blob: 3566214b9c4870e2d45de1393057ae05e851f6db [file] [log] [blame]
/*
*******************************************************************************
* Copyright (C) 1997-2000, International Business Machines
* Corporation and others. All Rights Reserved.
*******************************************************************************
* Date Name Description
* 03/22/00 aliu Adapted from original C++ ICU Hashtable.
*******************************************************************************
*/
#include "uhash.h"
#include "unicode/ustring.h"
#include "cstring.h"
#include "cmemory.h"
/* This hashtable is implemented as a double hash. All elements are
* stored in a single array with no secondary storage for collision
* resolution (no linked list, etc.). When there is a hash collision
* (when two unequal keys have the same hashcode) we resolve this by
* using a secondary hash. The secondary hash is an increment
* computed as a hash function (a different one) of the primary
* hashcode. This increment is added to the initial hash value to
* obtain further slots assigned to the same hash code. For this to
* work, the length of the array and the increment must be relatively
* prime. The easiest way to achieve this is to have the length of
* the array be prime, and the increment be any value from
* 1..length-1.
*
* Hashcodes are 32-bit integers. We make sure all hashcodes are
* non-negative by masking off the top bit. This has two effects: (1)
* modulo arithmetic is simplified. If we allowed negative hashcodes,
* then when we computed hashcode % length, we could get a negative
* result, which we would then have to adjust back into range. It's
* simpler to just make hashcodes non-negative. (2) It makes it easy
* to check for empty vs. occupied slots in the table. We just mark
* empty or deleted slots with a negative hashcode.
*
* The central function is _uhash_find(). This function looks for a
* slot matching the given key and hashcode. If one is found, it
* returns a pointer to that slot. If the table is full, and no match
* is found, it returns NULL -- in theory. This would make the code
* more complicated, since all callers of _uhash_find() would then
* have to check for a NULL result. To keep this from happening, we
* don't allow the table to fill. When there is only one
* empty/deleted slot left, uhash_put() will refuse to increase the
* count, and fail. This simplifies the code. In practice, one will
* seldom encounter this using default UHashtables. However, if a
* hashtable is set to a U_FIXED resize policy, or if memory is
* exhausted, then the table may fill.
*
* High and low water ratios control rehashing. They establish levels
* of fullness (from 0 to 1) outside of which the data array is
* reallocated and repopulated. Setting the low water ratio to zero
* means the table will never shrink. Setting the high water ratio to
* one means the table will never grow. The ratios should be
* coordinated with the ratio between successive elements of the
* PRIMES table, so that when the primeIndex is incremented or
* decremented during rehashing, it brings the ratio of count / length
* back into the desired range (between low and high water ratios).
*/
/********************************************************************
* PRIVATE Constants, Macros
********************************************************************/
/* This is a list of non-consecutive primes chosen such that
* PRIMES[i+1] ~ 2*PRIMES[i]. (Currently, the ratio ranges from 1.81
* to 2.18; the inverse ratio ranges from 0.459 to 0.552.) If this
* ratio is changed, the low and high water ratios should also be
* adjusted to suit.
*/
static int32_t PRIMES[] = {
17, 37, 67, 131, 257, 521, 1031, 2053, 4099, 8209, 16411, 32771,
65537, 131101, 262147, 524309, 1048583, 2097169, 4194319, 8388617,
16777259, 33554467, 67108879, 134217757, 268435459, 536870923,
1073741827, 2147483647
};
#define PRIMES_LENGTH (sizeof(PRIMES) / sizeof(PRIMES[0]))
/* These ratios are tuned to the PRIMES array such that a resize
* places the table back into the zone of non-resizing. That is,
* after a call to _uhash_rehash(), a subsequent call to
* _uhash_rehash() should do nothing (should not churn). This is only
* a potential problem with U_GROW_AND_SHRINK.
*/
static const float RESIZE_POLICY_RATIO_TABLE[6] = {
/* low, high water ratio */
0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */
0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */
0.0F, 1.0F /* U_FIXED: Never change size */
};
/*
Invariants for hashcode values:
* DELETED < 0
* EMPTY < 0
* Real hashes >= 0
Hashcodes may not start out this way, but internally they are
adjusted so that they are always positive. We assume 32-bit
hashcodes; adjust these constants for other hashcode sizes.
*/
#define HASH_DELETED ((int32_t) 0x80000000)
#define HASH_EMPTY ((int32_t) HASH_DELETED + 1)
#define IS_EMPTY_OR_DELETED(x) ((x) < 0)
#define HASH_DELETE_KEY_VALUE(hash, key, value) \
if (hash->keyDeleter != NULL && key != NULL) { \
(*hash->keyDeleter)(key); \
} \
if (hash->valueDeleter != NULL && value != NULL) { \
(*hash->valueDeleter)(value); \
}
/********************************************************************
* Debugging
********************************************************************/
/* Enable this section to compile in runtime assertion checking. */
/* #define HASH_DEBUG */
#ifdef HASH_DEBUG
#include <stdio.h>
#define assert(exp) (void)( (exp) || (_assert(#exp, __FILE__, __LINE__), 0) )
static void _assert(const char* exp, const char* file, int line) {
printf("ERROR: assert(%s) failed: %s, line %d\n",
exp, file, line);
}
#else
#define assert(exp)
#endif
/********************************************************************
* PRIVATE Prototypes
********************************************************************/
static UHashtable* _uhash_create(UHashFunction keyHash, UKeyComparator keyComp,
int32_t primeIndex, UErrorCode *status);
static void _uhash_allocate(UHashtable *hash, int32_t primeIndex,
UErrorCode *status);
static void _uhash_rehash(UHashtable *hash);
static UHashElement* _uhash_find(const UHashtable *hash, const void* key,
int32_t hashcode);
static void* _uhash_internalRemoveElement(UHashtable *hash, UHashElement* e);
static void* _uhash_setElement(UHashtable* hash, UHashElement* e,
int32_t hashcode, void* key, void* value);
static void _uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy);
/********************************************************************
* PUBLIC API
********************************************************************/
U_CAPI UHashtable*
uhash_open(UHashFunction keyHash, UKeyComparator keyComp,
UErrorCode *status) {
return _uhash_create(keyHash, keyComp, 3, status);
}
U_CAPI UHashtable*
uhash_openSize(UHashFunction keyHash, UKeyComparator keyComp,
int32_t size,
UErrorCode *status) {
/* Find the smallest index i for which PRIMES[i] >= size. */
int32_t i = 0;
while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) {
++i;
}
return _uhash_create(keyHash, keyComp, i, status);
}
U_CAPI void
uhash_close(UHashtable *hash) {
assert(hash != NULL);
if (hash->elements != NULL) {
if (hash->keyDeleter != NULL || hash->valueDeleter != NULL) {
int32_t pos=-1;
UHashElement *e;
while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != NULL) {
HASH_DELETE_KEY_VALUE(hash, e->key, e->value);
}
}
uprv_free(hash->elements);
hash->elements = NULL;
}
uprv_free(hash);
}
U_CAPI UHashFunction
uhash_setKeyHasher(UHashtable *hash, UHashFunction fn) {
UHashFunction result = hash->keyHasher;
hash->keyHasher = fn;
return result;
}
U_CAPI UKeyComparator
uhash_setKeyComparator(UHashtable *hash, UKeyComparator fn) {
UKeyComparator result = hash->keyComparator;
hash->keyComparator = fn;
return result;
}
U_CAPI UObjectDeleter
uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter fn) {
UObjectDeleter result = hash->keyDeleter;
hash->keyDeleter = fn;
return result;
}
U_CAPI UObjectDeleter
uhash_setValueDeleter(UHashtable *hash, UObjectDeleter fn) {
UObjectDeleter result = hash->valueDeleter;
hash->valueDeleter = fn;
return result;
}
U_CAPI void
uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
_uhash_internalSetResizePolicy(hash, policy);
hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio);
hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
_uhash_rehash(hash);
}
U_CAPI int32_t
uhash_count(const UHashtable *hash) {
return hash->count;
}
U_CAPI void*
uhash_get(const UHashtable *hash,
const void* key) {
return _uhash_find(hash, key, hash->keyHasher(key))->value;
}
U_CAPI void*
uhash_put(UHashtable *hash,
void* key,
void* value,
UErrorCode *status) {
/* Put finds the position in the table for the new value. If the
* key is already in the table, it is deleted, if there is a
* non-NULL keyDeleter. Then the key, the hash and the value are
* all put at the position in their respective arrays.
*/
int32_t hashcode;
UHashElement* e;
if (U_FAILURE(*status)) {
goto err;
}
assert(hash != NULL);
if (value == NULL) {
/* Disallow storage of NULL values, since NULL is returned by
* get() to indicate an absent key. Storing NULL == removing.
*/
return uhash_remove(hash, key);
}
if (hash->count > hash->highWaterMark) {
_uhash_rehash(hash);
}
hashcode = (*hash->keyHasher)(key);
e = _uhash_find(hash, key, hashcode);
assert(e != NULL);
if (IS_EMPTY_OR_DELETED(e->hashcode)) {
/* Important: We must never actually fill the table up. If we
* do so, then _uhash_find() will return NULL, and we'll have
* to check for NULL after every call to _uhash_find(). To
* avoid this we make sure there is always at least one empty
* or deleted slot in the table. This only is a problem if we
* are out of memory and rehash isn't working.
*/
++hash->count;
if (hash->count == hash->length) {
/* Don't allow count to reach length */
--hash->count;
*status = U_MEMORY_ALLOCATION_ERROR;
goto err;
}
}
/* We must in all cases handle storage properly. If there was an
* old key, then it must be deleted (if the deleter != NULL).
* Make hashcodes stored in table positive.
*/
return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value);
err:
/* If the deleters are non-NULL, this method adopts its key and/or
* value arguments, and we must be sure to delete the key and/or
* value in all cases, even upon failure.
*/
HASH_DELETE_KEY_VALUE(hash, key, value);
return NULL;
}
U_CAPI void*
uhash_remove(UHashtable *hash,
const void* key) {
/* First find the position of the key in the table. If the object
* has not been removed already, remove it. If the user wanted
* keys deleted, then delete it also. We have to put a special
* hashcode in that position that means that something has been
* deleted, since when we do a find, we have to continue PAST any
* deleted values.
*/
void* result = NULL;
UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key));
assert(e != NULL);
if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
result = _uhash_internalRemoveElement(hash, e);
if (hash->count < hash->lowWaterMark) {
_uhash_rehash(hash);
}
}
return result;
}
U_CAPI void
uhash_removeAll(UHashtable *hash) {
int32_t pos = -1;
const UHashElement *e;
assert(hash != NULL);
if (hash->count != 0) {
while ((e = uhash_nextElement(hash, &pos)) != NULL) {
uhash_removeElement(hash, e);
}
}
assert(hash->count == 0);
}
U_CAPI const UHashElement*
uhash_nextElement(const UHashtable *hash, int32_t *pos) {
/* Walk through the array until we find an element that is not
* EMPTY and not DELETED.
*/
int32_t i;
assert(hash != NULL);
for (i = *pos + 1; i < hash->length; ++i) {
if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) {
*pos = i;
return &(hash->elements[i]);
}
}
/* No more elements */
return NULL;
}
U_CAPI void*
uhash_removeElement(UHashtable *hash, const UHashElement* e) {
assert(hash != NULL);
assert(e != NULL);
if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
return _uhash_internalRemoveElement(hash, (UHashElement*) e);
}
return NULL;
}
/********************************************************************
* PUBLIC Key Hash Functions
********************************************************************/
/*
Compute the hash by iterating sparsely over about 32 (up to 63)
characters spaced evenly through the string. For each character,
multiply the previous hash value by a prime number and add the new
character in, like a linear congruential random number generator,
producing a pseudorandom deterministic value well distributed over
the output range. [LIU]
*/
#define STRING_HASH(TYPE, STRLEN, DEREF) \
int32_t hash = 0; \
if (key != NULL) { \
const TYPE *p = (const TYPE*) key; \
int32_t len = STRLEN; \
int32_t inc = ((len - 32) / 32) + 1; \
const TYPE *limit = p + len; \
while (p<limit) { \
hash = (hash * 37) + DEREF; \
p += inc; \
} \
} \
return hash
U_CAPI int32_t
uhash_hashUChars(const void *key) {
STRING_HASH(UChar, u_strlen(p), *p);
}
/* Used by UnicodeString to compute its hashcode - Not public API. */
U_CAPI int32_t
uhash_hashUCharsN(const UChar *key, int32_t length) {
STRING_HASH(UChar, length, *p);
}
U_CAPI int32_t
uhash_hashChars(const void *key) {
STRING_HASH(uint8_t, uprv_strlen((char*)p), *p);
}
U_CAPI int32_t
uhash_hashIChars(const void *key) {
STRING_HASH(uint8_t, uprv_strlen((char*)p), uprv_tolower(*p));
}
/********************************************************************
* PUBLIC Comparator Functions
********************************************************************/
U_CAPI UBool
uhash_compareUChars(const void *key1, const void *key2) {
const UChar *p1 = (const UChar*) key1;
const UChar *p2 = (const UChar*) key2;
if (p1 == p2) {
return TRUE;
}
if (p1 == NULL || p2 == NULL) {
return FALSE;
}
while (*p1 != 0 && *p1 == *p2) {
++p1;
++p2;
}
return (*p1 == *p2);
}
U_CAPI UBool
uhash_compareChars(const void *key1, const void *key2) {
const char *p1 = (const char*) key1;
const char *p2 = (const char*) key2;
if (p1 == p2) {
return TRUE;
}
if (p1 == NULL || p2 == NULL) {
return FALSE;
}
while (*p1 != 0 && *p1 == *p2) {
++p1;
++p2;
}
return (*p1 == *p2);
}
U_CAPI UBool
uhash_compareIChars(const void *key1, const void *key2) {
const char *p1 = (const char*) key1;
const char *p2 = (const char*) key2;
if (p1 == p2) {
return TRUE;
}
if (p1 == NULL || p2 == NULL) {
return FALSE;
}
while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) {
++p1;
++p2;
}
return (*p1 == *p2);
}
/********************************************************************
* PUBLIC int32_t Support Functions
********************************************************************/
U_CAPI int32_t
uhash_hashLong(const void *key) {
return (int32_t) key;
}
U_CAPI UBool
uhash_compareLong(const void *key1, const void *key2) {
return key1 == key2;
}
/********************************************************************
* PUBLIC Deleter Functions
********************************************************************/
U_CAPI void
uhash_freeBlock(void *obj) {
uprv_free(obj);
}
/********************************************************************
* PRIVATE Implementation
********************************************************************/
static UHashtable*
_uhash_create(UHashFunction keyHash, UKeyComparator keyComp,
int32_t primeIndex,
UErrorCode *status) {
UHashtable *result;
if (U_FAILURE(*status)) return NULL;
assert(keyHash != NULL);
assert(keyComp != NULL);
result = (UHashtable*) uprv_malloc(sizeof(UHashtable));
if (result == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
result->keyHasher = keyHash;
result->keyComparator = keyComp;
result->keyDeleter = NULL;
result->valueDeleter = NULL;
_uhash_internalSetResizePolicy(result, U_GROW);
_uhash_allocate(result, primeIndex, status);
if (U_FAILURE(*status)) {
uprv_free(result);
return NULL;
}
return result;
}
/**
* Allocate internal data array of a size determined by the given
* prime index. If the index is out of range it is pinned into range.
* If the allocation fails the status is set to
* U_MEMORY_ALLOCATION_ERROR and all array storage is freed. In
* either case the previous array pointer is overwritten.
*
* Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1.
*/
static void
_uhash_allocate(UHashtable *hash,
int32_t primeIndex,
UErrorCode *status) {
UHashElement *p, *limit;
if (U_FAILURE(*status)) return;
assert(primeIndex >= 0 && primeIndex < PRIMES_LENGTH);
hash->primeIndex = primeIndex;
hash->length = PRIMES[primeIndex];
p = hash->elements = (UHashElement*)
uprv_malloc(sizeof(UHashElement) * hash->length);
if (hash->elements == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return;
}
limit = p + hash->length;
while (p < limit) {
p->key = NULL;
p->value = NULL;
p->hashcode = HASH_EMPTY;
++p;
}
hash->count = 0;
hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio);
hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
}
/**
* Attempt to grow or shrink the data arrays in order to make the
* count fit between the high and low water marks. hash_put() and
* hash_remove() call this method when the count exceeds the high or
* low water marks. This method may do nothing, if memory allocation
* fails, or if the count is already in range, or if the length is
* already at the low or high limit. In any case, upon return the
* arrays will be valid.
*/
static void
_uhash_rehash(UHashtable *hash) {
UHashElement *old = hash->elements;
int32_t oldLength = hash->length;
int32_t newPrimeIndex = hash->primeIndex;
int32_t i;
UErrorCode status = U_ZERO_ERROR;
if (hash->count > hash->highWaterMark) {
if (++newPrimeIndex >= PRIMES_LENGTH) {
return;
}
} else if (hash->count < hash->lowWaterMark) {
if (--newPrimeIndex < 0) {
return;
}
} else {
return;
}
_uhash_allocate(hash, newPrimeIndex, &status);
if (U_FAILURE(status)) {
hash->elements = old;
hash->length = oldLength;
return;
}
for (i = oldLength - 1; i >= 0; --i) {
if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) {
UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode);
assert(e != NULL);
assert(e->hashcode == HASH_EMPTY);
e->key = old[i].key;
e->value = old[i].value;
e->hashcode = old[i].hashcode;
++hash->count;
}
}
uprv_free(old);
}
/**
* Look for a key in the table, or if no such key exists, the first
* empty slot matching the given hashcode. Keys are compared using
* the keyComparator function.
*
* First find the start position, which is the hashcode modulo
* the length. Test it to see if it is:
*
* a. identical: First check the hash values for a quick check,
* then compare keys for equality using keyComparator.
* b. deleted
* c. empty
*
* Stop if it is identical or empty, otherwise continue by adding a
* "jump" value (moduloing by the length again to keep it within
* range) and retesting. For efficiency, there need enough empty
* values so that the searchs stop within a reasonable amount of time.
* This can be changed by changing the high/low water marks.
*
* In theory, this function can return NULL, if it is full (no empty
* or deleted slots) and if no matching key is found. In practice, we
* prevent this elsewhere (in uhash_put) by making sure the last slot
* in the table is never filled.
*
* The size of the table should be prime for this algorithm to work;
* otherwise we are not guaranteed that the jump value (the secondary
* hash) is relatively prime to the table length.
*/
static UHashElement*
_uhash_find(const UHashtable *hash, const void* key,
int32_t hashcode) {
int32_t firstDeleted = -1; /* assume invalid index */
int32_t theIndex, startIndex;
int32_t jump = 0; /* lazy evaluate */
int32_t tableHash;
hashcode &= 0x7FFFFFFF; /* must be positive */
startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length;
do {
tableHash = hash->elements[theIndex].hashcode;
if (tableHash == hashcode) { /* quick check */
if ((*hash->keyComparator)(key, hash->elements[theIndex].key)) {
return &(hash->elements[theIndex]);
}
} else if (!IS_EMPTY_OR_DELETED(tableHash)) {
/* We have hit a slot which contains a key-value pair,
* but for which the hash code does not match. Keep
* looking.
*/
} else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */
break;
} else if (firstDeleted < 0) { /* remember first deleted */
firstDeleted = theIndex;
}
if (jump == 0) { /* lazy compute jump */
/* The jump value must be relatively prime to the table
* length. As long as the length is prime, then any value
* 1..length-1 will be relatively prime to it.
*/
jump = (hashcode % (hash->length - 1)) + 1;
}
theIndex = (theIndex + jump) % hash->length;
} while (theIndex != startIndex);
if (firstDeleted >= 0) {
theIndex = firstDeleted; /* reset if had deleted slot */
} else if (tableHash != HASH_EMPTY) {
/* We get to this point if the hashtable is full (no empty or
* deleted slots), and we've failed to find a match. THIS
* WILL NEVER HAPPEN as long as uhash_put() makes sure that
* count is always < length.
*/
assert(FALSE);
return NULL; /* Never happens if uhash_put() behaves */
}
return &(hash->elements[theIndex]);
}
static void*
_uhash_setElement(UHashtable *hash, UHashElement* e,
int32_t hashcode, void* key, void* value) {
void* oldKey = e->key;
void* oldValue = e->value;
if (hash->keyDeleter != NULL && oldKey != NULL &&
oldKey != key) { /* Avoid double deletion */
(*hash->keyDeleter)(oldKey);
}
if (oldValue == value) { /* Avoid double deletion */
oldValue = NULL;
}
if (hash->valueDeleter != NULL && oldValue != NULL) {
(*hash->valueDeleter)(oldValue);
oldValue = NULL;
}
e->key = key;
e->value = value;
e->hashcode = hashcode;
return oldValue;
}
/**
* Assumes that the given element is not empty or deleted.
*/
static void*
_uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) {
assert(!IS_EMPTY_OR_DELETED(e->hashcode));
--hash->count;
return _uhash_setElement(hash, e, HASH_DELETED, NULL, NULL);
}
static void
_uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
assert(hash == 0);
assert(((int32_t)policy) >= 0);
assert(((int32_t)policy) < 3);
hash->lowWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2];
hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1];
}