| // © 2017 and later: Unicode, Inc. and others. |
| // License & terms of use: http://www.unicode.org/copyright.html |
| /* |
| ******************************************************************************* |
| * Copyright (C) 2012-2015, International Business Machines |
| * Corporation and others. All Rights Reserved. |
| ******************************************************************************* |
| * collationbasedatabuilder.cpp |
| * |
| * created on: 2012aug11 |
| * created by: Markus W. Scherer |
| */ |
| |
| #include "unicode/utypes.h" |
| |
| #if !UCONFIG_NO_COLLATION |
| |
| #include "unicode/localpointer.h" |
| #include "unicode/ucharstriebuilder.h" |
| #include "unicode/uniset.h" |
| #include "unicode/unistr.h" |
| #include "unicode/utf16.h" |
| #include "collation.h" |
| #include "collationbasedatabuilder.h" |
| #include "collationdata.h" |
| #include "collationdatabuilder.h" |
| #include "collationrootelements.h" |
| #include "normalizer2impl.h" |
| #include "uassert.h" |
| #include "utrie2.h" |
| #include "uvectr32.h" |
| #include "uvectr64.h" |
| #include "uvector.h" |
| |
| U_NAMESPACE_BEGIN |
| |
| namespace { |
| |
| /** |
| * Compare two signed int64_t values as if they were unsigned. |
| */ |
| int32_t |
| compareInt64AsUnsigned(int64_t a, int64_t b) { |
| if((uint64_t)a < (uint64_t)b) { |
| return -1; |
| } else if((uint64_t)a > (uint64_t)b) { |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| // TODO: Try to merge this with the binarySearch in alphaindex.cpp. |
| /** |
| * Like Java Collections.binarySearch(List, String, Comparator). |
| * |
| * @return the index>=0 where the item was found, |
| * or the index<0 for inserting the string at ~index in sorted order |
| */ |
| int32_t |
| binarySearch(const UVector64 &list, int64_t ce) { |
| if (list.size() == 0) { return ~0; } |
| int32_t start = 0; |
| int32_t limit = list.size(); |
| for (;;) { |
| int32_t i = (start + limit) / 2; |
| int32_t cmp = compareInt64AsUnsigned(ce, list.elementAti(i)); |
| if (cmp == 0) { |
| return i; |
| } else if (cmp < 0) { |
| if (i == start) { |
| return ~start; // insert ce before i |
| } |
| limit = i; |
| } else { |
| if (i == start) { |
| return ~(start + 1); // insert ce after i |
| } |
| start = i; |
| } |
| } |
| } |
| |
| } // namespace |
| |
| CollationBaseDataBuilder::CollationBaseDataBuilder(UErrorCode &errorCode) |
| : CollationDataBuilder(errorCode), |
| numericPrimary(0x12000000), |
| firstHanPrimary(0), lastHanPrimary(0), hanStep(2), |
| rootElements(errorCode), |
| scriptStartsLength(1) { |
| uprv_memset(scriptsIndex, 0, sizeof(scriptsIndex)); |
| uprv_memset(scriptStarts, 0, sizeof(scriptStarts)); |
| } |
| |
| CollationBaseDataBuilder::~CollationBaseDataBuilder() { |
| } |
| |
| void |
| CollationBaseDataBuilder::init(UErrorCode &errorCode) { |
| if(U_FAILURE(errorCode)) { return; } |
| if(trie != NULL) { |
| errorCode = U_INVALID_STATE_ERROR; |
| return; |
| } |
| |
| // Not compressible: |
| // - digits |
| // - Latin |
| // - Hani |
| // - trail weights |
| // Some scripts are compressible, some are not. |
| uprv_memset(compressibleBytes, FALSE, 256); |
| compressibleBytes[Collation::UNASSIGNED_IMPLICIT_BYTE] = TRUE; |
| |
| // For a base, the default is to compute an unassigned-character implicit CE. |
| // This includes surrogate code points; see the last option in |
| // UCA section 7.1.1 Handling Ill-Formed Code Unit Sequences. |
| trie = utrie2_open(Collation::UNASSIGNED_CE32, Collation::FFFD_CE32, &errorCode); |
| |
| // Preallocate trie blocks for Latin in the hope that proximity helps with CPU caches. |
| for(UChar32 c = 0; c < 0x180; ++c) { |
| utrie2_set32(trie, c, Collation::UNASSIGNED_CE32, &errorCode); |
| } |
| |
| utrie2_set32(trie, 0xfffe, Collation::MERGE_SEPARATOR_CE32, &errorCode); |
| // No root element for the merge separator which has 02 weights. |
| // Some code assumes that the root first primary CE is the "space first primary" |
| // from FractionalUCA.txt. |
| |
| uint32_t hangulCE32 = Collation::makeCE32FromTagAndIndex(Collation::HANGUL_TAG, 0); |
| utrie2_setRange32(trie, Hangul::HANGUL_BASE, Hangul::HANGUL_END, hangulCE32, TRUE, &errorCode); |
| |
| // Add a mapping for the first-unassigned boundary, |
| // which is the AlphabeticIndex overflow boundary. |
| UnicodeString s((UChar)0xfdd1); // Script boundary contractions start with U+FDD1. |
| s.append((UChar)0xfdd0); // Zzzz script sample character U+FDD0. |
| int64_t ce = Collation::makeCE(Collation::FIRST_UNASSIGNED_PRIMARY); |
| add(UnicodeString(), s, &ce, 1, errorCode); |
| |
| // Add a tailoring boundary, but not a mapping, for [first trailing]. |
| ce = Collation::makeCE(Collation::FIRST_TRAILING_PRIMARY); |
| rootElements.addElement(ce, errorCode); |
| |
| // U+FFFD maps to a CE with the third-highest primary weight, |
| // for predictable handling of ill-formed UTF-8. |
| uint32_t ce32 = Collation::FFFD_CE32; |
| utrie2_set32(trie, 0xfffd, ce32, &errorCode); |
| addRootElement(Collation::ceFromSimpleCE32(ce32), errorCode); |
| |
| // U+FFFF maps to a CE with the highest primary weight. |
| ce32 = Collation::MAX_REGULAR_CE32; |
| utrie2_set32(trie, 0xffff, ce32, &errorCode); |
| addRootElement(Collation::ceFromSimpleCE32(ce32), errorCode); |
| } |
| |
| void |
| CollationBaseDataBuilder::initHanRanges(const UChar32 ranges[], int32_t length, |
| UErrorCode &errorCode) { |
| if(U_FAILURE(errorCode) || length == 0) { return; } |
| if((length & 1) != 0) { // incomplete start/end pairs |
| errorCode = U_ILLEGAL_ARGUMENT_ERROR; |
| return; |
| } |
| if(isAssigned(0x4e00)) { // already set |
| errorCode = U_INVALID_STATE_ERROR; |
| return; |
| } |
| int32_t numHanCodePoints = 0; |
| for(int32_t i = 0; i < length; i += 2) { |
| UChar32 start = ranges[i]; |
| UChar32 end = ranges[i + 1]; |
| numHanCodePoints += end - start + 1; |
| } |
| // Multiply the number of code points by (gap+1). |
| // Add hanStep+2 for tailoring after the last Han character. |
| int32_t gap = 1; |
| hanStep = gap + 1; |
| int32_t numHan = numHanCodePoints * hanStep + hanStep + 2; |
| // Numbers of Han primaries per lead byte determined by |
| // numbers of 2nd (not compressible) times 3rd primary byte values. |
| int32_t numHanPerLeadByte = 254 * 254; |
| int32_t numHanLeadBytes = (numHan + numHanPerLeadByte - 1) / numHanPerLeadByte; |
| uint32_t hanPrimary = (uint32_t)(Collation::UNASSIGNED_IMPLICIT_BYTE - numHanLeadBytes) << 24; |
| hanPrimary |= 0x20200; |
| firstHanPrimary = hanPrimary; |
| for(int32_t i = 0; i < length; i += 2) { |
| UChar32 start = ranges[i]; |
| UChar32 end = ranges[i + 1]; |
| hanPrimary = setPrimaryRangeAndReturnNext(start, end, hanPrimary, hanStep, errorCode); |
| } |
| // One past the actual last one, but that is harmless for tailoring. |
| // It saves us from subtracting "hanStep" and handling underflows. |
| lastHanPrimary = hanPrimary; |
| } |
| |
| UBool |
| CollationBaseDataBuilder::isCompressibleLeadByte(uint32_t b) const { |
| return compressibleBytes[b]; |
| } |
| |
| void |
| CollationBaseDataBuilder::setCompressibleLeadByte(uint32_t b) { |
| compressibleBytes[b] = TRUE; |
| } |
| |
| int32_t |
| CollationBaseDataBuilder::diffTwoBytePrimaries(uint32_t p1, uint32_t p2, UBool isCompressible) { |
| if((p1 & 0xff000000) == (p2 & 0xff000000)) { |
| // Same lead bytes. |
| return (int32_t)(p2 - p1) >> 16; |
| } else { |
| int32_t linear1; |
| int32_t linear2; |
| int32_t factor; |
| if(isCompressible) { |
| // Second byte for compressible lead byte: 251 bytes 04..FE |
| linear1 = (int32_t)((p1 >> 16) & 0xff) - 4; |
| linear2 = (int32_t)((p2 >> 16) & 0xff) - 4; |
| factor = 251; |
| } else { |
| // Second byte for incompressible lead byte: 254 bytes 02..FF |
| linear1 = (int32_t)((p1 >> 16) & 0xff) - 2; |
| linear2 = (int32_t)((p2 >> 16) & 0xff) - 2; |
| factor = 254; |
| } |
| linear1 += factor * (int32_t)((p1 >> 24) & 0xff); |
| linear2 += factor * (int32_t)((p2 >> 24) & 0xff); |
| return linear2 - linear1; |
| } |
| } |
| |
| int32_t |
| CollationBaseDataBuilder::diffThreeBytePrimaries(uint32_t p1, uint32_t p2, UBool isCompressible) { |
| if((p1 & 0xffff0000) == (p2 & 0xffff0000)) { |
| // Same first two bytes. |
| return (int32_t)(p2 - p1) >> 8; |
| } else { |
| // Third byte: 254 bytes 02..FF |
| int32_t linear1 = (int32_t)((p1 >> 8) & 0xff) - 2; |
| int32_t linear2 = (int32_t)((p2 >> 8) & 0xff) - 2; |
| int32_t factor; |
| if(isCompressible) { |
| // Second byte for compressible lead byte: 251 bytes 04..FE |
| linear1 += 254 * ((int32_t)((p1 >> 16) & 0xff) - 4); |
| linear2 += 254 * ((int32_t)((p2 >> 16) & 0xff) - 4); |
| factor = 251 * 254; |
| } else { |
| // Second byte for incompressible lead byte: 254 bytes 02..FF |
| linear1 += 254 * ((int32_t)((p1 >> 16) & 0xff) - 2); |
| linear2 += 254 * ((int32_t)((p2 >> 16) & 0xff) - 2); |
| factor = 254 * 254; |
| } |
| linear1 += factor * (int32_t)((p1 >> 24) & 0xff); |
| linear2 += factor * (int32_t)((p2 >> 24) & 0xff); |
| return linear2 - linear1; |
| } |
| } |
| |
| uint32_t |
| CollationBaseDataBuilder::encodeCEs(const int64_t ces[], int32_t cesLength, UErrorCode &errorCode) { |
| addRootElements(ces, cesLength, errorCode); |
| return CollationDataBuilder::encodeCEs(ces, cesLength, errorCode); |
| } |
| |
| void |
| CollationBaseDataBuilder::addRootElements(const int64_t ces[], int32_t cesLength, |
| UErrorCode &errorCode) { |
| if(U_FAILURE(errorCode)) { return; } |
| for(int32_t i = 0; i < cesLength; ++i) { |
| addRootElement(ces[i], errorCode); |
| } |
| } |
| |
| void |
| CollationBaseDataBuilder::addRootElement(int64_t ce, UErrorCode &errorCode) { |
| if(U_FAILURE(errorCode) || ce == 0) { return; } |
| // Remove case bits. |
| ce &= INT64_C(0xffffffffffff3fff); |
| U_ASSERT((ce & 0xc0) == 0); // quaternary==0 |
| // Ignore the CE if it has a Han primary weight and common secondary/tertiary weights. |
| // We will add it later, as part of the Han ranges. |
| uint32_t p = (uint32_t)(ce >> 32); |
| uint32_t secTer = (uint32_t)ce; |
| if(firstHanPrimary <= p && p <= lastHanPrimary) { |
| if(secTer < Collation::COMMON_SEC_AND_TER_CE) { |
| // buildRootElementsTable() does not currently handle this case. |
| errorCode = U_ILLEGAL_ARGUMENT_ERROR; |
| return; |
| } |
| if(secTer == Collation::COMMON_SEC_AND_TER_CE) { |
| return; |
| } |
| } |
| if(secTer != Collation::COMMON_SEC_AND_TER_CE) { // minor optimization |
| // Check that secondary and tertiary weights are > 01. |
| uint32_t s = secTer >> 16; |
| uint32_t t = secTer & Collation::ONLY_TERTIARY_MASK; |
| if((s != 0 && s <= Collation::BEFORE_WEIGHT16) || |
| (t != 0 && t <= Collation::BEFORE_WEIGHT16)) { |
| errorCode = U_ILLEGAL_ARGUMENT_ERROR; |
| return; |
| } |
| } |
| // Check that primaries have at most 3 bytes. |
| if((p & 0xff) != 0) { |
| errorCode = U_ILLEGAL_ARGUMENT_ERROR; |
| return; |
| } |
| int32_t i = binarySearch(rootElements, ce); |
| if(i < 0) { |
| rootElements.insertElementAt(ce, ~i, errorCode); |
| } |
| } |
| |
| void |
| CollationBaseDataBuilder::addScriptStart(int32_t script, uint32_t p) { |
| // The primary weight must be the lowest possible for a two-byte prefix. |
| // It could be 2, 3, or 4 bytes long. We round down to the two-byte boundary. |
| U_ASSERT((p & 0xff) == 0 || (p & 0xff) == 2); |
| p >>= 8; |
| U_ASSERT((p & 0xff) == 0 || (p & 0xff) == 2); |
| p >>= 8; |
| uint32_t lowestP2 = compressibleBytes[p >> 8] ? 4 : 2; |
| if((p & 0xff) == lowestP2) { |
| // The script really starts on a lead byte boundary. Round down to that. |
| p &= 0xff00; |
| } |
| // Script starts should be added in ascending order, otherwise we would need to sort them. |
| if(script < UCOL_REORDER_CODE_FIRST) { |
| U_ASSERT(0 <= script && script < USCRIPT_CODE_LIMIT); |
| } else { |
| U_ASSERT(script <= (UCOL_REORDER_CODE_FIRST + 15)); |
| script = USCRIPT_CODE_LIMIT + script - UCOL_REORDER_CODE_FIRST; |
| } |
| if(scriptStartsLength != 0 && scriptStarts[scriptStartsLength - 1] == p) { |
| // Two scripts share a range (e.g., Hira & Kana). |
| scriptsIndex[script] = (uint16_t)(scriptStartsLength - 1); |
| } else { |
| U_ASSERT(scriptStartsLength == 0 || scriptStarts[scriptStartsLength - 1] <= p); |
| U_ASSERT(scriptStartsLength < UPRV_LENGTHOF(scriptStarts)); |
| scriptsIndex[script] = (uint16_t)scriptStartsLength; |
| scriptStarts[scriptStartsLength++] = (uint16_t)p; |
| } |
| if(script == USCRIPT_UNKNOWN) { |
| // The last script start is for unassigned code points |
| // (with high implict primary weights). |
| // Add one more entry with the limit of this range, |
| // which is the start of the trailing-weights range. |
| U_ASSERT(scriptStartsLength < UPRV_LENGTHOF(scriptStarts)); |
| scriptStarts[scriptStartsLength++] = |
| (uint16_t)((Collation::FIRST_TRAILING_PRIMARY >> 16) & 0xff00); |
| } |
| } |
| |
| void |
| CollationBaseDataBuilder::build(CollationData &data, UErrorCode &errorCode) { |
| buildMappings(data, errorCode); |
| data.numericPrimary = numericPrimary; |
| data.compressibleBytes = compressibleBytes; |
| |
| int32_t numScripts = USCRIPT_CODE_LIMIT; |
| while(numScripts > 0 && scriptsIndex[numScripts - 1] == 0) { --numScripts; } |
| // Move the 16 special groups (not all used) |
| // down for contiguous storage of the script and special-group indexes. |
| for(int32_t i = 0; i < 16; ++i) { |
| scriptsIndex[numScripts + i] = scriptsIndex[USCRIPT_CODE_LIMIT + i]; |
| } |
| data.numScripts = numScripts; |
| data.scriptsIndex = scriptsIndex; |
| data.scriptStarts = scriptStarts; |
| data.scriptStartsLength = scriptStartsLength; |
| buildFastLatinTable(data, errorCode); |
| } |
| |
| void |
| CollationBaseDataBuilder::buildRootElementsTable(UVector32 &table, UErrorCode &errorCode) { |
| // Limit sentinel for root elements. |
| // This allows us to reduce range checks at runtime. |
| rootElements.addElement(Collation::makeCE(CollationRootElements::PRIMARY_SENTINEL), errorCode); |
| if(U_FAILURE(errorCode)) { return; } |
| uint32_t nextHanPrimary = firstHanPrimary; // Set to 0xffffffff after the last Han range. |
| uint32_t prevPrimary = 0; // Start with primary ignorable CEs. |
| UBool needCommonSecTerUnit = FALSE; |
| UBool hasDeltaUnit = FALSE; |
| for(int32_t i = 0; i < rootElements.size(); ++i) { |
| int64_t ce = rootElements.elementAti(i); |
| uint32_t p = (uint32_t)(ce >> 32); |
| uint32_t secTer = (uint32_t)ce & Collation::ONLY_SEC_TER_MASK; |
| if((p != prevPrimary || secTer > Collation::COMMON_SEC_AND_TER_CE) && needCommonSecTerUnit) { |
| // The last primary had low sec/ter weights but no common sec/ter combination. |
| // The next unit is either a new primary or an above-common sec/ter unit. |
| // Insert a common sec/ter unit so that the builder will reliably |
| // tailor to either before or after a common weight but not across it. |
| table.addElement((int32_t)Collation::COMMON_SEC_AND_TER_CE | |
| CollationRootElements::SEC_TER_DELTA_FLAG, errorCode); |
| } |
| if(p != prevPrimary) { |
| U_ASSERT((p & 0xff) == 0); |
| int32_t end; |
| if(p >= nextHanPrimary) { |
| // Add a Han primary weight or range. |
| // We omitted them initially, and omitted all CEs with Han primaries |
| // and common secondary/tertiary weights. |
| U_ASSERT(p > lastHanPrimary || secTer > Collation::COMMON_SEC_AND_TER_CE); |
| if(p == nextHanPrimary) { |
| // One single Han primary with non-common secondary/tertiary weights. |
| table.addElement((int32_t)p, errorCode); |
| if(p < lastHanPrimary) { |
| // Prepare for the next Han range. |
| nextHanPrimary = Collation::incThreeBytePrimaryByOffset(p, FALSE, hanStep); |
| } else { |
| // p is the last Han primary. |
| nextHanPrimary = 0xffffffff; |
| } |
| } else { |
| // p > nextHanPrimary: Add a Han primary range, starting with nextHanPrimary. |
| table.addElement((int32_t)nextHanPrimary, errorCode); |
| if(nextHanPrimary == lastHanPrimary) { |
| // nextHanPrimary == lastHanPrimary < p |
| // We just wrote the single last Han primary. |
| nextHanPrimary = 0xffffffff; |
| table.addElement((int32_t)p, errorCode); |
| } else if(p < lastHanPrimary) { |
| // nextHanPrimary < p < lastHanPrimary |
| // End the Han range on p, prepare for the next range. |
| table.addElement((int32_t)p | hanStep, errorCode); |
| nextHanPrimary = Collation::incThreeBytePrimaryByOffset(p, FALSE, hanStep); |
| } else if(p == lastHanPrimary) { |
| // nextHanPrimary < p == lastHanPrimary |
| // End the last Han range on p. |
| table.addElement((int32_t)p | hanStep, errorCode); |
| nextHanPrimary = 0xffffffff; |
| } else { |
| // nextHanPrimary < lastHanPrimary < p |
| // End the last Han range, then write p. |
| table.addElement((int32_t)lastHanPrimary | hanStep, errorCode); |
| nextHanPrimary = 0xffffffff; |
| table.addElement((int32_t)p, errorCode); |
| } |
| } |
| } else if(prevPrimary != 0 && |
| // If there has not been an intervening delta unit, |
| // then we will try to combine the previous primary and |
| // the next several primaries into a range. |
| !hasDeltaUnit && |
| // Might get a range with more than two primaries if the current CE |
| // has common sec/ter weights. |
| secTer == Collation::COMMON_SEC_AND_TER_CE && |
| (end = writeRootElementsRange(prevPrimary, p, i + 1, table, errorCode)) != 0) { |
| // Multiple CEs with only common secondary/tertiary weights were |
| // combined into a primary range. |
| // The range end was written, ending with the primary of rootElements[end]. |
| ce = rootElements.elementAti(end); |
| p = (uint32_t)(ce >> 32); |
| secTer = (uint32_t)ce & Collation::ONLY_SEC_TER_MASK; |
| i = end; |
| } else { |
| // Write the primary weight of a normal CE. |
| table.addElement((int32_t)p, errorCode); |
| } |
| prevPrimary = p; |
| needCommonSecTerUnit = FALSE; |
| hasDeltaUnit = FALSE; |
| } |
| if(secTer == Collation::COMMON_SEC_AND_TER_CE && !needCommonSecTerUnit) { |
| // The common secondar/tertiary weights are implied in the primary unit. |
| } else { |
| if(secTer < Collation::COMMON_SEC_AND_TER_CE) { |
| // Remember to not suppress a common sec/ter unit if p!=0. |
| needCommonSecTerUnit = p != 0; |
| } else if(secTer == Collation::COMMON_SEC_AND_TER_CE) { |
| // Real common sec/ter unit, no need to insert an artificial one. |
| needCommonSecTerUnit = FALSE; |
| } |
| // For each new set of secondary/tertiary weights we write a delta unit. |
| table.addElement((int32_t)secTer | CollationRootElements::SEC_TER_DELTA_FLAG, errorCode); |
| hasDeltaUnit = TRUE; |
| } |
| } |
| } |
| |
| int32_t |
| CollationBaseDataBuilder::writeRootElementsRange( |
| uint32_t prevPrimary, uint32_t p, int32_t i, |
| UVector32 &table, UErrorCode &errorCode) { |
| if(U_FAILURE(errorCode) || i >= rootElements.size()) { return 0; } |
| U_ASSERT(prevPrimary < p); |
| // No ranges of single-byte primaries. |
| if((p & prevPrimary & 0xff0000) == 0) { return 0; } |
| // Lead bytes of compressible primaries must match. |
| UBool isCompressible = isCompressiblePrimary(p); |
| if((isCompressible || isCompressiblePrimary(prevPrimary)) && |
| (p & 0xff000000) != (prevPrimary & 0xff000000)) { |
| return 0; |
| } |
| // Number of bytes in the primaries. |
| UBool twoBytes; |
| // Number of primaries from prevPrimary to p. |
| int32_t step; |
| if((p & 0xff00) == 0) { |
| // 2-byte primary |
| if((prevPrimary & 0xff00) != 0) { return 0; } // length mismatch |
| twoBytes = TRUE; |
| step = diffTwoBytePrimaries(prevPrimary, p, isCompressible); |
| } else { |
| // 3-byte primary |
| if((prevPrimary & 0xff00) == 0) { return 0; } // length mismatch |
| twoBytes = FALSE; |
| step = diffThreeBytePrimaries(prevPrimary, p, isCompressible); |
| } |
| if(step > (int32_t)CollationRootElements::PRIMARY_STEP_MASK) { return 0; } |
| // See if there are more than two CEs with primaries increasing by "step" |
| // and with only common secondary/tertiary weights on all but the last one. |
| int32_t end = 0; // Initially 0: No range for just two primaries. |
| for(;;) { |
| prevPrimary = p; |
| // Calculate which primary we expect next. |
| uint32_t nextPrimary; // = p + step |
| if(twoBytes) { |
| nextPrimary = Collation::incTwoBytePrimaryByOffset(p, isCompressible, step); |
| } else { |
| nextPrimary = Collation::incThreeBytePrimaryByOffset(p, isCompressible, step); |
| } |
| // Fetch the actual next CE. |
| int64_t ce = rootElements.elementAti(i); |
| p = (uint32_t)(ce >> 32); |
| uint32_t secTer = (uint32_t)ce & Collation::ONLY_SEC_TER_MASK; |
| // Does this primary increase by "step" from the last one? |
| if(p != nextPrimary || |
| // Do not cross into a new lead byte if either is compressible. |
| ((p & 0xff000000) != (prevPrimary & 0xff000000) && |
| (isCompressible || isCompressiblePrimary(p)))) { |
| // The range ends with the previous CE. |
| p = prevPrimary; |
| break; |
| } |
| // Extend the range to include this primary. |
| end = i++; |
| // This primary is the last in the range if it has non-common weights |
| // or if we are at the end of the list. |
| if(secTer != Collation::COMMON_SEC_AND_TER_CE || i >= rootElements.size()) { break; } |
| } |
| if(end != 0) { |
| table.addElement((int32_t)p | step, errorCode); |
| } |
| return end; |
| } |
| |
| U_NAMESPACE_END |
| |
| #endif // !UCONFIG_NO_COLLATION |