blob: f70892e56e22d532de1fa426325f8843514c90e7 [file] [log] [blame]
/*
******************************************************************************
* Copyright (C) 2001-2009, International Business Machines
* Corporation and others. All Rights Reserved.
******************************************************************************
*
* File ucoleitr.cpp
*
* Modification History:
*
* Date Name Description
* 02/15/2001 synwee Modified all methods to process its own function
* instead of calling the equivalent c++ api (coleitr.h)
******************************************************************************/
#include "unicode/utypes.h"
#if !UCONFIG_NO_COLLATION
#include "unicode/ucoleitr.h"
#include "unicode/ustring.h"
#include "unicode/sortkey.h"
#include "unicode/uobject.h"
#include "ucol_imp.h"
#include "cmemory.h"
U_NAMESPACE_USE
#define BUFFER_LENGTH 100
#define DEFAULT_BUFFER_SIZE 16
#define BUFFER_GROW 8
#define ARRAY_SIZE(array) (sizeof array / sizeof array[0])
#define ARRAY_COPY(dst, src, count) uprv_memcpy((void *) (dst), (void *) (src), (count) * sizeof (src)[0])
#define NEW_ARRAY(type, count) (type *) uprv_malloc((count) * sizeof(type))
#define GROW_ARRAY(array, newSize) uprv_realloc((void *) (array), (newSize) * sizeof (array)[0])
#define DELETE_ARRAY(array) uprv_free((void *) (array))
typedef struct collIterate collIterator;
struct RCEI
{
uint32_t ce;
int32_t low;
int32_t high;
};
U_NAMESPACE_BEGIN
struct RCEBuffer
{
RCEI defaultBuffer[DEFAULT_BUFFER_SIZE];
RCEI *buffer;
int32_t bufferIndex;
int32_t bufferSize;
RCEBuffer();
~RCEBuffer();
UBool empty() const;
void put(uint32_t ce, int32_t ixLow, int32_t ixHigh);
const RCEI *get();
};
RCEBuffer::RCEBuffer()
{
buffer = defaultBuffer;
bufferIndex = 0;
bufferSize = DEFAULT_BUFFER_SIZE;
}
RCEBuffer::~RCEBuffer()
{
if (buffer != defaultBuffer) {
DELETE_ARRAY(buffer);
}
}
UBool RCEBuffer::empty() const
{
return bufferIndex <= 0;
}
void RCEBuffer::put(uint32_t ce, int32_t ixLow, int32_t ixHigh)
{
if (bufferIndex >= bufferSize) {
RCEI *newBuffer = NEW_ARRAY(RCEI, bufferSize + BUFFER_GROW);
ARRAY_COPY(newBuffer, buffer, bufferSize);
if (buffer != defaultBuffer) {
DELETE_ARRAY(buffer);
}
buffer = newBuffer;
bufferSize += BUFFER_GROW;
}
buffer[bufferIndex].ce = ce;
buffer[bufferIndex].low = ixLow;
buffer[bufferIndex].high = ixHigh;
bufferIndex += 1;
}
const RCEI *RCEBuffer::get()
{
if (bufferIndex > 0) {
return &buffer[--bufferIndex];
}
return NULL;
}
struct PCEI
{
uint64_t ce;
int32_t low;
int32_t high;
};
struct PCEBuffer
{
PCEI defaultBuffer[DEFAULT_BUFFER_SIZE];
PCEI *buffer;
int32_t bufferIndex;
int32_t bufferSize;
PCEBuffer();
~PCEBuffer();
void reset();
UBool empty() const;
void put(uint64_t ce, int32_t ixLow, int32_t ixHigh);
const PCEI *get();
};
PCEBuffer::PCEBuffer()
{
buffer = defaultBuffer;
bufferIndex = 0;
bufferSize = DEFAULT_BUFFER_SIZE;
}
PCEBuffer::~PCEBuffer()
{
if (buffer != defaultBuffer) {
DELETE_ARRAY(buffer);
}
}
void PCEBuffer::reset()
{
bufferIndex = 0;
}
UBool PCEBuffer::empty() const
{
return bufferIndex <= 0;
}
void PCEBuffer::put(uint64_t ce, int32_t ixLow, int32_t ixHigh)
{
if (bufferIndex >= bufferSize) {
PCEI *newBuffer = NEW_ARRAY(PCEI, bufferSize + BUFFER_GROW);
ARRAY_COPY(newBuffer, buffer, bufferSize);
if (buffer != defaultBuffer) {
DELETE_ARRAY(buffer);
}
buffer = newBuffer;
bufferSize += BUFFER_GROW;
}
buffer[bufferIndex].ce = ce;
buffer[bufferIndex].low = ixLow;
buffer[bufferIndex].high = ixHigh;
bufferIndex += 1;
}
const PCEI *PCEBuffer::get()
{
if (bufferIndex > 0) {
return &buffer[--bufferIndex];
}
return NULL;
}
/*
* This inherits from UObject so that
* it can be allocated by new and the
* constructor for PCEBuffer is called.
*/
struct UCollationPCE : public UObject
{
PCEBuffer pceBuffer;
UCollationStrength strength;
UBool toShift;
UBool isShifted;
uint32_t variableTop;
UCollationPCE(UCollationElements *elems);
~UCollationPCE();
void init(const UCollator *coll);
virtual UClassID getDynamicClassID() const;
static UClassID getStaticClassID();
};
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(UCollationPCE)
UCollationPCE::UCollationPCE(UCollationElements *elems)
{
init(elems->iteratordata_.coll);
}
void UCollationPCE::init(const UCollator *coll)
{
UErrorCode status = U_ZERO_ERROR;
strength = ucol_getStrength(coll);
toShift = ucol_getAttribute(coll, UCOL_ALTERNATE_HANDLING, &status) == UCOL_SHIFTED;
isShifted = FALSE;
variableTop = coll->variableTopValue << 16;
}
UCollationPCE::~UCollationPCE()
{
// nothing to do
}
U_NAMESPACE_END
inline uint64_t processCE(UCollationElements *elems, uint32_t ce)
{
uint64_t primary = 0, secondary = 0, tertiary = 0, quaternary = 0;
// This is clean, but somewhat slow...
// We could apply the mask to ce and then
// just get all three orders...
switch(elems->pce->strength) {
default:
tertiary = ucol_tertiaryOrder(ce);
/* note fall-through */
case UCOL_SECONDARY:
secondary = ucol_secondaryOrder(ce);
/* note fall-through */
case UCOL_PRIMARY:
primary = ucol_primaryOrder(ce);
}
// **** This should probably handle continuations too. ****
// **** That means that we need 24 bits for the primary ****
// **** instead of the 16 that we're currently using. ****
// **** So we can lay out the 64 bits as: 24.12.12.16. ****
// **** Another complication with continuations is that ****
// **** the *second* CE is marked as a continuation, so ****
// **** we always have to peek ahead to know how long ****
// **** the primary is... ****
if (elems->pce->toShift && (elems->pce->variableTop > ce && primary != 0)
|| (elems->pce->isShifted && primary == 0)) {
if (primary == 0) {
return UCOL_IGNORABLE;
}
if (elems->pce->strength >= UCOL_QUATERNARY) {
quaternary = primary;
}
primary = secondary = tertiary = 0;
elems->pce->isShifted = TRUE;
} else {
if (elems->pce->strength >= UCOL_QUATERNARY) {
quaternary = 0xFFFF;
}
elems->pce->isShifted = FALSE;
}
return primary << 48 | secondary << 32 | tertiary << 16 | quaternary;
}
U_CAPI void U_EXPORT2
uprv_init_pce(const UCollationElements *elems)
{
if (elems->pce != NULL) {
elems->pce->init(elems->iteratordata_.coll);
}
}
/* public methods ---------------------------------------------------- */
U_CAPI UCollationElements* U_EXPORT2
ucol_openElements(const UCollator *coll,
const UChar *text,
int32_t textLength,
UErrorCode *status)
{
UCollationElements *result;
if (U_FAILURE(*status)) {
return NULL;
}
result = (UCollationElements *)uprv_malloc(sizeof(UCollationElements));
/* test for NULL */
if (result == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
result->reset_ = TRUE;
result->isWritable = FALSE;
result->pce = NULL;
if (text == NULL) {
textLength = 0;
}
uprv_init_collIterate(coll, text, textLength, &result->iteratordata_);
return result;
}
U_CAPI void U_EXPORT2
ucol_closeElements(UCollationElements *elems)
{
if (elems != NULL) {
collIterate *ci = &elems->iteratordata_;
if (ci != NULL) {
if (ci->writableBuffer != ci->stackWritableBuffer) {
uprv_free(ci->writableBuffer);
}
if (ci->extendCEs) {
uprv_free(ci->extendCEs);
}
if (ci->offsetBuffer) {
uprv_free(ci->offsetBuffer);
}
}
if (elems->isWritable && elems->iteratordata_.string != NULL)
{
uprv_free(elems->iteratordata_.string);
}
if (elems->pce != NULL) {
delete elems->pce;
}
uprv_free(elems);
}
}
U_CAPI void U_EXPORT2
ucol_reset(UCollationElements *elems)
{
collIterate *ci = &(elems->iteratordata_);
elems->reset_ = TRUE;
ci->pos = ci->string;
if ((ci->flags & UCOL_ITER_HASLEN) == 0 || ci->endp == NULL) {
ci->endp = ci->string + u_strlen(ci->string);
}
ci->CEpos = ci->toReturn = ci->CEs;
ci->flags = (ci->flags & UCOL_FORCE_HAN_IMPLICIT) | UCOL_ITER_HASLEN;
if (ci->coll->normalizationMode == UCOL_ON) {
ci->flags |= UCOL_ITER_NORM;
}
if (ci->stackWritableBuffer != ci->writableBuffer) {
uprv_free(ci->writableBuffer);
ci->writableBuffer = ci->stackWritableBuffer;
ci->writableBufSize = UCOL_WRITABLE_BUFFER_SIZE;
}
ci->fcdPosition = NULL;
//ci->offsetReturn = ci->offsetStore = NULL;
ci->offsetRepeatCount = ci->offsetRepeatValue = 0;
}
U_CAPI void U_EXPORT2
ucol_forceHanImplicit(UCollationElements *elems, UErrorCode *status)
{
if (U_FAILURE(*status)) {
return;
}
if (elems == NULL) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
elems->iteratordata_.flags |= UCOL_FORCE_HAN_IMPLICIT;
}
U_CAPI int32_t U_EXPORT2
ucol_next(UCollationElements *elems,
UErrorCode *status)
{
int32_t result;
if (U_FAILURE(*status)) {
return UCOL_NULLORDER;
}
elems->reset_ = FALSE;
result = (int32_t)ucol_getNextCE(elems->iteratordata_.coll,
&elems->iteratordata_,
status);
if (result == UCOL_NO_MORE_CES) {
result = UCOL_NULLORDER;
}
return result;
}
U_CAPI int64_t U_EXPORT2
ucol_nextProcessed(UCollationElements *elems,
int32_t *ixLow,
int32_t *ixHigh,
UErrorCode *status)
{
const UCollator *coll = elems->iteratordata_.coll;
int64_t result = UCOL_IGNORABLE;
uint32_t low = 0, high = 0;
if (U_FAILURE(*status)) {
return UCOL_PROCESSED_NULLORDER;
}
if (elems->pce == NULL) {
elems->pce = new UCollationPCE(elems);
} else {
elems->pce->pceBuffer.reset();
}
elems->reset_ = FALSE;
do {
low = ucol_getOffset(elems);
uint32_t ce = (uint32_t) ucol_getNextCE(coll, &elems->iteratordata_, status);
high = ucol_getOffset(elems);
if (ce == UCOL_NO_MORE_CES) {
result = UCOL_PROCESSED_NULLORDER;
break;
}
result = processCE(elems, ce);
} while (result == UCOL_IGNORABLE);
if (ixLow != NULL) {
*ixLow = low;
}
if (ixHigh != NULL) {
*ixHigh = high;
}
return result;
}
U_CAPI int32_t U_EXPORT2
ucol_previous(UCollationElements *elems,
UErrorCode *status)
{
if(U_FAILURE(*status)) {
return UCOL_NULLORDER;
}
else
{
int32_t result;
if (elems->reset_ && (elems->iteratordata_.pos == elems->iteratordata_.string)) {
if (elems->iteratordata_.endp == NULL) {
elems->iteratordata_.endp = elems->iteratordata_.string +
u_strlen(elems->iteratordata_.string);
elems->iteratordata_.flags |= UCOL_ITER_HASLEN;
}
elems->iteratordata_.pos = elems->iteratordata_.endp;
elems->iteratordata_.fcdPosition = elems->iteratordata_.endp;
}
elems->reset_ = FALSE;
result = (int32_t)ucol_getPrevCE(elems->iteratordata_.coll,
&(elems->iteratordata_),
status);
if (result == UCOL_NO_MORE_CES) {
result = UCOL_NULLORDER;
}
return result;
}
}
U_CAPI int64_t U_EXPORT2
ucol_previousProcessed(UCollationElements *elems,
int32_t *ixLow,
int32_t *ixHigh,
UErrorCode *status)
{
const UCollator *coll = elems->iteratordata_.coll;
int64_t result = UCOL_IGNORABLE;
// int64_t primary = 0, secondary = 0, tertiary = 0, quaternary = 0;
// UCollationStrength strength = ucol_getStrength(coll);
// UBool toShift = ucol_getAttribute(coll, UCOL_ALTERNATE_HANDLING, status) == UCOL_SHIFTED;
// uint32_t variableTop = coll->variableTopValue;
int32_t low = 0, high = 0;
if (U_FAILURE(*status)) {
return UCOL_PROCESSED_NULLORDER;
}
if (elems->reset_ &&
(elems->iteratordata_.pos == elems->iteratordata_.string)) {
if (elems->iteratordata_.endp == NULL) {
elems->iteratordata_.endp = elems->iteratordata_.string +
u_strlen(elems->iteratordata_.string);
elems->iteratordata_.flags |= UCOL_ITER_HASLEN;
}
elems->iteratordata_.pos = elems->iteratordata_.endp;
elems->iteratordata_.fcdPosition = elems->iteratordata_.endp;
}
if (elems->pce == NULL) {
elems->pce = new UCollationPCE(elems);
} else {
//elems->pce->pceBuffer.reset();
}
elems->reset_ = FALSE;
while (elems->pce->pceBuffer.empty()) {
// buffer raw CEs up to non-ignorable primary
RCEBuffer rceb;
uint32_t ce;
// **** do we need to reset rceb, or will it always be empty at this point ****
do {
high = ucol_getOffset(elems);
ce = ucol_getPrevCE(coll, &elems->iteratordata_, status);
low = ucol_getOffset(elems);
if (ce == UCOL_NO_MORE_CES) {
if (! rceb.empty()) {
break;
}
goto finish;
}
rceb.put(ce, low, high);
} while ((ce & UCOL_PRIMARYMASK) == 0);
// process the raw CEs
while (! rceb.empty()) {
const RCEI *rcei = rceb.get();
result = processCE(elems, rcei->ce);
if (result != UCOL_IGNORABLE) {
elems->pce->pceBuffer.put(result, rcei->low, rcei->high);
}
}
}
finish:
if (elems->pce->pceBuffer.empty()) {
// **** Is -1 the right value for ixLow, ixHigh? ****
if (ixLow != NULL) {
*ixLow = -1;
}
if (ixHigh != NULL) {
*ixHigh = -1
;
}
return UCOL_PROCESSED_NULLORDER;
}
const PCEI *pcei = elems->pce->pceBuffer.get();
if (ixLow != NULL) {
*ixLow = pcei->low;
}
if (ixHigh != NULL) {
*ixHigh = pcei->high;
}
return pcei->ce;
}
U_CAPI int32_t U_EXPORT2
ucol_getMaxExpansion(const UCollationElements *elems,
int32_t order)
{
uint8_t result;
#if 0
UCOL_GETMAXEXPANSION(elems->iteratordata_.coll, (uint32_t)order, result);
#else
const UCollator *coll = elems->iteratordata_.coll;
const uint32_t *start;
const uint32_t *limit;
const uint32_t *mid;
uint32_t strengthMask = 0;
uint32_t mOrder = (uint32_t) order;
switch (coll->strength)
{
default:
strengthMask |= UCOL_TERTIARYORDERMASK;
/* fall through */
case UCOL_SECONDARY:
strengthMask |= UCOL_SECONDARYORDERMASK;
/* fall through */
case UCOL_PRIMARY:
strengthMask |= UCOL_PRIMARYORDERMASK;
}
mOrder &= strengthMask;
start = (coll)->endExpansionCE;
limit = (coll)->lastEndExpansionCE;
while (start < limit - 1) {
mid = start + ((limit - start) >> 1);
if (mOrder <= (*mid & strengthMask)) {
limit = mid;
} else {
start = mid;
}
}
// FIXME: with a masked search, there might be more than one hit,
// so we need to look forward and backward from the match to find all
// of the hits...
if ((*start & strengthMask) == mOrder) {
result = *((coll)->expansionCESize + (start - (coll)->endExpansionCE));
} else if ((*limit & strengthMask) == mOrder) {
result = *(coll->expansionCESize + (limit - coll->endExpansionCE));
} else if ((mOrder & 0xFFFF) == 0x00C0) {
result = 2;
} else {
result = 1;
}
#endif
return result;
}
U_CAPI void U_EXPORT2
ucol_setText( UCollationElements *elems,
const UChar *text,
int32_t textLength,
UErrorCode *status)
{
if (U_FAILURE(*status)) {
return;
}
if (elems->isWritable && elems->iteratordata_.string != NULL)
{
uprv_free(elems->iteratordata_.string);
}
if (text == NULL) {
textLength = 0;
}
elems->isWritable = FALSE;
/* free offset buffer to avoid memory leak before initializing. */
ucol_freeOffsetBuffer(&(elems->iteratordata_));
uprv_init_collIterate(elems->iteratordata_.coll, text, textLength,
&elems->iteratordata_);
elems->reset_ = TRUE;
}
U_CAPI int32_t U_EXPORT2
ucol_getOffset(const UCollationElements *elems)
{
const collIterate *ci = &(elems->iteratordata_);
if (ci->offsetRepeatCount > 0 && ci->offsetRepeatValue != 0) {
return ci->offsetRepeatValue;
}
if (ci->offsetReturn != NULL) {
return *ci->offsetReturn;
}
// while processing characters in normalization buffer getOffset will
// return the next non-normalized character.
// should be inline with the old implementation since the old codes uses
// nextDecomp in normalizer which also decomposes the string till the
// first base character is found.
if (ci->flags & UCOL_ITER_INNORMBUF) {
if (ci->fcdPosition == NULL) {
return 0;
}
return (int32_t)(ci->fcdPosition - ci->string);
}
else {
return (int32_t)(ci->pos - ci->string);
}
}
U_CAPI void U_EXPORT2
ucol_setOffset(UCollationElements *elems,
int32_t offset,
UErrorCode *status)
{
if (U_FAILURE(*status)) {
return;
}
// this methods will clean up any use of the writable buffer and points to
// the original string
collIterate *ci = &(elems->iteratordata_);
ci->pos = ci->string + offset;
ci->CEpos = ci->toReturn = ci->CEs;
if (ci->flags & UCOL_ITER_INNORMBUF) {
ci->flags = ci->origFlags;
}
if ((ci->flags & UCOL_ITER_HASLEN) == 0) {
ci->endp = ci->string + u_strlen(ci->string);
ci->flags |= UCOL_ITER_HASLEN;
}
ci->fcdPosition = NULL;
elems->reset_ = FALSE;
ci->offsetReturn = NULL;
ci->offsetStore = ci->offsetBuffer;
ci->offsetRepeatCount = ci->offsetRepeatValue = 0;
}
U_CAPI int32_t U_EXPORT2
ucol_primaryOrder (int32_t order)
{
order &= UCOL_PRIMARYMASK;
return (order >> UCOL_PRIMARYORDERSHIFT);
}
U_CAPI int32_t U_EXPORT2
ucol_secondaryOrder (int32_t order)
{
order &= UCOL_SECONDARYMASK;
return (order >> UCOL_SECONDARYORDERSHIFT);
}
U_CAPI int32_t U_EXPORT2
ucol_tertiaryOrder (int32_t order)
{
return (order & UCOL_TERTIARYMASK);
}
void ucol_freeOffsetBuffer(collIterate *s) {
if (s != NULL && s->offsetBuffer != NULL) {
uprv_free(s->offsetBuffer);
s->offsetBuffer = NULL;
s->offsetBufferSize = 0;
}
}
#endif /* #if !UCONFIG_NO_COLLATION */