(converter, &myTarget, fArray + fCapacity,
&mySource, mySourceEnd, 0, FALSE, &status);
// update the conversion parameters
fLength = myTarget - fArray;
// allocate more space and copy data, if needed
if(status == U_INDEX_OUTOFBOUNDS_ERROR) {
// reset the error code
status = U_ZERO_ERROR;
// keep the previous conversion results
doCopyArray = TRUE;
// estimate the new size needed, larger than before
// try 2 UChar's per remaining source byte
arraySize = fLength + 2 * (mySourceEnd - mySource);
} else {
break;
}
}
// close the converter
if(codepage == 0) {
releaseDefaultConverter(converter);
} else {
ucnv_close(converter);
}
}
//========================================
// External Buffer
//========================================
// ### TODO:
// this is very, very dirty: we should not ever expose our array to the outside,
// and this also violates the const-ness of this object
// this must be removed when the resource bundle implementation does not need it any more!
const UChar*
UnicodeString::getUChars() const {
// if we're bogus, do nothing
if(isBogus()) {
return 0;
}
if(fCapacity <= fLength || fArray[fLength] != 0) {
if(((UnicodeString &)*this).cloneArrayIfNeeded(fLength + 1)) {
fArray[fLength] = 0;
}
}
return fArray;
}
//========================================
// Miscellaneous
//========================================
UBool
UnicodeString::cloneArrayIfNeeded(int32_t newCapacity,
int32_t growCapacity,
UBool doCopyArray,
int32_t **pBufferToDelete) {
// default parameters need to be static, therefore
// the defaults are -1 to have convenience defaults
if(newCapacity == -1) {
newCapacity = fCapacity;
}
/*
* We need to make a copy of the array if
* the buffer is read-only, or
* the buffer is refCounted (shared), and refCount>1, or
* the buffer is too small.
* Return FALSE if memory could not be allocated.
*/
if(fFlags & kBufferIsReadonly ||
fFlags & kRefCounted && refCount() > 1 ||
newCapacity > fCapacity
) {
// save old values
UChar *array = fArray;
uint16_t flags = fFlags;
// check growCapacity for default value and use of the stack buffer
if(growCapacity == -1) {
growCapacity = newCapacity;
} else if(newCapacity <= US_STACKBUF_SIZE && growCapacity > US_STACKBUF_SIZE) {
growCapacity = US_STACKBUF_SIZE;
}
// allocate a new array
if(allocate(growCapacity) ||
newCapacity < growCapacity && allocate(newCapacity)
) {
if(doCopyArray) {
// copy the contents
// do not copy more than what fits - it may be smaller than before
if(fCapacity < fLength) {
fLength = fCapacity;
}
us_arrayCopy(array, 0, fArray, 0, fLength);
} else {
fLength = 0;
}
// release the old array
if(flags & kRefCounted) {
// the array is refCounted; decrement and release if 0
int32_t *pRefCount = ((int32_t *)array - 1);
if(--*pRefCount == 0) {
if(pBufferToDelete == 0) {
delete [] pRefCount;
} else {
// the caller requested to delete it himself
*pBufferToDelete = pRefCount;
}
}
}
} else {
// not enough memory for growCapacity and not even for the smaller newCapacity
// reset the old values for setToBogus() to release the array
fArray = array;
fFlags = flags;
setToBogus();
return FALSE;
}
}
return TRUE;
}
// private function for C API
U_CFUNC int32_t
T_UnicodeString_length(const UnicodeString *s)
{
return s->length();
}
// private function for C API
U_CFUNC int32_t
T_UnicodeString_extract(const UnicodeString *s, char *dst)
{
return s->extract(0, s->length(), dst, "");
}
//========================================
// Default converter caching
//========================================
UConverter*
UnicodeString::getDefaultConverter(UErrorCode &status)
{
UConverter *converter = 0;
if(fgDefaultConverter != 0) {
Mutex lock;
// need to check to make sure it wasn't taken out from under us
if(fgDefaultConverter != 0) {
converter = fgDefaultConverter;
fgDefaultConverter = 0;
}
}
// if the cache was empty, create a converter
if(converter == 0) {
converter = ucnv_open(0, &status);
if(U_FAILURE(status)) {
return 0;
}
}
return converter;
}
void
UnicodeString::releaseDefaultConverter(UConverter *converter)
{
if(fgDefaultConverter == 0) {
if (converter != 0) {
ucnv_reset(converter);
}
Mutex lock;
if(fgDefaultConverter == 0) {
fgDefaultConverter = converter;
converter = 0;
}
}
// it's safe to close a 0 converter
ucnv_close(converter);
}
//========================================
// Streaming (to be removed)
//========================================
#include "unistrm.h"
#include "filestrm.h"
inline uint8_t
uprv_hibyte(uint16_t x)
{ return (uint8_t)(x >> 8); }
inline uint8_t
uprv_lobyte(uint16_t x)
{ return (uint8_t)(x & 0xff); }
inline uint16_t
uprv_hiword(uint32_t x)
{ return (uint16_t)(x >> 16); }
inline uint16_t
uprv_loword(uint32_t x)
{ return (uint16_t)(x & 0xffff); }
inline void
writeLong(FileStream *os,
int32_t x)
{
uint16_t word = uprv_hiword((uint32_t)x);
T_FileStream_putc(os, uprv_hibyte(word));
T_FileStream_putc(os, uprv_lobyte(word));
word = uprv_loword((uint32_t)x);
T_FileStream_putc(os, uprv_hibyte(word));
T_FileStream_putc(os, uprv_lobyte(word));
}
inline int32_t
readLong(FileStream *is)
{
int32_t x = 0;
uint16_t byte;
byte = T_FileStream_getc(is);
x |= byte;
byte = T_FileStream_getc(is);
x = (x << 8) | byte;
byte = T_FileStream_getc(is);
x = (x << 8) | byte;
byte = T_FileStream_getc(is);
x = (x << 8) | byte;
return x;
}
inline void
writeUChar(FileStream *os,
UChar c)
{
T_FileStream_putc(os, uprv_hibyte(c));
T_FileStream_putc(os, uprv_lobyte(c));
}
inline UChar
readUChar(FileStream *is)
{
UChar c = 0;
uint16_t byte;
byte = T_FileStream_getc(is);
c |= byte;
byte = T_FileStream_getc(is);
c = (c << 8) | byte;
return c;
}
void
UnicodeStringStreamer::streamOut(const UnicodeString *s,
FileStream *os)
{
if(!T_FileStream_error(os)) {
writeLong(os, s->fLength);
}
const UChar *c = s->getArrayStart();
const UChar *end = c + s->fLength;
while(c != end && ! T_FileStream_error(os)) {
writeUChar(os, *c++);
}
}
void
UnicodeStringStreamer::streamIn(UnicodeString *s,
FileStream *is)
{
int32_t newSize;
// handle error conditions
if(T_FileStream_error(is) || T_FileStream_eof(is)) {
s->setToBogus();
return;
}
newSize = readLong(is);
if((newSize < 0) || T_FileStream_error(is)
|| ((newSize > 0) && T_FileStream_eof(is))) {
s->setToBogus(); //error condition
return;
}
// clone s's array, if needed
if(!s->cloneArrayIfNeeded(newSize, newSize, FALSE)) {
return;
}
UChar *c = s->getArrayStart();
UChar *end = c + newSize;
while(c < end && ! (T_FileStream_error(is) || T_FileStream_eof(is))) {
*c++ = readUChar(is);
}
// couldn't read all chars
if(c < end) {
s->setToBogus();
return;
}
s->fLength = newSize;
}
void
UnicodeStringStreamer::streamOut(const UnicodeString *s,
UMemoryStream *os)
{
if(!uprv_mstrm_error(os)) {
uprv_mstrm_write(os, (uint8_t*)&s->fLength, sizeof(s->fLength));
}
const UChar *c = s->getArrayStart();
const UChar *end = c + s->fLength;
while(c != end && ! uprv_mstrm_error(os)) {
uprv_mstrm_write(os, (uint8_t*)c, sizeof(*c));
c++;
}
}
void
UnicodeStringStreamer::streamIn(UnicodeString *s,
UMemoryStream *is)
{
int32_t newSize;
// handle error conditions
if(uprv_mstrm_error(is) || uprv_mstrm_eof(is)) {
s->setToBogus();
return;
}
uprv_mstrm_read(is, (uint8_t *)&newSize, sizeof(int32_t));
if((newSize < 0) || uprv_mstrm_error(is)
|| ((newSize > 0) && uprv_mstrm_eof(is))) {
s->setToBogus(); //error condition
return;
}
// clone s's array, if needed
if(!s->cloneArrayIfNeeded(newSize, newSize, FALSE)) {
return;
}
UChar *c = s->getArrayStart();
UChar *end = c + newSize;
while(c < end && ! (uprv_mstrm_error(is) || uprv_mstrm_eof(is))) {
uprv_mstrm_read(is, (uint8_t *)c, sizeof(*c));
c++;
}
// couldn't read all chars
if(c < end) {
s->setToBogus();
return;
}
s->fLength = newSize;
}
// console IO
#if U_IOSTREAM_SOURCE >= 198506
#if U_IOSTREAM_SOURCE >= 199711
U_COMMON_API std::ostream &
operator<<(std::ostream& stream, const UnicodeString& s)
#else
U_COMMON_API ostream &
operator<<(ostream& stream, const UnicodeString& s)
#endif
{
if(s.length() > 0) {
char buffer[200];
UConverter *converter;
UErrorCode errorCode = U_ZERO_ERROR;
// use the default converter to convert chunks of text
converter = UnicodeString::getDefaultConverter(errorCode);
if(U_SUCCESS(errorCode)) {
const UChar *us = s.getArrayStart(), *uLimit = us + s.length();
char *s, *sLimit = buffer + sizeof(buffer);
do {
errorCode = U_ZERO_ERROR;
s = buffer;
ucnv_fromUnicode(converter, &s, sLimit, &us, uLimit, 0, FALSE, &errorCode);
// write this chunk
if(s > buffer) {
stream.write(buffer, s - buffer);
}
} while(errorCode == U_INDEX_OUTOFBOUNDS_ERROR);
UnicodeString::releaseDefaultConverter(converter);
}
}
stream.flush();
return stream;
}
#endif