blob: 953e346cc7afa1785dc7b01a06fecc1f76626e16 [file] [log] [blame]
/*
* Copyright © {1996-1999}, International Business Machines Corporation and others. All Rights Reserved.
*****************************************************************************************
*/
//===============================================================================
//
// File tables.h
//
//
//
// Created by: Helena Shih
//
// Modification History:
//
// Date Name Description
// 2/5/97 aliu Added streamIn and streamOut methods to EntryPair,
// VectorOfInt, VectorOfPToExpandTable, VectorOfPToContractElement,
// VectorOfPToContractTable. These are used by TableCollation
// streamIn and streamOut methods.
// 3/5/97 aliu Made VectorOfPointersToPatternEntry::at() inline.
// 5/07/97 helena Added isBogus().
// 6/18/97 helena Added VectorOfPointer for queue-up extension list in
// MergeCollation.
// 8/18/97 helena Added internal API documentation. Note. All the VectorOfXXX
// interface is about the same. The internal API docs will be
// added to only the first version and additional description
// will be added where necessary.
// 8/04/98 erm Added fwd member to EntryPair.
//===============================================================================
#ifndef TABLES_H
#define TABLES_H
#include "filestrm.h"
#include "unicode/unistr.h"
/**
* EntryPair is used for contracting characters. Each entry pair contains the contracting
* character string and its collation order.
*/
class EntryPair
{
public:
/**
* Constructor
*/
EntryPair();
EntryPair(const UnicodeString &name, int32_t aValue, bool_t aFwd = TRUE);
UnicodeString entryName; // Contracting characters
int32_t value; // Collation order
bool_t fwd; // true if this pair is for the forward direction
/**
* The streamIn and streamOut methods read and write objects of this
* class as binary, platform-dependent data in the iostream. The stream
* must be in ios::binary mode for this to work. These methods are not
* intended for general public use; they are used by the framework to improve
* performance by storing certain objects in binary files.
*/
void streamOut(FileStream* os) const;
void streamIn(FileStream* is);
};
/**
* VectorOfInt is a dynamic array of 32-bit integers.
* Ideally we would use templates for this, but they're not supported
* on all of the platforms we need to support.
*/
class VectorOfInt {
public:
/**
* The chunk size by which the array is grown.
* This probably shouldn't be in the API
*/
enum EGrowthRate { GROWTH_RATE = 4 };
/**
* Creates a vector that contains elements of integers.
* @param initialSize the initial size of the vector object.
*/
VectorOfInt(int32_t initialSize = 0);
/**
* Copy constructor.
*/
VectorOfInt(const VectorOfInt& that);
/**
* Destructor.
*/
~VectorOfInt();
/**
* Assignment operator.
*/
const VectorOfInt& operator=(const VectorOfInt& that);
/**
* Equality operators.
*/
bool_t operator==(const VectorOfInt& that);
bool_t operator!=(const VectorOfInt& that);
/**
* Gets a read-only reference to the element at the specified index.
* This does not do range-checking; an invalid index may cause a crash.
* @return the accessed element.
*/
int32_t operator[](int32_t index) const;
int32_t at(int32_t index) const;
/**
* Gets a non-const reference to the element at the specified index.
* This does range-checking; access to elements beyond the end of the
* array will cause the array to grow.
*/
int32_t& operator[](int32_t index);
int32_t& at(int32_t index);
/**
* Sets the element at the specified index to a different value.
* @param index the specified index.
* @param value the new value.
*/
void atPut( int32_t index,
const int32_t& value);
/**
* Inserts a value at the specified index, sliding the rest of
* the elements in the array over to make room.
* @param index the specified index.
* @param value the value.
*/
void atInsert( int32_t index,
const int32_t& value);
/**
* Returns the number of elements in the vector.
* @return the size of vector.
*/
int32_t size(void) const;
/**
* Sets the size of this vector. If the new size is greater than the
* current size, new <code>0</code> items are added to the end of
* the vector. If the new size is less than the current size, all
* components at index <code>newSize</code> and greater are discarded.
* If <code>newSize</code> is negative it is treated as if it were zero.
*
* @param newSize the new size of this vector.
*/
void setSize(int32_t newSize);
/**
* Checks if this vector object is valid.
* @return TRUE if the vector object is valid, FALSE otherwise.
*/
bool_t isBogus(void) const;
/**
* The streamIn and streamOut methods read and write objects of this
* class as binary, platform-dependent data in the iostream. The stream
* must be in ios::binary mode for this to work. These methods are not
* intended for general public use; they are used by the framework to improve
* performance by storing certain objects in binary files.
*/
void streamOut(FileStream* os) const;
void streamIn(FileStream* is);
private:
/**
* Resizes the vector if necessary when compared to a new size.
* @param newSize the new size.
*/
void resize(int32_t newSize);
int32_t fSize;
int32_t fCapacity;
int32_t* fElements;
bool_t fBogus;
};
/**
* VectorOfPointer is a dynamic array of void* pointers.
* <P>
* This is a vector class that is designed to be used with pointer types and which implements
* owning semantics. That is, once a value is placed an element of the vector, the vector is
* considered to own it and is responsible for disposing it. This will happen both when the
* element is changed using atPut() or through an PointerTo****, and when the vector itself is
* disposed.
* <P>
* WARNING: The caller must be careful to avoid holding onto any dangling references
* after the vector is disposed, and the caller must also be careful not to put the same
* value into more than one element in the vector (unless the value is NULL).
* <P>
* As with VectorOf***>, the vector grows as necessary to accommodate all elements, the
* size is one plus the index of the highest element that's been set, and any elements below
* the highest element that aren't explicitly initialized are initialized to NULL.
*/
class VectorOfPointer {
public:
/**
* The chunk size by which the array is grown.
* This probably shouldn't be in the API
*/
enum EGrowthRate { GROWTH_RATE = 4 };
/**
* Creates a vector that contains elements of pointers to objects.
* @param initialSize the initial size of the vector object.
*/
VectorOfPointer(int32_t initialSize = 0);
/**
* Copy constructor.
*/
VectorOfPointer(const VectorOfPointer& that);
/**
* Destructor.
*/
~VectorOfPointer();
/**
* Assignment operator.
*/
const VectorOfPointer& operator=(const VectorOfPointer& that);
/**
* Equality operators.
*/
bool_t operator==(const VectorOfPointer& that);
bool_t operator!=(const VectorOfPointer& that);
/**
* Gets a read-only reference to the element at the specified index.
* This does not do range-checking; an invalid index may cause a crash.
* @return the accessed element.
*/
void* operator[](int32_t index) const;
void* at(int32_t index) const;
/**
* Gets a non-const reference to the element at the specified index.
* This does range-checking; access to elements beyond the end of the
* array will cause the array to grow.
*/
void*& operator[](int32_t index);
void*& at(int32_t index);
/**
* Sets the element at the specified index to a different value.
* @param index the specified index.
* @param value the new value.
*/
void atPut( int32_t index,
const void*& value);
/**
* Inserts a value at the specified index, sliding the rest of
* the elements in the array over to make room.
* @param index the specified index.
* @param value the value.
*/
void atInsert( int32_t index,
const void*& value);
/**
* Returns the number of elements in the vector.
* @return the size of vector.
*/
int32_t size(void) const;
/**
* Checks if this vector object is valid.
* @return TRUE if the vector object is valid, FALSE otherwise.
*/
bool_t isBogus(void) const;
private:
/**
* Resizes the vector if necessary when compared to a new size.
* @param newSize the new size.
*/
void resize(int32_t newSize);
int32_t fSize;
int32_t fCapacity;
void** fElements;
bool_t fBogus;
};
//=================================================================================================
// The following diagram shows the data structure of the RuleBasedCollator object.
// Suppose we have the rule, where 'o-umlaut' is the unicode char 0x00F6.
// "a, A < b, B < c, C, ch, cH, Ch, CH < d, D ... < o, O; 'o-umlaut'/E, 'O-umlaut'/E ...".
// What the rule says is, sorts 'ch'ligatures and 'c' only with tertiary difference and
// sorts 'o-umlaut' as if it's always expanded with 'e'.
//
// (VectorOfPToContractTable) (VectorOfPToExpandTable)
// mapping table contracting list expanding list
// (contains all unicode char
// entries)
// (VectorOfPToContractElement) *(PToContractElement) (PToExpandTable)
// ___ _____________ _________________________
// ________ |=====>|_*_|----->|'c' |v('c') | |==>|v('o')|v('umlaut')|v('e')|
// |_\u0001_|--> v('\u0001') | |_:_| |-------------| | |-------------------------|
// |_\u0002_|--> v('\u0002') | |_:_| |'ch' |v('ch')| | | : |
// |____:___| | |_:_| |-------------| | |-------------------------|
// |____:___| | |'cH' |v('cH')| | | : |
// |__'a'___|--> v('a') | |-------------| | |-------------------------|
// |__'b'___|--> v('b') | |'Ch' |v('Ch')| | | : |
// |____:___| | |-------------| | |-------------------------|
// |____:___| | |'CH' |v('CH')| | | : |
// |__'ch'__|------------------- ------------- | |-------------------------|
// |____:___| | | : |
// |o-umlaut|------------------------------------------------------ |_________________________|
// |____:___|
//
//
// Noted by Helena Shih on 6/23/97 with pending design changes (slimming collation).
//=================================================================================================
class VectorOfPToExpandTable;
/**
* PToExpandTable is a smart-pointer to a VectorOfInt that is used to store
* the collation orders that are the result of an expansion.
* <P>
* You can use this object as if it were a pointer to a VectorOfInt, e.g.
* <pre>
* PToExpandTable foo = ....;
* foo->atInsert(....);
* </pre>
*/
class PToExpandTable {
public:
/**
* Destructor.
*/
~PToExpandTable();
/**
* Assignment operators
* The expand table that this object already points to (if any) is deleted.
*/
const PToExpandTable& operator=(VectorOfInt* newValue);
const PToExpandTable& operator=(const PToExpandTable& pointerToNewValue);
/**
* Pointer operator override
*/
operator VectorOfInt*() const;
private:
/**
* Constructor
*/
PToExpandTable(VectorOfInt*& value);
/**
* Copy constructor.
*/
PToExpandTable(const PToExpandTable& that);
VectorOfInt*& fValue;
friend class VectorOfPToExpandTable;
};
/**
* VectorOfPointer is a dynamic array of PToExpandTable objects
* which in turn point to the array of collation orders for each expanding character.
* <P>
* This is a vector class that is designed to be used with pointer types and which implements
* owning semantics. That is, once a value is placed an element of the vector, the vector is
* considered to own it and is responsible for disposing it. This will happen both when the
* element is changed using atPut() or through an PointerTo****, and when the vector itself is
* disposed.
* <P>
* WARNING: The caller must be careful to avoid holding onto any dangling references
* after the vector is disposed, and the caller must also be careful not to put the same
* value into more than one element in the vector (unless the value is NULL).
* <P>
* As with VectorOf***>, the vector grows as necessary to accommodate all elements, the
* size is one plus the index of the highest element that's been set, and any elements below
* the highest element that aren't explicitly initialized are initialized to NULL.
*/
class VectorOfPToExpandTable {
public:
/**
* The chunk size by which the array is grown.
* This probably shouldn't be in the API
*/
enum EGrowthRate { GROWTH_RATE = 4 };
/**
* Creates a vector that contains elements of PToExpandTable.
* @param initialSize the initial size of the vector object.
*/
VectorOfPToExpandTable(int32_t initialSize = 0);
/**
* Copy constructor.
*/
VectorOfPToExpandTable(const VectorOfPToExpandTable& that);
/**
* Destructor.
*/
~VectorOfPToExpandTable();
/**
* Assignment operator.
*/
const VectorOfPToExpandTable&
operator=(const VectorOfPToExpandTable& that);
/**
* Return a modifiable smart-pointer to the expansion table
* at the given index. Assigning to this smart pointer will work, e.g.
* VectorOfPToExpandTable foo = ....;
* foo[5] = new VectorOfInt ...;
* This does range-checking; access to elements beyond the end of the
* array will cause the array to grow.
*/
PToExpandTable at(int32_t index);
PToExpandTable operator[](int32_t index);
/**
* Return a pointer to the table at the given index.
* The pointer itself cannot be modified, but the elements it points to may:
* <pre>
* const VectorOfPToExpandTable foo = ....;
* foo[5] = ....; // NOT ALLOWED
* foo[5][0] = 12345; // ok
* </pre>
* This does not do range-checking; an invalid index may cause a crash.
* @return the accessed element.
*/
VectorOfInt* at(int32_t index) const;
VectorOfInt* operator[](int32_t index) const;
/**
* Sets the element at the specified index to a different value.
* If there was aready an object stored at this index, it is deleted.
* @param index the specified index.
* @param value the new value.
*/
void atPut( int32_t index,
VectorOfInt* value);
/**
* "Orphan" the pointer at the specified index. The array will no
* longer contain a reference to the object, and the caller is
* now responsible for deleting its storage.
*/
VectorOfInt* orphanAt(int32_t index);
/**
* Returns the number of elements in the vector.
* @return the size of vector.
*/
int32_t size(void) const;
/**
* Checks if this vector object is valid.
* @return TRUE if the vector object is valid, FALSE otherwise.
*/
bool_t isBogus(void) const;
/**
* The streamIn and streamOut methods read and write objects of this
* class as binary, platform-dependent data in the iostream. The stream
* must be in ios::binary mode for this to work. These methods are not
* intended for general public use; they are used by the framework to improve
* performance by storing certain objects in binary files.
*/
void streamOut(FileStream* os) const;
void streamIn(FileStream* is);
private:
/**
* Resizes the vector if necessary when compared to a new size.
* @param newSize the new size.
*/
void resize(int32_t newSize);
int32_t fSize;
int32_t fCapacity;
VectorOfInt** fElements;
bool_t fBogus;
};
class VectorOfPToContractElement;
/**
* PToContractElement is a smart-pointer to an array that is used to store
* the contracting-character strings that are associated with a given Unicode character.
* <P>
* You can use this object as if it were a pointer to an EntryPair array, e.g.
* <pre>
* PToContractElement foo = ....;
* foo->entryName = ....;
* </pre>
*/
class PToContractElement {
public:
/**
* Destructor.
*/
~PToContractElement();
/**
* Assignment operators
* The EntryPair that this object already points to (if any) is deleted.
*/
const PToContractElement& operator=(EntryPair* newValue);
const PToContractElement& operator=(const PToContractElement& pointerToNewValue);
/**
* Pointer operator override
*/
operator EntryPair*() const;
private:
/**
* Constructor
*/
PToContractElement(EntryPair*& value);
/**
* Copy constructor.
*/
PToContractElement(const PToContractElement& that);
EntryPair*& fValue;
friend class VectorOfPToContractElement;
};
/**
* The table that contains the list of contracting character entries.
* <P>
* This is a vector class that is designed to be used with pointer types and which implements
* owning semantics. That is, once a value is placed an element of the vector, the vector is
* considered to own it and is responsible for disposing it. This will happen both when the
* element is changed using atPut() or through an PointerTo****, and when the vector itself is
* disposed.
* <P>
* WARNING: The caller must be careful to avoid holding onto any dangling references
* after the vector is disposed, and the caller must also be careful not to put the same
* value into more than one element in the vector (unless the value is NULL).
* <P>
* As with VectorOf***>, the vector grows as necessary to accommodate all elements, the
* size is one plus the index of the highest element that's been set, and any elements below
* the highest element that aren't explicitly initialized are initialized to NULL.
*/
class VectorOfPToContractElement {
public:
/**
* The chunk size by which the array is grown.
* This probably shouldn't be in the API
*/
enum EGrowthRate { GROWTH_RATE = 4 };
/**
* Creates a vector that contains elements of PToContractElement.
* @param initialSize the initial size of the vector object.
*/
VectorOfPToContractElement(int32_t initialSize = 0);
/**
* Copy constructor.
*/
VectorOfPToContractElement(const VectorOfPToContractElement& that);
/**
* Destructor.
*/
~VectorOfPToContractElement();
/**
* Assignment operator.
*/
const VectorOfPToContractElement&
operator=(const VectorOfPToContractElement& that);
/**
* Return a modifiable smart-pointer to the EntryPair
* at the given index. Assigning to this smart pointer will work, e.g.
* <pre>
* PToContractElement foo = ....;
* foo[5] = ...;
* </pre>
* This does range-checking; access to elements beyond the end of the
* array will cause the array to grow.
*/
PToContractElement operator[](int32_t index);
PToContractElement at(int32_t index);
/**
* Return a pointer to the EntryPair at the given index.
* The pointer itself cannot be modified, but the elements it points to may:
* <pre>
* const VectorOfPToExpandTable foo = ....;
* foo[5] = ....; // NOT ALLOWED
* foo[5]->entryName = ....; // ok
* </pre>
* This does not do range-checking; an invalid index may cause a crash.
* @return the accessed element.
*/
EntryPair* operator[](int32_t index) const;
EntryPair* at(int32_t index) const;
/**
* Sets the element at the specified index to a different value.
* If there was aready an object stored at this index, it is deleted.
* @param index the specified index.
* @param value the new value.
*/
void atPut( int32_t index,
EntryPair* value);
/**
* Inserts a value at the specified index, sliding the rest of
* the elements in the array over to make room.
* @param index the specified index.
* @param value the value.
*/
void atInsert( int32_t index,
EntryPair* value);
/**
* "Orphan" the pointer at the specified index. The array will no
* longer contain a reference to the object, and the caller is
* now responsible for deleting its storage.
*/
EntryPair* orphanAt(int32_t index);
/**
* Returns the number of elements in the vector.
* @return the size of vector.
*/
int32_t size(void) const;
/**
* Checks if this vector object is valid.
* @return TRUE if the vector object is valid, FALSE otherwise.
*/
bool_t isBogus(void) const;
/**
* The streamIn and streamOut methods read and write objects of this
* class as binary, platform-dependent data in the iostream. The stream
* must be in ios::binary mode for this to work. These methods are not
* intended for general public use; they are used by the framework to improve
* performance by storing certain objects in binary files.
*/
void streamOut(FileStream* os) const;
void streamIn(FileStream* is);
private:
/**
* Resizes the vector if necessary when compared to a new size.
* @param newSize the new size.
*/
void resize(int32_t newSize);
int32_t fSize;
int32_t fCapacity;
EntryPair** fElements;
bool_t fBogus;
};
class VectorOfPToContractTable;
/**
* Pointer to each contracing element list.
*/
class PToContractTable {
public:
/**
* Destructor.
*/
~PToContractTable();
/**
* Assignment operators.
* <P>
* The contracting element list (if any) that this object already points to
* is deleted.
*/
const PToContractTable& operator=(VectorOfPToContractElement* newValue);
const PToContractTable& operator=(const PToContractTable& pointerToNewValue);
/**
* Pointer operator override
*/
operator VectorOfPToContractElement*() const;
private:
/**
* Constructor
*/
PToContractTable(VectorOfPToContractElement*& value);
/**
* Copy constructor.
*/
PToContractTable(const PToContractTable& that);
VectorOfPToContractElement*& fValue;
friend class VectorOfPToContractTable;
};
/**
* The vector that contains all contracting list tables.
* <P>
* This is a vector class that is designed to be used with pointer types and which implements
* owning semantics. That is, once a value is placed an element of the vector, the vector is
* considered to own it and is responsible for disposing it. This will happen both when the
* element is changed using atPut() or through an PointerTo****, and when the vector itself is
* disposed.
* <P>
* WARNING: The caller must be careful to avoid holding onto any dangling references
* after the vector is disposed, and the caller must also be careful not to put the same
* value into more than one element in the vector (unless the value is NULL).
* <P>
* As with VectorOf***>, the vector grows as necessary to accommodate all elements, the
* size is one plus the index of the highest element that's been set, and any elements below
* the highest element that aren't explicitly initialized are initialized to NULL.
*/
class VectorOfPToContractTable {
public:
/**
* The chunk size by which the array is grown.
* This probably shouldn't be in the API
*/
enum EGrowthRate { GROWTH_RATE = 4 };
/**
* Creates a vector that contains elements of PToContractTable.
* @param initialSize the initial size of the vector object.
*/
VectorOfPToContractTable(int32_t initialSize = 0);
/**
* Copy constructor.
*/
VectorOfPToContractTable(const VectorOfPToContractTable& that);
~VectorOfPToContractTable();
/**
* Assignment operator.
*/
const VectorOfPToContractTable&
operator=(const VectorOfPToContractTable& that);
/**
* Return a modifiable smart-pointer to the contraction table
* at the given index. Assigning to this smart pointer will work, e.g.
* <pre>
* VectorOfPToContractTable foo = ....;
* foo[5] = ...;
* </pre>
* This does range-checking; access to elements beyond the end of the
* array will cause the array to grow.
*/
PToContractTable operator[](int32_t index);
PToContractTable at(int32_t index);
/**
* Return a pointer to the contraction table at the given index.
* The pointer itself cannot be modified, but the elements it points to may:
* <pre>
* const VectorOfPToExpandTable foo = ....;
* foo[5] = ....; // NOT ALLOWED
* foo[5][0] = ....; // ok
* </pre>
* This does not do range-checking; an invalid index may cause a crash.
* @return the accessed element.
*/
VectorOfPToContractElement* operator[](int32_t index) const;
VectorOfPToContractElement* at(int32_t index) const;
/**
* Sets the element at the specified index to a different value.
* If there was aready an object stored at this index, it is deleted.
* @param index the specified index.
* @param value the new value.
*/
void atPut( int32_t index,
VectorOfPToContractElement* value);
/**
* "Orphan" the pointer at the specified index. The array will no
* longer contain a reference to the object, and the caller is
* now responsible for deleting its storage.
*/
VectorOfPToContractElement* orphanAt(int32_t index);
/**
* Returns the number of elements in the vector.
* @return the size of vector.
*/
int32_t size(void) const;
/**
* Checks if this vector object is valid.
* @return TRUE if the vector object is valid, FALSE otherwise.
*/
bool_t isBogus(void) const;
/**
* The streamIn and streamOut methods read and write objects of this
* class as binary, platform-dependent data in the iostream. The stream
* must be in ios::binary mode for this to work. These methods are not
* intended for general public use; they are used by the framework to improve
* performance by storing certain objects in binary files.
*/
void streamOut(FileStream* os) const;
void streamIn(FileStream* is);
private:
/**
* Resizes the vector if necessary when compared to a new size.
* @param newSize the new size.
*/
void resize(int32_t newSize);
int32_t fSize;
int32_t fCapacity;
VectorOfPToContractElement** fElements;
bool_t fBogus;
};
class PatternEntry;
class VectorOfPointersToPatternEntry;
/**
* Proxy class for accessing elements of a VectorOfPointersToPatternEntry
* <P>
* This class is a simple proxy class that implements the owning semantics for the
* operator[] and at() functions on VectorOfPointersToPatternEntry. It enables
* expressions like "v[3] = someNewValue". One never creates a PointerToPatternEntry
* directly, and one never declares variables of this type. It just exists to
* implement the API of VectorOfPointersToPatternEntry.
*/
class PointerToPatternEntry {
public:
/**
* Destructor.
*/
~PointerToPatternEntry();
/**
* Assignment operators
* The PatternEntry that this object already points to (if any) is deleted.
*/
const PointerToPatternEntry& operator=(PatternEntry* newValue);
const PointerToPatternEntry& operator=(const PointerToPatternEntry& pointerToNewValue);
/**
* Pointer operator override
*/
operator PatternEntry*() const;
private:
/**
* Constructor
*/
PointerToPatternEntry(PatternEntry*& value);
/**
* Copy constructor.
*/
PointerToPatternEntry(const PointerToPatternEntry& that);
PatternEntry*& fValue;
friend class VectorOfPointersToPatternEntry;
};
/**
* Simple owning-vector class
* This is a vector class that is designed to be used with pointer types and which implements
* owning semantics. That is, once a value is placed an element of the vector, the vector is
* considered to own it and is responsible for disposing it. This will happen both when the
* element is changed using atPut() or through an PointerTo****, and when the vector itself is
* disposed.
* <P>
* WARNING: The caller must be careful to avoid holding onto any dangling references
* after the vector is disposed, and the caller must also be careful not to put the same
* value into more than one element in the vector (unless the value is NULL).
* <P>
* As with VectorOf***>, the vector grows as necessary to accommodate all elements, the
* size is one plus the index of the highest element that's been set, and any elements below
* the highest element that aren't explicitly initialized are initialized to NULL.
*/
class VectorOfPointersToPatternEntry {
public:
/**
* The chunk size by which the array is grown.
* This probably shouldn't be in the API
*/
enum EGrowthRate { GROWTH_RATE = 4 };
/**
* Creates a vector that contains elements of PointerToPatternEntry.
* @param initialSize the initial size of the vector object.
*/
VectorOfPointersToPatternEntry(int32_t initialSize = 0);
/**
* Copy constructor.
*/
VectorOfPointersToPatternEntry(const VectorOfPointersToPatternEntry& that);
/**
* Destructor.
*/
~VectorOfPointersToPatternEntry();
/**
* Assignment operator.
*/
const VectorOfPointersToPatternEntry& operator=(const VectorOfPointersToPatternEntry& that);
/**
* Return a modifiable smart-pointer to the contraction table
* at the given index. Assigning to this smart pointer will work, e.g.
* <pre>
* VectorOfPointersToPatternEntry foo = ....;
* foo[5] = ...;
* </pre>
* This does range-checking; access to elements beyond the end of the
* array will cause the array to grow.
*/
PointerToPatternEntry operator[](int32_t index);
inline PointerToPatternEntry at(int32_t index) { return (*this)[index]; }
/**
* Return a pointer to the EntryPair at the given index.
* The pointer itself cannot be modified, but the elements it points to may:
* <pre>
* const VectorOfPointersToPatternEntryfoo = ....;
* foo[5] = ....; // NOT ALLOWED
* foo[5]->getStrength(); // ok
* </pre>
* This does not do range-checking; an invalid index may cause a crash.
* @return the accessed element.
*/
PatternEntry* operator[](int32_t index) const;
inline PatternEntry* at(int32_t index) const { return (*this)[index]; }
/**
* Sets the element at the specified index to a different value.
* If there was aready an object stored at this index, it is deleted.
* @param index the specified index.
* @param value the new value.
*/
void atPut( int32_t index,
PatternEntry* value);
/**
* Inserts a value at the specified index, sliding the rest of
* the elements in the array over to make room.
* @param index the specified index.
* @param value the value.
*/
void atInsert( int32_t index,
PatternEntry* value);
/**
* "Orphan" the pointer at the specified index. The array will no
* longer contain a reference to the object, and the caller is
* now responsible for deleting its storage.
*/
PatternEntry* orphanAt(int32_t index);
/**
* Remove all elements from the vector.
*/
void clear(void);
/**
* Returns the number of elements in the vector.
* @return the size of vector.
*/
int32_t size(void) const;
/**
* If the specified value exists in the vector, return its index.
* If not, return -1.
*/
int32_t indexOf(const PatternEntry* value) const;
/**
* Return the index of the last occurance of value in the vector,
* or -1 if the vector doesn't contain value.
*/
int32_t lastIndexOf(const PatternEntry* value) const;
/**
* Checks if this vector object is valid.
* @return TRUE if the vector object is valid, FALSE otherwise.
*/
bool_t isBogus(void) const;
private:
/**
* Resizes the vector if necessary when compared to a new size.
* @param newSize the new size.
*/
void resize(int32_t newSize);
int32_t fSize;
int32_t fCapacity;
PatternEntry** fElements;
bool_t fBogus;
};
inline
EntryPair::EntryPair()
: entryName(), value(0xffffffff), fwd(TRUE)
{
}
inline
EntryPair::EntryPair(const UnicodeString &name, int32_t aValue, bool_t aFwd)
: entryName(name), value(aValue), fwd(aFwd)
{
}
//=======================================================================================
// METHODS ON VectorOfInt
//=======================================================================================
inline int32_t
VectorOfInt::operator[](int32_t index) const
{
return (index < fCapacity) ? fElements[index] : 0;
}
inline int32_t
VectorOfInt::at(int32_t index) const
{
return (*this)[index];
}
inline int32_t&
VectorOfInt::at(int32_t index)
{
return (*this)[index];
}
inline int32_t
VectorOfInt::size() const
{
return fSize;
}
//=======================================================================================
// METHODS ON VectorOfPointer
//=======================================================================================
inline void*
VectorOfPointer::operator[](int32_t index) const
{
return (index < fCapacity) ? fElements[index] : 0;
}
inline void*
VectorOfPointer::at(int32_t index) const
{
return (*this)[index];
}
inline void*&
VectorOfPointer::at(int32_t index)
{
return (*this)[index];
}
inline int32_t
VectorOfPointer::size() const
{
return fSize;
}
//=======================================================================================
// METHODS ON PToExpandTable
//=======================================================================================
inline
PToExpandTable::operator VectorOfInt*() const
{
return fValue;
}
inline
PToExpandTable::PToExpandTable(VectorOfInt*& value)
: fValue(value)
{
}
inline
PToExpandTable::PToExpandTable(const PToExpandTable& that)
: fValue(that.fValue)
{
}
inline
PToExpandTable::~PToExpandTable()
{
}
inline const PToExpandTable&
PToExpandTable::operator=(VectorOfInt* newValue)
{
delete fValue;
fValue = newValue;
return *this;
}
inline const PToExpandTable&
PToExpandTable::operator=(const PToExpandTable& pointerToNewValue)
{
delete fValue;
fValue = (VectorOfInt*)(pointerToNewValue);
return *this;
}
//=======================================================================================
// METHODS ON VectorOfPToExpandTable
//=======================================================================================
inline VectorOfInt*
VectorOfPToExpandTable::operator[](int32_t index) const
{
return (index < fCapacity) ? fElements[index] : 0;
}
inline VectorOfInt*
VectorOfPToExpandTable::at(int32_t index) const
{
return (*this)[index];
}
inline PToExpandTable
VectorOfPToExpandTable::at(int32_t index)
{
return (*this)[index];
}
inline int32_t
VectorOfPToExpandTable::size() const
{
return fSize;
}
//=======================================================================================
// METHODS ON PToContractElement
//=======================================================================================
inline
PToContractElement::operator EntryPair*() const
{
return fValue;
}
inline
PToContractElement::PToContractElement(EntryPair*& value)
: fValue(value)
{
}
inline
PToContractElement::PToContractElement(const PToContractElement& that)
: fValue(that.fValue)
{
}
inline
PToContractElement::~PToContractElement()
{
}
inline const PToContractElement&
PToContractElement::operator=(EntryPair* newValue)
{
delete fValue;
fValue = newValue;
return *this;
}
inline const PToContractElement&
PToContractElement::operator=(const PToContractElement& pointerToNewValue)
{
delete fValue;
fValue = (EntryPair*)(pointerToNewValue);
return *this;
}
//=======================================================================================
// METHODS ON VectorOfPToContractElement
//=======================================================================================
inline EntryPair*
VectorOfPToContractElement::operator[](int32_t index) const
{
return (index < fCapacity) ? fElements[index] : 0;
}
inline EntryPair*
VectorOfPToContractElement::at(int32_t index) const
{
return (*this)[index];
}
inline PToContractElement
VectorOfPToContractElement::at(int32_t index)
{
return (*this)[index];
}
inline int32_t
VectorOfPToContractElement::size() const
{
return fSize;
}
//=======================================================================================
// METHODS ON PToContractTable
//=======================================================================================
inline
PToContractTable::operator VectorOfPToContractElement*() const
{
return fValue;
}
inline
PToContractTable::PToContractTable(VectorOfPToContractElement*& value)
: fValue(value)
{
}
inline
PToContractTable::PToContractTable(const PToContractTable& that)
: fValue(that.fValue)
{
}
inline
PToContractTable::~PToContractTable()
{
}
inline const PToContractTable&
PToContractTable::operator=(VectorOfPToContractElement* newValue)
{
delete fValue;
fValue = newValue;
return *this;
}
inline const PToContractTable&
PToContractTable::operator=(const PToContractTable& pointerToNewValue)
{
delete fValue;
fValue = (VectorOfPToContractElement*)(pointerToNewValue);
return *this;
}
//=======================================================================================
// METHODS ON VectorOfPToContractTable
//=======================================================================================
inline VectorOfPToContractElement*
VectorOfPToContractTable::operator[](int32_t index) const
{
return (index < fCapacity) ? fElements[index] : 0;
}
inline VectorOfPToContractElement*
VectorOfPToContractTable::at(int32_t index) const
{
return (*this)[index];
}
inline PToContractTable
VectorOfPToContractTable::at(int32_t index)
{
return (*this)[index];
}
inline int32_t
VectorOfPToContractTable::size() const
{
return fSize;
}
#endif