| // Copyright 2010 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include <algorithm> |
| #include <cstring> |
| |
| #include "bignum.h" |
| #include "utils.h" |
| |
| namespace double_conversion { |
| |
| Bignum::Chunk& Bignum::RawBigit(const int index) { |
| DOUBLE_CONVERSION_ASSERT(static_cast<unsigned>(index) < kBigitCapacity); |
| return bigits_buffer_[index]; |
| } |
| |
| |
| const Bignum::Chunk& Bignum::RawBigit(const int index) const { |
| DOUBLE_CONVERSION_ASSERT(static_cast<unsigned>(index) < kBigitCapacity); |
| return bigits_buffer_[index]; |
| } |
| |
| |
| template<typename S> |
| static int BitSize(const S value) { |
| (void) value; // Mark variable as used. |
| return 8 * sizeof(value); |
| } |
| |
| // Guaranteed to lie in one Bigit. |
| void Bignum::AssignUInt16(const uint16_t value) { |
| DOUBLE_CONVERSION_ASSERT(kBigitSize >= BitSize(value)); |
| Zero(); |
| if (value > 0) { |
| RawBigit(0) = value; |
| used_bigits_ = 1; |
| } |
| } |
| |
| |
| void Bignum::AssignUInt64(uint64_t value) { |
| Zero(); |
| for(int i = 0; value > 0; ++i) { |
| RawBigit(i) = value & kBigitMask; |
| value >>= kBigitSize; |
| ++used_bigits_; |
| } |
| } |
| |
| |
| void Bignum::AssignBignum(const Bignum& other) { |
| exponent_ = other.exponent_; |
| for (int i = 0; i < other.used_bigits_; ++i) { |
| RawBigit(i) = other.RawBigit(i); |
| } |
| used_bigits_ = other.used_bigits_; |
| } |
| |
| |
| static uint64_t ReadUInt64(const Vector<const char> buffer, |
| const int from, |
| const int digits_to_read) { |
| uint64_t result = 0; |
| for (int i = from; i < from + digits_to_read; ++i) { |
| const int digit = buffer[i] - '0'; |
| DOUBLE_CONVERSION_ASSERT(0 <= digit && digit <= 9); |
| result = result * 10 + digit; |
| } |
| return result; |
| } |
| |
| |
| void Bignum::AssignDecimalString(const Vector<const char> value) { |
| // 2^64 = 18446744073709551616 > 10^19 |
| static const int kMaxUint64DecimalDigits = 19; |
| Zero(); |
| int length = value.length(); |
| unsigned pos = 0; |
| // Let's just say that each digit needs 4 bits. |
| while (length >= kMaxUint64DecimalDigits) { |
| const uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits); |
| pos += kMaxUint64DecimalDigits; |
| length -= kMaxUint64DecimalDigits; |
| MultiplyByPowerOfTen(kMaxUint64DecimalDigits); |
| AddUInt64(digits); |
| } |
| const uint64_t digits = ReadUInt64(value, pos, length); |
| MultiplyByPowerOfTen(length); |
| AddUInt64(digits); |
| Clamp(); |
| } |
| |
| |
| static uint64_t HexCharValue(const int c) { |
| if ('0' <= c && c <= '9') { |
| return c - '0'; |
| } |
| if ('a' <= c && c <= 'f') { |
| return 10 + c - 'a'; |
| } |
| DOUBLE_CONVERSION_ASSERT('A' <= c && c <= 'F'); |
| return 10 + c - 'A'; |
| } |
| |
| |
| // Unlike AssignDecimalString(), this function is "only" used |
| // for unit-tests and therefore not performance critical. |
| void Bignum::AssignHexString(Vector<const char> value) { |
| Zero(); |
| // Required capacity could be reduced by ignoring leading zeros. |
| EnsureCapacity(((value.length() * 4) + kBigitSize - 1) / kBigitSize); |
| DOUBLE_CONVERSION_ASSERT(sizeof(uint64_t) * 8 >= kBigitSize + 4); // TODO: static_assert |
| // Accumulates converted hex digits until at least kBigitSize bits. |
| // Works with non-factor-of-four kBigitSizes. |
| uint64_t tmp = 0; // Accumulates converted hex digits until at least |
| for (int cnt = 0; !value.is_empty(); value.pop_back()) { |
| tmp |= (HexCharValue(value.last()) << cnt); |
| if ((cnt += 4) >= kBigitSize) { |
| RawBigit(used_bigits_++) = (tmp & kBigitMask); |
| cnt -= kBigitSize; |
| tmp >>= kBigitSize; |
| } |
| } |
| if (tmp > 0) { |
| RawBigit(used_bigits_++) = tmp; |
| } |
| Clamp(); |
| } |
| |
| |
| void Bignum::AddUInt64(const uint64_t operand) { |
| if (operand == 0) { |
| return; |
| } |
| Bignum other; |
| other.AssignUInt64(operand); |
| AddBignum(other); |
| } |
| |
| |
| void Bignum::AddBignum(const Bignum& other) { |
| DOUBLE_CONVERSION_ASSERT(IsClamped()); |
| DOUBLE_CONVERSION_ASSERT(other.IsClamped()); |
| |
| // If this has a greater exponent than other append zero-bigits to this. |
| // After this call exponent_ <= other.exponent_. |
| Align(other); |
| |
| // There are two possibilities: |
| // aaaaaaaaaaa 0000 (where the 0s represent a's exponent) |
| // bbbbb 00000000 |
| // ---------------- |
| // ccccccccccc 0000 |
| // or |
| // aaaaaaaaaa 0000 |
| // bbbbbbbbb 0000000 |
| // ----------------- |
| // cccccccccccc 0000 |
| // In both cases we might need a carry bigit. |
| |
| EnsureCapacity(1 + (std::max)(BigitLength(), other.BigitLength()) - exponent_); |
| Chunk carry = 0; |
| int bigit_pos = other.exponent_ - exponent_; |
| DOUBLE_CONVERSION_ASSERT(bigit_pos >= 0); |
| for (int i = used_bigits_; i < bigit_pos; ++i) { |
| RawBigit(i) = 0; |
| } |
| for (int i = 0; i < other.used_bigits_; ++i) { |
| const Chunk my = (bigit_pos < used_bigits_) ? RawBigit(bigit_pos) : 0; |
| const Chunk sum = my + other.RawBigit(i) + carry; |
| RawBigit(bigit_pos) = sum & kBigitMask; |
| carry = sum >> kBigitSize; |
| ++bigit_pos; |
| } |
| while (carry != 0) { |
| const Chunk my = (bigit_pos < used_bigits_) ? RawBigit(bigit_pos) : 0; |
| const Chunk sum = my + carry; |
| RawBigit(bigit_pos) = sum & kBigitMask; |
| carry = sum >> kBigitSize; |
| ++bigit_pos; |
| } |
| used_bigits_ = (std::max)(bigit_pos, static_cast<int>(used_bigits_)); |
| DOUBLE_CONVERSION_ASSERT(IsClamped()); |
| } |
| |
| |
| void Bignum::SubtractBignum(const Bignum& other) { |
| DOUBLE_CONVERSION_ASSERT(IsClamped()); |
| DOUBLE_CONVERSION_ASSERT(other.IsClamped()); |
| // We require this to be bigger than other. |
| DOUBLE_CONVERSION_ASSERT(LessEqual(other, *this)); |
| |
| Align(other); |
| |
| const int offset = other.exponent_ - exponent_; |
| Chunk borrow = 0; |
| int i; |
| for (i = 0; i < other.used_bigits_; ++i) { |
| DOUBLE_CONVERSION_ASSERT((borrow == 0) || (borrow == 1)); |
| const Chunk difference = RawBigit(i + offset) - other.RawBigit(i) - borrow; |
| RawBigit(i + offset) = difference & kBigitMask; |
| borrow = difference >> (kChunkSize - 1); |
| } |
| while (borrow != 0) { |
| const Chunk difference = RawBigit(i + offset) - borrow; |
| RawBigit(i + offset) = difference & kBigitMask; |
| borrow = difference >> (kChunkSize - 1); |
| ++i; |
| } |
| Clamp(); |
| } |
| |
| |
| void Bignum::ShiftLeft(const int shift_amount) { |
| if (used_bigits_ == 0) { |
| return; |
| } |
| exponent_ += (shift_amount / kBigitSize); |
| const int local_shift = shift_amount % kBigitSize; |
| EnsureCapacity(used_bigits_ + 1); |
| BigitsShiftLeft(local_shift); |
| } |
| |
| |
| void Bignum::MultiplyByUInt32(const uint32_t factor) { |
| if (factor == 1) { |
| return; |
| } |
| if (factor == 0) { |
| Zero(); |
| return; |
| } |
| if (used_bigits_ == 0) { |
| return; |
| } |
| // The product of a bigit with the factor is of size kBigitSize + 32. |
| // Assert that this number + 1 (for the carry) fits into double chunk. |
| DOUBLE_CONVERSION_ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1); |
| DoubleChunk carry = 0; |
| for (int i = 0; i < used_bigits_; ++i) { |
| const DoubleChunk product = static_cast<DoubleChunk>(factor) * RawBigit(i) + carry; |
| RawBigit(i) = static_cast<Chunk>(product & kBigitMask); |
| carry = (product >> kBigitSize); |
| } |
| while (carry != 0) { |
| EnsureCapacity(used_bigits_ + 1); |
| RawBigit(used_bigits_) = carry & kBigitMask; |
| used_bigits_++; |
| carry >>= kBigitSize; |
| } |
| } |
| |
| |
| void Bignum::MultiplyByUInt64(const uint64_t factor) { |
| if (factor == 1) { |
| return; |
| } |
| if (factor == 0) { |
| Zero(); |
| return; |
| } |
| if (used_bigits_ == 0) { |
| return; |
| } |
| DOUBLE_CONVERSION_ASSERT(kBigitSize < 32); |
| uint64_t carry = 0; |
| const uint64_t low = factor & 0xFFFFFFFF; |
| const uint64_t high = factor >> 32; |
| for (int i = 0; i < used_bigits_; ++i) { |
| const uint64_t product_low = low * RawBigit(i); |
| const uint64_t product_high = high * RawBigit(i); |
| const uint64_t tmp = (carry & kBigitMask) + product_low; |
| RawBigit(i) = tmp & kBigitMask; |
| carry = (carry >> kBigitSize) + (tmp >> kBigitSize) + |
| (product_high << (32 - kBigitSize)); |
| } |
| while (carry != 0) { |
| EnsureCapacity(used_bigits_ + 1); |
| RawBigit(used_bigits_) = carry & kBigitMask; |
| used_bigits_++; |
| carry >>= kBigitSize; |
| } |
| } |
| |
| |
| void Bignum::MultiplyByPowerOfTen(const int exponent) { |
| static const uint64_t kFive27 = DOUBLE_CONVERSION_UINT64_2PART_C(0x6765c793, fa10079d); |
| static const uint16_t kFive1 = 5; |
| static const uint16_t kFive2 = kFive1 * 5; |
| static const uint16_t kFive3 = kFive2 * 5; |
| static const uint16_t kFive4 = kFive3 * 5; |
| static const uint16_t kFive5 = kFive4 * 5; |
| static const uint16_t kFive6 = kFive5 * 5; |
| static const uint32_t kFive7 = kFive6 * 5; |
| static const uint32_t kFive8 = kFive7 * 5; |
| static const uint32_t kFive9 = kFive8 * 5; |
| static const uint32_t kFive10 = kFive9 * 5; |
| static const uint32_t kFive11 = kFive10 * 5; |
| static const uint32_t kFive12 = kFive11 * 5; |
| static const uint32_t kFive13 = kFive12 * 5; |
| static const uint32_t kFive1_to_12[] = |
| { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6, |
| kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 }; |
| |
| DOUBLE_CONVERSION_ASSERT(exponent >= 0); |
| |
| if (exponent == 0) { |
| return; |
| } |
| if (used_bigits_ == 0) { |
| return; |
| } |
| // We shift by exponent at the end just before returning. |
| int remaining_exponent = exponent; |
| while (remaining_exponent >= 27) { |
| MultiplyByUInt64(kFive27); |
| remaining_exponent -= 27; |
| } |
| while (remaining_exponent >= 13) { |
| MultiplyByUInt32(kFive13); |
| remaining_exponent -= 13; |
| } |
| if (remaining_exponent > 0) { |
| MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]); |
| } |
| ShiftLeft(exponent); |
| } |
| |
| |
| void Bignum::Square() { |
| DOUBLE_CONVERSION_ASSERT(IsClamped()); |
| const int product_length = 2 * used_bigits_; |
| EnsureCapacity(product_length); |
| |
| // Comba multiplication: compute each column separately. |
| // Example: r = a2a1a0 * b2b1b0. |
| // r = 1 * a0b0 + |
| // 10 * (a1b0 + a0b1) + |
| // 100 * (a2b0 + a1b1 + a0b2) + |
| // 1000 * (a2b1 + a1b2) + |
| // 10000 * a2b2 |
| // |
| // In the worst case we have to accumulate nb-digits products of digit*digit. |
| // |
| // Assert that the additional number of bits in a DoubleChunk are enough to |
| // sum up used_digits of Bigit*Bigit. |
| if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_bigits_) { |
| DOUBLE_CONVERSION_UNIMPLEMENTED(); |
| } |
| DoubleChunk accumulator = 0; |
| // First shift the digits so we don't overwrite them. |
| const int copy_offset = used_bigits_; |
| for (int i = 0; i < used_bigits_; ++i) { |
| RawBigit(copy_offset + i) = RawBigit(i); |
| } |
| // We have two loops to avoid some 'if's in the loop. |
| for (int i = 0; i < used_bigits_; ++i) { |
| // Process temporary digit i with power i. |
| // The sum of the two indices must be equal to i. |
| int bigit_index1 = i; |
| int bigit_index2 = 0; |
| // Sum all of the sub-products. |
| while (bigit_index1 >= 0) { |
| const Chunk chunk1 = RawBigit(copy_offset + bigit_index1); |
| const Chunk chunk2 = RawBigit(copy_offset + bigit_index2); |
| accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; |
| bigit_index1--; |
| bigit_index2++; |
| } |
| RawBigit(i) = static_cast<Chunk>(accumulator) & kBigitMask; |
| accumulator >>= kBigitSize; |
| } |
| for (int i = used_bigits_; i < product_length; ++i) { |
| int bigit_index1 = used_bigits_ - 1; |
| int bigit_index2 = i - bigit_index1; |
| // Invariant: sum of both indices is again equal to i. |
| // Inner loop runs 0 times on last iteration, emptying accumulator. |
| while (bigit_index2 < used_bigits_) { |
| const Chunk chunk1 = RawBigit(copy_offset + bigit_index1); |
| const Chunk chunk2 = RawBigit(copy_offset + bigit_index2); |
| accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; |
| bigit_index1--; |
| bigit_index2++; |
| } |
| // The overwritten RawBigit(i) will never be read in further loop iterations, |
| // because bigit_index1 and bigit_index2 are always greater |
| // than i - used_bigits_. |
| RawBigit(i) = static_cast<Chunk>(accumulator) & kBigitMask; |
| accumulator >>= kBigitSize; |
| } |
| // Since the result was guaranteed to lie inside the number the |
| // accumulator must be 0 now. |
| DOUBLE_CONVERSION_ASSERT(accumulator == 0); |
| |
| // Don't forget to update the used_digits and the exponent. |
| used_bigits_ = product_length; |
| exponent_ *= 2; |
| Clamp(); |
| } |
| |
| |
| void Bignum::AssignPowerUInt16(uint16_t base, const int power_exponent) { |
| DOUBLE_CONVERSION_ASSERT(base != 0); |
| DOUBLE_CONVERSION_ASSERT(power_exponent >= 0); |
| if (power_exponent == 0) { |
| AssignUInt16(1); |
| return; |
| } |
| Zero(); |
| int shifts = 0; |
| // We expect base to be in range 2-32, and most often to be 10. |
| // It does not make much sense to implement different algorithms for counting |
| // the bits. |
| while ((base & 1) == 0) { |
| base >>= 1; |
| shifts++; |
| } |
| int bit_size = 0; |
| int tmp_base = base; |
| while (tmp_base != 0) { |
| tmp_base >>= 1; |
| bit_size++; |
| } |
| const int final_size = bit_size * power_exponent; |
| // 1 extra bigit for the shifting, and one for rounded final_size. |
| EnsureCapacity(final_size / kBigitSize + 2); |
| |
| // Left to Right exponentiation. |
| int mask = 1; |
| while (power_exponent >= mask) mask <<= 1; |
| |
| // The mask is now pointing to the bit above the most significant 1-bit of |
| // power_exponent. |
| // Get rid of first 1-bit; |
| mask >>= 2; |
| uint64_t this_value = base; |
| |
| bool delayed_multiplication = false; |
| const uint64_t max_32bits = 0xFFFFFFFF; |
| while (mask != 0 && this_value <= max_32bits) { |
| this_value = this_value * this_value; |
| // Verify that there is enough space in this_value to perform the |
| // multiplication. The first bit_size bits must be 0. |
| if ((power_exponent & mask) != 0) { |
| DOUBLE_CONVERSION_ASSERT(bit_size > 0); |
| const uint64_t base_bits_mask = |
| ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1); |
| const bool high_bits_zero = (this_value & base_bits_mask) == 0; |
| if (high_bits_zero) { |
| this_value *= base; |
| } else { |
| delayed_multiplication = true; |
| } |
| } |
| mask >>= 1; |
| } |
| AssignUInt64(this_value); |
| if (delayed_multiplication) { |
| MultiplyByUInt32(base); |
| } |
| |
| // Now do the same thing as a bignum. |
| while (mask != 0) { |
| Square(); |
| if ((power_exponent & mask) != 0) { |
| MultiplyByUInt32(base); |
| } |
| mask >>= 1; |
| } |
| |
| // And finally add the saved shifts. |
| ShiftLeft(shifts * power_exponent); |
| } |
| |
| |
| // Precondition: this/other < 16bit. |
| uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) { |
| DOUBLE_CONVERSION_ASSERT(IsClamped()); |
| DOUBLE_CONVERSION_ASSERT(other.IsClamped()); |
| DOUBLE_CONVERSION_ASSERT(other.used_bigits_ > 0); |
| |
| // Easy case: if we have less digits than the divisor than the result is 0. |
| // Note: this handles the case where this == 0, too. |
| if (BigitLength() < other.BigitLength()) { |
| return 0; |
| } |
| |
| Align(other); |
| |
| uint16_t result = 0; |
| |
| // Start by removing multiples of 'other' until both numbers have the same |
| // number of digits. |
| while (BigitLength() > other.BigitLength()) { |
| // This naive approach is extremely inefficient if `this` divided by other |
| // is big. This function is implemented for doubleToString where |
| // the result should be small (less than 10). |
| DOUBLE_CONVERSION_ASSERT(other.RawBigit(other.used_bigits_ - 1) >= ((1 << kBigitSize) / 16)); |
| DOUBLE_CONVERSION_ASSERT(RawBigit(used_bigits_ - 1) < 0x10000); |
| // Remove the multiples of the first digit. |
| // Example this = 23 and other equals 9. -> Remove 2 multiples. |
| result += static_cast<uint16_t>(RawBigit(used_bigits_ - 1)); |
| SubtractTimes(other, RawBigit(used_bigits_ - 1)); |
| } |
| |
| DOUBLE_CONVERSION_ASSERT(BigitLength() == other.BigitLength()); |
| |
| // Both bignums are at the same length now. |
| // Since other has more than 0 digits we know that the access to |
| // RawBigit(used_bigits_ - 1) is safe. |
| const Chunk this_bigit = RawBigit(used_bigits_ - 1); |
| const Chunk other_bigit = other.RawBigit(other.used_bigits_ - 1); |
| |
| if (other.used_bigits_ == 1) { |
| // Shortcut for easy (and common) case. |
| int quotient = this_bigit / other_bigit; |
| RawBigit(used_bigits_ - 1) = this_bigit - other_bigit * quotient; |
| DOUBLE_CONVERSION_ASSERT(quotient < 0x10000); |
| result += static_cast<uint16_t>(quotient); |
| Clamp(); |
| return result; |
| } |
| |
| const int division_estimate = this_bigit / (other_bigit + 1); |
| DOUBLE_CONVERSION_ASSERT(division_estimate < 0x10000); |
| result += static_cast<uint16_t>(division_estimate); |
| SubtractTimes(other, division_estimate); |
| |
| if (other_bigit * (division_estimate + 1) > this_bigit) { |
| // No need to even try to subtract. Even if other's remaining digits were 0 |
| // another subtraction would be too much. |
| return result; |
| } |
| |
| while (LessEqual(other, *this)) { |
| SubtractBignum(other); |
| result++; |
| } |
| return result; |
| } |
| |
| |
| template<typename S> |
| static int SizeInHexChars(S number) { |
| DOUBLE_CONVERSION_ASSERT(number > 0); |
| int result = 0; |
| while (number != 0) { |
| number >>= 4; |
| result++; |
| } |
| return result; |
| } |
| |
| |
| static char HexCharOfValue(const int value) { |
| DOUBLE_CONVERSION_ASSERT(0 <= value && value <= 16); |
| if (value < 10) { |
| return static_cast<char>(value + '0'); |
| } |
| return static_cast<char>(value - 10 + 'A'); |
| } |
| |
| |
| bool Bignum::ToHexString(char* buffer, const int buffer_size) const { |
| DOUBLE_CONVERSION_ASSERT(IsClamped()); |
| // Each bigit must be printable as separate hex-character. |
| DOUBLE_CONVERSION_ASSERT(kBigitSize % 4 == 0); |
| static const int kHexCharsPerBigit = kBigitSize / 4; |
| |
| if (used_bigits_ == 0) { |
| if (buffer_size < 2) { |
| return false; |
| } |
| buffer[0] = '0'; |
| buffer[1] = '\0'; |
| return true; |
| } |
| // We add 1 for the terminating '\0' character. |
| const int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit + |
| SizeInHexChars(RawBigit(used_bigits_ - 1)) + 1; |
| if (needed_chars > buffer_size) { |
| return false; |
| } |
| int string_index = needed_chars - 1; |
| buffer[string_index--] = '\0'; |
| for (int i = 0; i < exponent_; ++i) { |
| for (int j = 0; j < kHexCharsPerBigit; ++j) { |
| buffer[string_index--] = '0'; |
| } |
| } |
| for (int i = 0; i < used_bigits_ - 1; ++i) { |
| Chunk current_bigit = RawBigit(i); |
| for (int j = 0; j < kHexCharsPerBigit; ++j) { |
| buffer[string_index--] = HexCharOfValue(current_bigit & 0xF); |
| current_bigit >>= 4; |
| } |
| } |
| // And finally the last bigit. |
| Chunk most_significant_bigit = RawBigit(used_bigits_ - 1); |
| while (most_significant_bigit != 0) { |
| buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF); |
| most_significant_bigit >>= 4; |
| } |
| return true; |
| } |
| |
| |
| Bignum::Chunk Bignum::BigitOrZero(const int index) const { |
| if (index >= BigitLength()) { |
| return 0; |
| } |
| if (index < exponent_) { |
| return 0; |
| } |
| return RawBigit(index - exponent_); |
| } |
| |
| |
| int Bignum::Compare(const Bignum& a, const Bignum& b) { |
| DOUBLE_CONVERSION_ASSERT(a.IsClamped()); |
| DOUBLE_CONVERSION_ASSERT(b.IsClamped()); |
| const int bigit_length_a = a.BigitLength(); |
| const int bigit_length_b = b.BigitLength(); |
| if (bigit_length_a < bigit_length_b) { |
| return -1; |
| } |
| if (bigit_length_a > bigit_length_b) { |
| return +1; |
| } |
| for (int i = bigit_length_a - 1; i >= (std::min)(a.exponent_, b.exponent_); --i) { |
| const Chunk bigit_a = a.BigitOrZero(i); |
| const Chunk bigit_b = b.BigitOrZero(i); |
| if (bigit_a < bigit_b) { |
| return -1; |
| } |
| if (bigit_a > bigit_b) { |
| return +1; |
| } |
| // Otherwise they are equal up to this digit. Try the next digit. |
| } |
| return 0; |
| } |
| |
| |
| int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) { |
| DOUBLE_CONVERSION_ASSERT(a.IsClamped()); |
| DOUBLE_CONVERSION_ASSERT(b.IsClamped()); |
| DOUBLE_CONVERSION_ASSERT(c.IsClamped()); |
| if (a.BigitLength() < b.BigitLength()) { |
| return PlusCompare(b, a, c); |
| } |
| if (a.BigitLength() + 1 < c.BigitLength()) { |
| return -1; |
| } |
| if (a.BigitLength() > c.BigitLength()) { |
| return +1; |
| } |
| // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than |
| // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one |
| // of 'a'. |
| if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) { |
| return -1; |
| } |
| |
| Chunk borrow = 0; |
| // Starting at min_exponent all digits are == 0. So no need to compare them. |
| const int min_exponent = (std::min)((std::min)(a.exponent_, b.exponent_), c.exponent_); |
| for (int i = c.BigitLength() - 1; i >= min_exponent; --i) { |
| const Chunk chunk_a = a.BigitOrZero(i); |
| const Chunk chunk_b = b.BigitOrZero(i); |
| const Chunk chunk_c = c.BigitOrZero(i); |
| const Chunk sum = chunk_a + chunk_b; |
| if (sum > chunk_c + borrow) { |
| return +1; |
| } else { |
| borrow = chunk_c + borrow - sum; |
| if (borrow > 1) { |
| return -1; |
| } |
| borrow <<= kBigitSize; |
| } |
| } |
| if (borrow == 0) { |
| return 0; |
| } |
| return -1; |
| } |
| |
| |
| void Bignum::Clamp() { |
| while (used_bigits_ > 0 && RawBigit(used_bigits_ - 1) == 0) { |
| used_bigits_--; |
| } |
| if (used_bigits_ == 0) { |
| // Zero. |
| exponent_ = 0; |
| } |
| } |
| |
| |
| void Bignum::Align(const Bignum& other) { |
| if (exponent_ > other.exponent_) { |
| // If "X" represents a "hidden" bigit (by the exponent) then we are in the |
| // following case (a == this, b == other): |
| // a: aaaaaaXXXX or a: aaaaaXXX |
| // b: bbbbbbX b: bbbbbbbbXX |
| // We replace some of the hidden digits (X) of a with 0 digits. |
| // a: aaaaaa000X or a: aaaaa0XX |
| const int zero_bigits = exponent_ - other.exponent_; |
| EnsureCapacity(used_bigits_ + zero_bigits); |
| for (int i = used_bigits_ - 1; i >= 0; --i) { |
| RawBigit(i + zero_bigits) = RawBigit(i); |
| } |
| for (int i = 0; i < zero_bigits; ++i) { |
| RawBigit(i) = 0; |
| } |
| used_bigits_ += zero_bigits; |
| exponent_ -= zero_bigits; |
| |
| DOUBLE_CONVERSION_ASSERT(used_bigits_ >= 0); |
| DOUBLE_CONVERSION_ASSERT(exponent_ >= 0); |
| } |
| } |
| |
| |
| void Bignum::BigitsShiftLeft(const int shift_amount) { |
| DOUBLE_CONVERSION_ASSERT(shift_amount < kBigitSize); |
| DOUBLE_CONVERSION_ASSERT(shift_amount >= 0); |
| Chunk carry = 0; |
| for (int i = 0; i < used_bigits_; ++i) { |
| const Chunk new_carry = RawBigit(i) >> (kBigitSize - shift_amount); |
| RawBigit(i) = ((RawBigit(i) << shift_amount) + carry) & kBigitMask; |
| carry = new_carry; |
| } |
| if (carry != 0) { |
| RawBigit(used_bigits_) = carry; |
| used_bigits_++; |
| } |
| } |
| |
| |
| void Bignum::SubtractTimes(const Bignum& other, const int factor) { |
| DOUBLE_CONVERSION_ASSERT(exponent_ <= other.exponent_); |
| if (factor < 3) { |
| for (int i = 0; i < factor; ++i) { |
| SubtractBignum(other); |
| } |
| return; |
| } |
| Chunk borrow = 0; |
| const int exponent_diff = other.exponent_ - exponent_; |
| for (int i = 0; i < other.used_bigits_; ++i) { |
| const DoubleChunk product = static_cast<DoubleChunk>(factor) * other.RawBigit(i); |
| const DoubleChunk remove = borrow + product; |
| const Chunk difference = RawBigit(i + exponent_diff) - (remove & kBigitMask); |
| RawBigit(i + exponent_diff) = difference & kBigitMask; |
| borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) + |
| (remove >> kBigitSize)); |
| } |
| for (int i = other.used_bigits_ + exponent_diff; i < used_bigits_; ++i) { |
| if (borrow == 0) { |
| return; |
| } |
| const Chunk difference = RawBigit(i) - borrow; |
| RawBigit(i) = difference & kBigitMask; |
| borrow = difference >> (kChunkSize - 1); |
| } |
| Clamp(); |
| } |
| |
| |
| } // namespace double_conversion |